Psychopharmacology

, Volume 228, Issue 4, pp 563–575

Efficacy of d-penicillamine, a sequestering acetaldehyde agent, in the prevention of alcohol relapse-like drinking in rats

  • Alejandro Orrico
  • Lucía Hipólito
  • María José Sánchez-Catalán
  • Lucía Martí-Prats
  • Teodoro Zornoza
  • Luis Granero
  • Ana Polache
Original Investigation

Abstract

Rationale

Nowadays, very few approved anti-relapse treatments for alcoholism exist, and their overall efficacy can be considered moderate. An exciting rationale drug development opportunity for the treatment of chronic alcoholism is the use of acetaldehyde sequestering agents. Although these compounds are able to attenuate or prevent most of the behavioral and neurochemical effects of ethanol, the efficacy of acetaldehyde sequestration, by using agents such as d-penicillamine (DP), in relapse prevention has not been studied yet.

Objectives

The aim of this study was to analyze the effects of DP treatment on the alcohol deprivation effect (ADE) in long-term ethanol-experienced rats as a model of relapse behavior and measure drug plasma and brain levels during treatment.

Methods

Rats were subcutaneously implanted with mini-osmotic pumps delivering 0, 0.25, or 1 mg/h of DP during 1 week. The efficacy to prevent ADE was determined. DP plasma and brain levels achieved during its subcutaneous administration were measured. In a second experiment, animals received bilateral infusions of 0 or 1.5 μg/h of DP directly into pVTA, and the appearance of ADE was evaluated.

Results

One milligram per hour, but not 0.25 mg/h, DP infusion prevented ADE and reduced the total ethanol preference in animals. DP plasma concentrations associated with ADE suppression were around 3–4 μg/ml, and brain DP levels in these conditions were about 2–3 % of those found in plasma. Intra-pVTA DP administration also suppressed ADE.

Conclusion

DP is able to prevent alcohol-relapse-like drinking in rats suggesting that this drug may be a useful new tool in the management of relapse in alcohol-dependent patients.

Keywords

d-Penicillamine Alcohol deprivation effect Ethanol relapse prevention Acetaldehyde sequestering agents 

