Advertisement

Psychopharmacology

, Volume 227, Issue 3, pp 479–491 | Cite as

Subchronic memantine induced concurrent functional disconnectivity and altered ultra-structural tissue integrity in the rodent brain: revealed by multimodal MRI

  • S. SekarEmail author
  • E. Jonckers
  • M. Verhoye
  • R. Willems
  • J. Veraart
  • J. Van Audekerke
  • J. Couto
  • M. Giugliano
  • K. Wuyts
  • S. Dedeurwaerdere
  • J. Sijbers
  • C. Mackie
  • L. Ver Donck
  • T. Steckler
  • A. Van der Linden
Original Investigation

Abstract

Background

An effective NMDA antagonist imaging model may find key utility in advancing schizophrenia drug discovery research. We investigated effects of subchronic treatment with the NMDA antagonist memantine by using behavioural observation and multimodal MRI.

Methods

Pharmacological MRI (phMRI) was used to map the neuroanatomical binding sites of memantine after acute and subchronic treatment. Resting state fMRI (rs-fMRI) and diffusion MRI were used to study the changes in functional connectivity (FC) and ultra-structural tissue integrity before and after subchronic memantine treatment. Further corroborating behavioural evidences were documented.

Results

Dose-dependent phMRI activation was observed in the prelimbic cortex following acute doses of memantine. Subchronic treatment revealed significant effects in the hippocampus, cingulate, prelimbic and retrosplenial cortices. Decreases in FC amongst the hippocampal and frontal cortical structures (prelimbic, cingulate) were apparent through rs-fMRI investigation, indicating a loss of connectivity. Diffusion kurtosis MRI showed decreases in fractional anisotropy and mean diffusivity changes, suggesting ultra-structural changes in the hippocampus and cingulate cortex. Limited behavioural assessment suggested that memantine induced behavioural effects comparable to other NMDA antagonists as measured by locomotor hyperactivity and that the effects could be reversed by antipsychotic drugs.

Conclusion

Our findings substantiate the hypothesis that repeated NMDA receptor blockade with nonspecific, noncompetitive NMDA antagonists may lead to functional and ultra-structural alterations, particularly in the hippocampus and cingulate cortex. These changes may underlie the behavioural effects. Furthermore, the present findings underscore the utility and the translational potential of multimodal MR imaging and acute/subchronic memantine model in the search for novel disease-modifying treatments for schizophrenia.

Keywords

NMDA antagonists Memantine Locomotor activity Pharmacological MRI Resting state fMRI DTI/DKI Cingulate cortex Hippocampus Schizophrenia Antipsychotic drugs 

Notes

Acknowledgments

The authors are grateful for the financial support of Janssen Research & Development, Beerse, Belgium (Postdoctoral fellowship of Dr. Sekar). The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. HEALTH-F2-2011-278850 (INMiND). Prof. Van der Linden and Prof. Dedeurwaerdere received funds from Fonds Wetenschappelijk Onderzoek Vlaanderen (FWO) (G.0586.12). Contributions of Mrs. Hilde Duytschaever, Mr. Patrick De Haes and Mr. Michel Mahieu, Mrs. Sofie Embrechts and Mrs. Liesbeth Mertens from Neuroscience Discovery, Janssen Research and Development for their support with the subchronic treatments and in generating the locomotor activity data are acknowledged. Results from this multimodal imaging study have been presented in part as abstracts at conferences including FlandersBio (2011), CINP Pacific Asia meet (2011), EMIM (2011) and WMIC (2011).

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

213_2013_2966_MOESM1_ESM.docx (40 kb)
ESM 1 (DOCX 40.2 KB)

