, Volume 228, Issue 4, pp 623–631

Effect of oxytocin on craving and stress response in marijuana-dependent individuals: a pilot study

  • Aimee L. McRae-Clark
  • Nathaniel L. Baker
  • Megan Moran-Santa Maria
  • Kathleen T. Brady
Original Investigation



Stress has been shown to be a significant factor in the maintenance of marijuana use. Oxytocin is a hypothalamic neuropeptide that has been shown to moderate behavioral responding to stress as well as play a role in the neuroadaptations that occur as a consequence of long-term drug use.


The current study evaluated the impact of oxytocin pretreatment on craving, stress, and anxiety responses following a psychosocial stress task in marijuana-dependent individuals.


In a laboratory setting, baseline measurements of craving (assessed using the Marijuana Craving Questionnaire; MCQ), salivary cortisol and dehydroepiandrosterone (DHEA), stress, and anxiety were collected in 16 participants (age 19–40) meeting DSM-IV criteria for marijuana dependence. Participants were then administered either oxytocin 40 IU (n = 8) or placebo (n = 8) nasal spray prior to completion of the Trier Social Stress Task (TSST). Measurements were repeated pre-TSST, immediately post-TSST, and 5-, 35-, and 60-min post-TSST.


Oxytocin reduced both MCQ total score and DHEA levels from before to after the TSST. It also decreased anxiety, but not subjective stress ratings.


Although preliminary, these results suggest that oxytocin may play a role in the amelioration of stress-induced reactivity and craving in marijuana-dependent individuals.


Marijuana Oxytocin Stress Craving 

Supplementary material

213_2013_3062_MOESM1_ESM.docx (116 kb)
ESM 1(DOCX 116 kb)