References

  1. Addolorato G, Leggio L, Hopf FW, Diana M, Bonci A (2012) Novel therapeutic strategies for alcohol and drug addiction: focus on GABA, ion channels and transcranial magnetic stimulation. Neuropsychopharmacology 37:163–177. doi:10.1038/npp.2011.216 PubMedCrossRefGoogle Scholar
  2. Andlin-Sobocki P, Rehm J (2005) Cost of addiction in Europe. Eur J Neurol 12(Suppl 1):28–33. doi:10.1111/j.1468-1331.2005.01194.x PubMedCrossRefGoogle Scholar
  3. Aragon CM, Rogan F, Amit Z (1992) Ethanol metabolism in rat brain homogenates by a catalase–H2O2 system. Biochem Pharmacol 44:93–98PubMedCrossRefGoogle Scholar
  4. Bergstrom RF, Kay RD, Wagner JG (1981) The pharmacokinetics of penicillamine in a female mongrel dog. J Pharmacokinet Biopharm 9:603–621PubMedCrossRefGoogle Scholar
  5. Brager A, Prosser RA, Glass JD (2011) Acamprosate-responsive brain sites for suppression of ethanol intake and preference. Am J Physiol Regul Integr Comp Physiol 301:R1032–43. doi:10.1152/ajpregu.00179.2011 PubMedCrossRefGoogle Scholar
  6. Burish TG, Maisto SA, Cooper AM, Sobell MB (1981) Effects of voluntary short-term abstinence from alcohol on subsequent drinking patterns of college students. J Stud Alcohol 42:1013–1020PubMedGoogle Scholar
  7. Cederbaum AI, Rubin E (1976) Mechanism of the protective action of cysteine and penicillamine against acetaldehyde-induced mitochondrial injury. Biochem Pharmacol 25:2179–2185PubMedCrossRefGoogle Scholar
  8. Correa M, Salamone JD, Segovia KN, Pardo M, Longoni R, Spina L, Peana AT, Vinci S, Acquas E (2012) Piecing together the puzzle of acetaldehyde as a neuroactive agent. Neurosci Biobehav Rev 36:404–430. doi:10.1016/j.neubiorev.2011.07.009 PubMedCrossRefGoogle Scholar
  9. Edwards S, Kenna GA, Swift RM, Leggio L (2011) Current and promising pharmacotherapies, and novel research target areas in the treatment of alcohol dependence: a review. Curr Pharm Des 17:1323–1332PubMedCrossRefGoogle Scholar
  10. Enrico P, Sirca D, Mereu M, Peana AT, Lintas A, Golosio A, Diana M (2009) Acetaldehyde sequestering prevents ethanol-induced stimulation of mesolimbic dopamine transmission. Drug Alcohol Depend 100:265–271. doi:10.1016/j.drugalcdep.2008.10.010 PubMedCrossRefGoogle Scholar
  11. Foddai M, Dosia G, Spiga S, Diana M (2004) Acetaldehyde increases dopaminergic neuronal activity in the VTA. Neuropsychopharmacology 29:530–536. doi:10.1038/sj.npp.1300326 PubMedCrossRefGoogle Scholar
  12. Font L, Miquel M, Aragon CM (2005) Prevention of ethanol-induced behavioral stimulation by D-penicillamine: a sequestration agent for acetaldehyde. Alcohol Clin Exp Res 29:1156–1164PubMedCrossRefGoogle Scholar
  13. Font L, Aragon CM, Miquel M (2006a) Voluntary ethanol consumption decreases after the inactivation of central acetaldehyde by d-penicillamine. Behav Brain Res 171:78–86. doi:10.1016/j.bbr.2006.03.020 PubMedCrossRefGoogle Scholar
  14. Font L, Aragon CM, Miquel M (2006b) Ethanol-induced conditioned place preference, but not aversion, is blocked by treatment with D-penicillamine, an inactivation agent for acetaldehyde. Psychopharmacology (Berl) 184:56–64. doi:10.1007/s00213-005-0224-z CrossRefGoogle Scholar
  15. Granero L, Gimeno MJ, Torres-Molina F, Chesa-Jimenez J, Peris JE (1994) Studies on the renal excretion mechanisms of cefadroxil. Drug Metab Dispos 22:447–450PubMedGoogle Scholar
  16. Heilig M, Goldman D, Berrettini W, O'Brien CP (2011) Pharmacogenetic approaches to the treatment of alcohol addiction. Nat Rev Neurosci 12:670–684. doi:10.1038/nrn3110 PubMedCrossRefGoogle Scholar
  17. Heyser CJ, Schulteis G, Koob GF (1997) Increased ethanol self-administration after a period of imposed ethanol deprivation in rats trained in a limited access paradigm. Alcohol Clin Exp Res 21:784–791PubMedCrossRefGoogle Scholar
  18. Hipolito L, Sanchez MJ, Polache A, Granero L (2007) Brain metabolism of ethanol and alcoholism: an update. Curr Drug Metab 8:716–727PubMedCrossRefGoogle Scholar
  19. Holter SM, Spanagel R (1999) Effects of opiate antagonist treatment on the alcohol deprivation effect in long-term ethanol-experienced rats. Psychopharmacology (Berl) 145:360–369CrossRefGoogle Scholar