References

  1. Areosa SA, Sherriff F, McShane R (2005): Memantine for dementia. The cochrane database for systematic reviews. CD 003154.pub3. 2005Google Scholar
  2. Ashburner J, Neelin P, Collins DL, Evans A, Friston K (1997) Incorporating prior knowledge into image registration. NeuroImage 6:344–352PubMedCrossRefGoogle Scholar
  3. Alley GM, Bailey JA, Chen D, Ray B, Puli LK, Tanila H, Banerjee PK, Lahiri DK (2010) Memantine lowers amyloid-beta peptide levels in neuronal cultures and in APP/PS1 transgenic mice. J Neurosci Res 88(1):143–154Google Scholar
  4. Bifone A, Gozzi A, Schwarz AJ (2010) Functional connectivity in the rat brain: a complex network approach. Magn Reson Imaging 28(8):1200–1209, ReviewPubMedCrossRefGoogle Scholar
  5. Borsook D, Becerra L (2010) Using NMR approaches to drive the search for new CNS therapeutics. Curr Opin Investig Drugs 11(7):771–778, ReviewPubMedGoogle Scholar
  6. Borsook D, Becerra L, Hargreaves R (2006) A role for fMRI in optimizing CNS drug development. Nat Rev Drug Discov 5:411–424PubMedCrossRefGoogle Scholar
  7. Bubeníková-Valesová V, Horácek J, Vrajová M, Höschl C (2008) Models of schizophrenia in humans and animals based on inhibition of NMDA receptors. Neurosci Biobehav Rev 32(5):1014–1023, ReviewPubMedCrossRefGoogle Scholar
  8. Chin CL, Upadhyay J, Marek GJ, Baker SJ, Zhang M, Mezler M, Fox GB, Day M (2011) Awake rat pharmacological magnetic resonance imaging as a translational pharmacodynamic biomarker: metabotropic glutamate 2/3 agonist modulation of ketamine-induced blood oxygenation level dependence signals. J Pharmacol Exp Ther 336(3):709–715PubMedCrossRefGoogle Scholar
  9. Cochran SM, Kennedy M, McKerchar CE, Steward LJ, Pratt JA, Morris BJ (2003) Induction of metabolic hypofunction and neurochemical deficits after chronic intermittent exposure to phencyclidine: differential modulation by antipsychotic drugs. Neuropsychopharmacology 28(2):265–275PubMedCrossRefGoogle Scholar
  10. Coyle JT, Tsai G (2004) NMDA receptor function, neuroplasticity, and the pathophysiology of schizophrenia. Int Rev Neurobiol 59:491–515, ReviewPubMedCrossRefGoogle Scholar
  11. Danysz W, Parsons CG, Mobius HJ, Stoffler A, Quack G (2000) Neuroprotective and symptomatological action of memantine relevant for Alzheimer’s disease—a unified glutamatergic hypothesis on the mechanism of action. Neurotox Res 2(2–3):85–97PubMedCrossRefGoogle Scholar
  12. Dawson N, Thompson RJ, McVie A, Thomson DM, Morris BJ, Pratt JA (2010) Modafinil reverses phencyclidine-induced deficits in cognitive flexibility, cerebral metabolism, and functional brain connectivity. Schizophr Bull 38(3):457–474PubMedCrossRefGoogle Scholar
  13. Dedeurwaerdere S, Wintmolders C, Straetemans R, Pemberton D, Langlois X (2011) Memantine-induced brain activation as a model for the rapid screening of potential novel antipsychotic compounds: exemplified by activity of an mGlu2/3 receptor agonist. Psychopharmacology 214:505–514PubMedCrossRefGoogle Scholar
  14. Delgado y Palacios R, Campo A, Henningsen K, Verhoye M, Poot D, Dijkstra J, Van Audekerke J, Benveniste H, Sijbers J, Wiborg O, Van der Linden A (2011) Magnetic resonance imaging and spectroscopy reveal differential hippocampal changes in anhedonic and resilient subtypes of the chronic mild stress rat model. Biol Psychiatry 70(5):449–457PubMedCrossRefGoogle Scholar
  15. Ford JM, Mathalon DH, Whitfield S, Faustman WO, Roth WT (2002) Reduced communication between frontal and temporal lobes during talking in schizophrenia. Biol Psychiatry 51(6):485–492PubMedCrossRefGoogle Scholar
  16. Fox GB, Chin CL, Luo F, Day M, Cox BF (2009) Translational neuroimaging of the CNS: novel pathways to drug development. Mol Interv 9:302–313PubMedCrossRefGoogle Scholar
  17. Gilmour G, Pioli EY, Dix SL, Smith JW, Conway MW, Jones WT, Loomis S, Mason R, Shahabi S, Tricklebank MD (2009) Diverse and often opposite behavioral effects of NMDA receptor antagonists in rats: implications for “NMDA antagonist modelling” of schizophrenia. Psychopharmacology 205:203–216PubMedCrossRefGoogle Scholar
  18. Gozzi A, Herdon H, Schwarz A, Bertani S, Crestan V, Turrini G, Bifone A (2008a) Pharmacological stimulation of NMDA receptors via co-agonist site suppresses fMRI response to phencyclidine in the rat. Psychopharmacol (Berl) 201(2):273–284CrossRefGoogle Scholar
  19. Gozzi A, Large CH, Schwarz A, Bertani S, Crestan V, Bifone A (2008b) Differential effects of antipsychotic and glutamatergic agents on the phMRI response to phencyclidine. Neuropsychopharmacology 33(7):1690–1703PubMedCrossRefGoogle Scholar