  1. Baumgartner T, Heinrichs M, Vonlanthen A, Fischbacher U, Fehr E (2008) Oxytocin shapes the neural circuitry of trust and trust adaptation in humans. Neuron 58:639–650PubMedCrossRefGoogle Scholar
  2. Bonn-Miller MO, Zvolensky MJ, Bernstein A (2007) Marijuana use motives: concurrent relations to frequency of past 30-day use and anxiety sensitivity among young adult marijuana smokers. Addict Behav 32:49–62PubMedCrossRefGoogle Scholar
  3. Bremner JD, Southwick SM, Darnell A, Charney DS (1996) Chronic PTSD in Vietnam combat veterans: course of illness and substance abuse. Am J Psychiatry 153:369–375PubMedGoogle Scholar
  4. Butovsky E, Juknat A, Elbaz J, Shabat-Simon M, Eilam R, Zangen A, Altstein M, Vogel Z (2006) Chronic exposure to Delta9-tetrahydrocannabinol downregulates oxytocin and oxytocin-associated neurophysin in specific brain areas. Mol Cell Neurosci 31:795–804PubMedCrossRefGoogle Scholar
  5. Cardoso C, Ellenbogen MA, Orlando MA, Bacon SL, Joober R (2012) Intranasal oxytocin attenuates the cortisol response to physical stress: a dose response study. Psychoneuroendocrinology. doi:10.1016/j.psyneuen.2012.07.013
  6. Carson DS, Cornish JL, Guastella AJ, Hunt GE, McGregor IS (2010) Oxytocin decreases methamphetamine self-administration, methamphetamine hyperactivity, and relapse to methamphetamine-seeking behaviour in rats. Neuropharmacology 58:38–43PubMedCrossRefGoogle Scholar
  7. Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Erlbaum, HillsdaleGoogle Scholar
  8. Copeland J, Swift W, Rees V (2001) Clinical profile of participants in a brief intervention program for cannabis use disorder. J Subst Abuse Treat 20:45–52PubMedCrossRefGoogle Scholar
  9. Cui SS, Bowen RC, Gu GB, Hannesson DK, Yu PH, Zhang X (2001) Prevention of cannabinoid withdrawal syndrome by lithium: involvement of oxytocinergic neuronal activation. J Neurosci 21:9867–9876PubMedGoogle Scholar
  10. de Oliveira DC, Zuardi AW, Graeff FG, Queiroz RH, Crippa JA (2012) Anxiolytic-like effect of oxytocin in the simulated public speaking test. J Psychopharmacol 26:297–504CrossRefGoogle Scholar
  11. Dickerson SS, Kemeny ME (2004) Acute stressors and cortisol responses: a theoretical integration and synthesis of laboratory research. Psychol Bull 130:355–391PubMedCrossRefGoogle Scholar
  12. Ditzen B, Schaer M, Gabriel B, Bodenmann G, Ehlert U, Heinrichs M (2009) Intranasal oxytocin increases positive communication and reduces cortisol levels during couple conflict. Biol Psychiatry 65:728–731PubMedCrossRefGoogle Scholar
  13. Domes G, Heinrichs M, Glascher J, Buchel C, Braus DF, Herpertz SC (2007) Oxytocin attenuates amygdala responses to emotional faces regardless of valence. Biol Psychiatry 62:1187–1190PubMedCrossRefGoogle Scholar
  14. First MB, Spitzer RL, Gibbon M, Williams JBW (1994) Structured clinical interview for Axis 1 DSM-IV Disorder—patient edition (SCIP-I/P, version 2.0). Biometrics Research Department, New YorkGoogle Scholar
  15. Francis DD, Diorio J, Plotsky PM, Meaney MJ (2002) Environmental enrichment reverses the effects of maternal separation on stress reactivity. J Neurosci 22:7840–7843PubMedGoogle Scholar
  16. Fries AB, Ziegler TE, Kurian JR, Jacoris S, Pollak SD (2005) Early experience in humans is associated with changes in neuropeptides critical for regulating social behavior. Proc Natl Acad Sci U S A 102:17237–17240CrossRefGoogle Scholar
  17. Galen LW, Henderson MJ (1999) Validation of cocaine and marijuana effect expectancies in a treatment setting. Addict Behav 24:719–724PubMedCrossRefGoogle Scholar
  18. Heim C, Young LJ, Newport DJ, Mletzko T, Miller AH, Nemeroff CB (2009) Lower CSF oxytocin concentrations in women with a history of childhood abuse. Mol Psychiatry 14:954–958PubMedCrossRefGoogle Scholar
  19. Heinrichs M, Baumgartner T, Kirschbaum C, Ehlert U (2003) Social support and oxytocin interact to suppress cortisol and subjective responses to psychosocial stress. Biol Psychiatry 54:1389–1398PubMedCrossRefGoogle Scholar