  20. Kera Y, Kiriyama T, Komura S (1985) Conjugation of acetaldehyde with cysteinylglycine, the first metabolite in glutathione breakdown by gamma-glutamyltranspeptidase. Agents Actions 17:48–52PubMedCrossRefGoogle Scholar
  21. Kessler RC, Chiu WT, Demler O, Merikangas KR, Walters EE (2005) Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry 62:617–627. doi:10.1001/archpsyc.62.6.617 PubMedCrossRefGoogle Scholar
  22. Kornet M, Goosen C, Van Ree JM (1991) Effect of naltrexone on alcohol consumption during chronic alcohol drinking and after a period of imposed abstinence in free-choice drinking rhesus monkeys. Psychopharmacology (Berl) 104:367–376CrossRefGoogle Scholar
  23. Kranzler HR, Van Kirk J (2001) Efficacy of naltrexone and acamprosate for alcoholism treatment: a meta-analysis. Alcohol Clin Exp Res 25:1335–1341PubMedCrossRefGoogle Scholar
  24. Kreuzig F, Frank J (1981) Rapid automated determination of D-penicillamine in plasma and urine by ion-exchange high-performance liquid chromatography with electrochemical detection using a gold electrode. J Chromatogr 218:615–620PubMedCrossRefGoogle Scholar
  25. Leggio L, Cardone S, Ferrulli A, Kenna GA, Diana M, Swift RM, Addolorato G (2010) Turning the clock ahead: potential preclinical and clinical neuropharmacological targets for alcohol dependence. Curr Pharm Des 16:2159–2118PubMedCrossRefGoogle Scholar
  26. March SM, Abate P, Spear NE, Molina JC (2012) The role of acetaldehyde in ethanol reinforcement assessed by Pavlovian conditioning in newborn rats. Psychopharmacology (Berl). doi:10.1007/s00213-012-2920-9 Google Scholar
  27. Marti-Prats L, Sanchez-Catalan MJ, Hipolito L, Orrico A, Zornoza T, Polache A, Granero L (2010) Systemic administration of D-penicillamine prevents the locomotor activation after intra-VTA ethanol administration in rats. Neurosci Lett 483:143–147. doi:10.1016/j.neulet.2010.07.081 PubMedCrossRefGoogle Scholar
  28. McIntosh J, O'Brien T, McKeganey N (2008) Drug driving and the management of risk: the perspectives and practices of a sample of problem drug users. Int J Drug Policy 19:248–254. doi:10.1016/j.drugpo.2006.12.003 PubMedCrossRefGoogle Scholar
  29. Melis M, Enrico P, Peana AT, Diana M (2007) Acetaldehyde mediates alcohol activation of the mesolimbic dopamine system. Eur J Neurosci 26:2824–2833. doi:10.1111/j.1460-9568.2007.05887.x PubMedCrossRefGoogle Scholar
  30. Nagasawa HT, Goon DJ, DeMaster EG (1978) 2,5,5-Trimethylthiazolidine-4-carboxylic acid, a D(−)-penicillamine-directed pseudometabolite of ethanol. Detoxication mechanism for acetaldehyde. J Med Chem 21:1274–1279PubMedCrossRefGoogle Scholar
  31. Nagasawa HT, Elberling JA, DeMaster EG (1980) Structural requirements for the sequestration of metabolically generated acetaldehyde. J Med Chem 23:140–143PubMedCrossRefGoogle Scholar
  32. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic, San DiegoGoogle Scholar
  33. Peana AT, Enrico P, Assaretti AR, Pulighe E, Muggironi G, Nieddu M, Piga A, Lintas A, Diana M (2008) Key role of ethanol-derived acetaldehyde in the motivational properties induced by intragastric ethanol: a conditioned place preference study in the rat. Alcohol Clin Exp Res 32:249–258. doi:10.1111/j.1530-0277.2007.00574.x PubMedCrossRefGoogle Scholar
  34. Peana AT, Assaretti AR, Muggironi G, Enrico P, Diana M (2009) Reduction of ethanol-derived acetaldehyde induced motivational properties by L-cysteine. Alcohol Clin Exp Res 33:43–48. doi:10.1111/j.1530-0277.2008.00809.x PubMedCrossRefGoogle Scholar
  35. Peana AT, Muggironi G, Calvisi G, Enrico P, Mereu M, Nieddu M, Boatto G, Diana M (2010) l-Cysteine reduces oral ethanol self-administration and reinstatement of ethanol-drinking behavior in rats. Pharmacol Biochem Behav 94:431–437. doi:10.1016/j.pbb.2009.10.005 PubMedCrossRefGoogle Scholar
  36. Peana AT, Muggironi G, Fois GR, Zinellu M, Sirca D, Diana M (2012) Effect of l-cysteine on acetaldehyde self-administration. Alcohol. doi:10.1016/j.alcohol.2011.10.004 PubMedGoogle Scholar
  37. Rosner S, Hackl-Herrwerth A, Leucht S, Lehert P, Vecchi S, Soyka M (2010a) Acamprosate for alcohol dependence. Cochrane Database Syst Rev (9):CD004332. doi: 10.1002/14651858.CD004332.pub2