  20. Heishman SJ, Evans RJ, Singleton EG, Levin KH, Copersino ML, Gorelick DA (2009) Reliability and validity of a short form of the Marijuana Craving Questionnaire. Drug Alcohol Depend 102:35–40PubMedCrossRefGoogle Scholar
  21. Hyman SM, Sinha R (2009) Stress-related factors in cannabis use and misuse: implications for prevention and treatment. J Subst Abuse Treat 36:400–413PubMedCrossRefGoogle Scholar
  22. Izawa S, Sugaya N, Shirotsuki K, Yamada KC, Ogawa N, Ouchi Y, Nagano Y, Suzuki K, Nomura S (2008) Salivary dehydroepiandrosterone secretion in response to acute psychosocial stress and its correlations with biological and psychological changes. Biol Psychol 79:294–298PubMedCrossRefGoogle Scholar
  23. Kalimi M, Shafagoj Y, Loria R, Padgett D, Regelson W (1994) Anti-glucocorticoid effects of dehydroepiandrosterone (DHEA). Mol Cell Biochem 131:99–104PubMedCrossRefGoogle Scholar
  24. Kirsch P, Esslinger C, Chen Q, Mier D, Lis S, Siddhanti S, Gruppe H, Mattay VS, Gallhofer B, Meyer-Lindenberg A (2005) Oxytocin modulates neural circuitry for social cognition and fear in humans. J Neurosci 25:11489–11493PubMedCrossRefGoogle Scholar
  25. Kosfeld M, Heinrichs M, Zak PJ, Fischbacher U, Fehr E (2005) Oxytocin increases trust in humans. Nature 435:673–676PubMedCrossRefGoogle Scholar
  26. Kovacs GL, Sarnyai Z, Szabo G (1998) Oxytocin and addiction: a review. Psychoneuroendocrinology 23:945–962PubMedCrossRefGoogle Scholar
  27. Labuschagne I, Phan KL, Wood A, Angstadt M, Chua P, Heinrichs M, Stout JC, Nathan PJ (2010) Oxytocin attenuates amygdala reactivity to fear in generalized social anxiety disorder. Neuropsychopharmacology 35:2403–2413PubMedCrossRefGoogle Scholar
  28. Lee CM, Neighbors C, Woods BA (2007) Marijuana motives: young adults’ reasons for using marijuana. Addict Behav 32:1384–1394PubMedCrossRefGoogle Scholar
  29. Lennartsson A-K, Kushnir MM, Bergquist J, Jonsdottir IH (2012) DHEA and DHEA-S response to acute psychosocial stress in healthy men and women. Biol Psychiatry 90:143–149CrossRefGoogle Scholar
  30. Light KC, Grewen KM, Amico JA, Boccia M, Brownley KA, Johns JM (2004) Deficits in plasma oxytocin responses and increased negative affect, stress, and blood pressure in mothers with cocaine exposure during pregnancy. Addictive Behaviors 29:1541–1564PubMedCrossRefGoogle Scholar
  31. Linnen AM, Ellenbogen MA, Cardoso C, Joober R (2012) Intranasal oxytocin and salivary cortisol concentration during social rejection in university students. Stress 15:393–402PubMedCrossRefGoogle Scholar
  32. Lipschitz DS, Rasmusson AM, Anyan W, Gueorguieva R, Billingslea EM, Cromwell PF, Southwick SM (2003) Posttraumatic stress disorder and substance use in inner-city adolescent girls. J Nerv Ment Dis 191:714–721PubMedCrossRefGoogle Scholar
  33. Ludwig M, Leng G (2006) Dendritic peptide release and peptide-dependent behaviours. Nat Rev Neurosci 7:26–136CrossRefGoogle Scholar
  34. Maninger N, Wolkowitz OM, Reus VI, Epel ES, Mellon SH (2009) Neurobiological and neuropsychiatric effects of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS). Frontiers in Neuroendocrinology 30:65–91PubMedCrossRefGoogle Scholar
  35. Melis MR, Melis T, Cocco C, Succu S, Sanna F, Pillolla G, Boi A, Ferri GL, Argiolas A (2007) Oxytocin injected into the ventral tegmental area induces penile erection and increases extracellular dopamine in the nucleus accumbens and paraventricular nucleus of the hypothalamus of male rats. Eur J Neurosci 26:1026–1035PubMedCrossRefGoogle Scholar
  36. Morgan CA III, Southwick S, Hazlett G, Rasmusson A, Hoyt G, Zimolo Z, Charney D (2004) Relationships among plasma dehydroepiandrosterone sulfate and cortisol levels, symptoms of dissociation, and objective performance in humans exposed to acute stress. Arch Gen Psychiatry 61:819–825PubMedCrossRefGoogle Scholar
  37. Pitman RK, Orr SP, Lasko NB (1993) Effects of intranasal vasopressin and oxytocin on physiologic responding during personal combat imagery in Vietnam veterans with posttraumatic stress disorder. Psychiatry Res 48:107–117PubMedCrossRefGoogle Scholar