  38. Rosner S, Hackl-Herrwerth A, Leucht S, Vecchi S, Srisurapanont M, Soyka M (2010b) Opioid antagonists for alcohol dependence. Cochrane Database Syst Rev (12):CD001867. doi: 10.1002/14651858.CD001867.pub2.
  39. Salaspuro VJ, Hietala JM, Marvola ML, Salaspuro MP (2006) Eliminating carcinogenic acetaldehyde by cysteine from saliva during smoking. Cancer Epidemiol Biomarkers Prev 15:146–149. doi:10.1158/1055-9965.EPI-05-0248 PubMedCrossRefGoogle Scholar
  40. Salimov RM, Salimova NB (1993) The alcohol-deprivation effect in hybrid mice. Drug Alcohol Depend 32:187–191PubMedCrossRefGoogle Scholar
  41. Sanchez-Catalan MJ, Hipolito L, Guerri C, Granero L, Polache A (2008) Distribution and differential induction of CYP2E1 by ethanol and acetone in the mesocorticolimbic system of rat. Alcohol Alcohol 43:401–407. doi:10.1093/alcalc/agn012 PubMedCrossRefGoogle Scholar
  42. Sanchis C, Aragon CM (2007) What we drink when we drink? The role of the acetaldehyde in the alcohol consumption. Adicciones 19:5–11PubMedGoogle Scholar
  43. Serrano E, Pozo OJ, Beltran J, Hernandez F, Font L, Miquel M, Aragon CM (2007) Liquid chromatography/tandem mass spectrometry determination of (4S,2RS)-2,5,5-trimethylthiazolidine-4-carboxylic acid, a stable adduct formed between D-(−)-penicillamine and acetaldehyde (main biological metabolite of ethanol), in plasma, liver and brain rat tissues. Rapid Commun Mass Spectrom 21:1221–1229. doi:10.1002/rcm.2951 PubMedCrossRefGoogle Scholar
  44. Shen XY, Orson FM, Kosten TR (2012) Vaccines against drug abuse. Clin Pharmacol Ther 91:60–70. doi:10.1038/clpt.2011.281 PubMedCrossRefGoogle Scholar
  45. Sirca D, Enrico P, Mereu M, Peana AT, Diana M (2011) L-cysteine prevents ethanol-induced stimulation of mesolimbic dopamine transmission. Alcohol Clin Exp Res 35:862–869. doi:10.1111/j.1530-0277.2010.01416.x PubMedCrossRefGoogle Scholar
  46. Spanagel R (2009) Alcoholism: a systems approach from molecular physiology to addictive behavior. Physiol Rev 89:649–705. doi:10.1152/physrev.00013.2008 PubMedCrossRefGoogle Scholar
  47. Spanagel R, Holter SM (1999) Long-term alcohol self-administration with repeated alcohol deprivation phases: an animal model of alcoholism? Alcohol Alcohol 34:231–243PubMedCrossRefGoogle Scholar
  48. Spanagel R, Kiefer F (2008) Drugs for relapse prevention of alcoholism: ten years of progress. Trends Pharmacol Sci 29:109–115. doi:10.1016/j.tips.2007.12.005 PubMedCrossRefGoogle Scholar
  49. Spanagel R, Vengeliene V (2012) New pharmacological treatment strategies for relapse prevention. Curr Top Behav Neurosci. doi:10.1007/7854_2012_205 Google Scholar
  50. Spanagel R, Zieglgansberger W (1997) Anti-craving compounds for ethanol: new pharmacological tools to study addictive processes. Trends Pharmacol Sci 18:54–59PubMedCrossRefGoogle Scholar
  51. Vengeliene V, Bachteler D, Danysz W, Spanagel R (2005) The role of the NMDA receptor in alcohol relapse: a pharmacological mapping study using the alcohol deprivation effect. Neuropharmacology 48:822–829. doi:10.1016/j.neuropharm.2005.01.002 PubMedCrossRefGoogle Scholar
  52. Vengeliene V, Heidbreder CA, Spanagel R (2007) The effects of lamotrigine on alcohol seeking and relapse. Neuropharmacology 53:951–957. doi:10.1016/j.neuropharm.2007.09.006 PubMedCrossRefGoogle Scholar
  53. Zimatkin SM, Pronko SP, Vasiliou V, Gonzalez FJ, Deitrich RA (2006) Enzymatic mechanisms of ethanol oxidation in the brain. Alcohol Clin Exp Res 30:1500–1505. doi:10.1111/j.1530-0277.2006.00181.x PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alejandro Orrico
    • 1
  • Lucía Hipólito
    • 2
  • María José Sánchez-Catalán
    • 3
  • Lucía Martí-Prats
    • 1
  • Teodoro Zornoza
    • 1
  • Luis Granero
    • 1
  • Ana Polache
    • 1
  1. 1.Departament de Farmàcia i Tecnologia FarmacèuticaUniversitat de ValènciaBurjassotSpain
  2. 2.Department of AnesthesiologyColumbia University Medical CenterNew YorkUSA
  3. 3.Department Nociception and PainInstitute of Cellular and Integrative Neurosciences (INCI)Strasbourg CedexFrance

Personalised recommendations