  38. SAMSHA (2010) Results from the 2009 National Survey on Drug Use and Health: Volume 1. Summary of National Findings. In: U.S. Department of Health and Human Services, S.A.M.H.S.A., Office of Applied Studies (Ed.)Google Scholar
  39. Sarnyai Z, Babarczy E, Krivan M, Szabo G, Kovacs GL, Barth T, Telegdy G (1991) Selective attenuation of cocaine-induced stereotyped behaviour by oxytocin: putative role of basal forebrain target sites. Neuropeptides 19:51–56PubMedCrossRefGoogle Scholar
  40. Sarnyai Z, Biro E, Babarczy E, Vecsernyes M, Laczi F, Szabo G, Krivan M, Kovacs GL, Telegdy G (1992a) Oxytocin modulates behavioural adaptation to repeated treatment with cocaine in rats. Neuropharmacology 31:593–598PubMedCrossRefGoogle Scholar
  41. Sarnyai Z, Kovacs GL (1994) Role of oxytocin in the neuroadaptation to drugs of abuse. Psychoneuroendocrinology 19:85–117PubMedCrossRefGoogle Scholar
  42. Sarnyai Z, Szabo G, Kovacs GL, Telegdy G (1992b) Opposite actions of oxytocin and vasopressin in the development of cocaine-induced behavioral sensitization in mice. Pharmacol Biochem Behav 43:491–494PubMedCrossRefGoogle Scholar
  43. Schiff M, Zweig HH, Benbenishty R, Hasin DS (2007) Exposure to terrorism and Israeli youths’ cigarette, alcohol, and cannabis use. Am J Public Health 97:1852–1858PubMedCrossRefGoogle Scholar
  44. Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Weiller E, Hergueta T, Baker R, Dunbar GC (1998) The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 59(Suppl 20):22–33Google Scholar
  45. Simons JS, Gaher RM, Correia CJ, Hansen CL, Christopher MS (2005) An affective-motivational model of marijuana and alcohol problems among college students. Psychol Addict Behav 19:326–334PubMedCrossRefGoogle Scholar
  46. Sivukhina EV, Dolzhikov AA, Morozov Iu E, Jirikowski GF, Grinevich V (2006) Effects of chronic alcoholic disease on magnocellular and parvocellular hypothalamic neurons in men. Horm Metab Res 38:382–390PubMedCrossRefGoogle Scholar
  47. Vaccari C, Lolait SJ, Ostrowski NL (1998) Comparative distribution of vasopressin V1b and oxytocin receptor messenger ribonucleic acids in brain. Endocrinology 139:5015–5033PubMedCrossRefGoogle Scholar
  48. Vlahov D, Galea S, Ahern J, Resnick H, Kilpatrick D (2004) Sustained increased consumption of cigarettes, alcohol, and marijuana among Manhattan residents after September 11, 2001. Am J Public Health 94:253–254PubMedCrossRefGoogle Scholar
  49. Williams JR, Insel TR, Harbaugh CR, Carter CS (1994) Oxytocin administered centrally facilitates formation of a partner preference in female prairie voles (Microtus ochrogaster). J Neuroendocrinol 6:247–250PubMedCrossRefGoogle Scholar
  50. Wills TA, Sandy JM, Yaeger AM, Cleary SD, Shinar O (2001) Coping dimensions, life stress, and adolescent substance use: a latent growth analysis. J Abnorm Psychol 110:309–323PubMedCrossRefGoogle Scholar
  51. Windle M, Wiesner M (2004) Trajectories of marijuana use from adolescence to young adulthood: predictors and outcomes. Dev Psychopathol 16:1007–1027PubMedCrossRefGoogle Scholar
  52. Winstock AR, Lea T, Copeland J (2009) Lithium carbonate in the management of cannabis withdrawal in humans: an open-label study. J Psychopharmacol 23:84–93PubMedCrossRefGoogle Scholar
  53. Witt DM, Winslow JT, Insel TR (1992) Enhanced social interactions in rats following chronic, centrally infused oxytocin. Pharmacol Biochem Behav 43:855–861PubMedCrossRefGoogle Scholar
  54. Zak PJ, Stanton AA, Ahmadi S (2007) Oxytocin increases generosity in humans. PLoS ONE 2(11):e1128Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Aimee L. McRae-Clark
    • 1
  • Nathaniel L. Baker
    • 2
  • Megan Moran-Santa Maria
    • 1
  • Kathleen T. Brady
    • 1
  1. 1.Clinical Neuroscience Division, Department of PsychiatryMedical University of South CarolinaCharlestonUSA
  2. 2.Department of Public Health SciencesMedical University of South CarolinaCharlestonUSA

Personalised recommendations