  20. Hackler EA, Byun NE, Jones CK, Williams JM, Baheza R, Sengupta S, Grier MD, Avison M, Conn PJ, Gore JC (2010) Selective potentiation of the metabotropic glutamate receptor subtype 2 blocks phencyclidine-induced hyperlocomotion and brain activation. Neuroscience 168(1):209–218PubMedCrossRefGoogle Scholar
  21. Hlustik P, Noll DC, Small SL (1998) Suppression of vascular artifacts in functional magnetic resonance images using MR angiograms. NeuroImage 7:224–231PubMedCrossRefGoogle Scholar
  22. Houston GC, Papadakis NG, Carpenter TA, Hall LD, Mukherjee B, James MF, Huang CL (2001) Mapping of brain activation in response to pharmacological agents using fMRI in the rat. Magn Reson Imaging 19(7):905–919PubMedCrossRefGoogle Scholar
  23. Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K (2005) Diffusional kurtosis imaging: the quantification of non-Gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 53(6):1432–1440PubMedCrossRefGoogle Scholar
  24. Jonckers E, Van Audekerke J, De Visscher G, Van der Linden A, Verhoye M (2011) Functional connectivity fMRI of the rodent brain: comparison of functional connectivity networks in rat and mouse. PLoS One 6(4):e18876PubMedCrossRefGoogle Scholar
  25. Kalthoff D, Seehafer JU, Po C, Wiedermann D, Hoehn M (2011) Functional connectivity in the rat at 11.7T: impact of physiological noise in resting state fMRI. NeuroImage 54(4):2828–2839PubMedCrossRefGoogle Scholar
  26. Kastrup A, Baudewig J, Schnaudigel S, Huonker R, Becker L, Sohns JM, Dechent P, Klingner C, Witte OW (2008) Behavioral correlates of negative BOLD signal changes in the primary somatosensory cortex. NeuroImage 41(4):1364–1371PubMedCrossRefGoogle Scholar
  27. King JA, Garelick TS, Brevard ME, Chen W, Messenger TL, Duong TQ, Ferris CF (2005) Procedure for minimizing stress for fMRI studies in conscious rats. J Neurosci Methods 148:154–160Google Scholar
  28. Krienen FM, Buckner RL (2009) Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex 19(10):2485–2497PubMedCrossRefGoogle Scholar
  29. Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, Heninger GR, Bowers MB Jr, Charney DS (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 51:199–214PubMedCrossRefGoogle Scholar
  30. Kyriakopoulos M, Frangou S (2009) Recent diffusion tensor imaging findings in early stages of schizophrenia. Curr Opin Psychiatry 22:168–176PubMedCrossRefGoogle Scholar
  31. Langsjo JW, Kaisti KK, Aalto S, Hinkka S, Aantaa R, Oikonen V, Sipilä H, Kurki T, Silvanto M, Scheinin H (2003) Effects of subanesthetic doses of ketamine on regional cerebral blood flow, oxygen consumption, and blood volume in humans. Anesthesiology 99(3):614–623PubMedCrossRefGoogle Scholar
  32. Langsjo JW, Salmi E, Kaisti KK, Aalto S, Hinkka S, Aantaa R, Viljanen T, Kurki T, Silvanto M, Scheinin H (2004) Effects of subanesthetic ketamine on regional cerebral glucose metabolism in humans. Anesthesiology 100(5):1065–1071PubMedCrossRefGoogle Scholar
  33. Lawrie SM, Buechel C, Whalley HC, Frith CD, Friston KJ, Johnstone EC (2002) Reduced frontotemporal functional connectivity in schizophrenia associated with auditory hallucinations. Biol Psychiatry 51(12):1008–1011PubMedCrossRefGoogle Scholar
  34. Leemans A, Jones DK (2009) The B-matrix must be rotated when correcting for subject motion in DTI data. Magn Reson Med 61(6):1336–1349PubMedCrossRefGoogle Scholar
  35. Ling Z, King JA, Zhang N (2011) Uncovering intrinsic connectional architecture of functional networks in awake rat brain. J Neurosci 31(10):3776–3783CrossRefGoogle Scholar
  36. Littlewood CL, Jones N, O'Neill MJ, Mitchell SN, Tricklebank M, Williams SC (2006a) Mapping the central effects of ketamine in the rat using pharmacological MRI. Psychopharmacol (Berl) 186(1):64–81CrossRefGoogle Scholar
  37. Littlewood CL, Cash D, Dixon AL, Dix SL, White CT, O'Neill MJ, Tricklebank M, Williams SC (2006b) Using the BOLD MR signal to differentiate the stereoisomers of ketamine in the rat. NeuroImage 32(4):1733–1746PubMedCrossRefGoogle Scholar
  38. Lowe AS, Barker GJ, Beech JS, Ireland MD, Williams SC (2008) A method for removing global effects in small-animal functional MRI. NMR Biomed 21:53–58PubMedCrossRefGoogle Scholar
  39. Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P (1997) Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging 16(2):187–198PubMedCrossRefGoogle Scholar
  40. Malhotra AK, Pinals DA, Adler CM, Elman I, Clifton A, Pickar D, Breier A (1997) Ketamine-induced exacerbation of psychotic symptoms and cognitive impairment in neuroleptic-free schizophrenics. Neuropsychopharmacology 17:141–150PubMedCrossRefGoogle Scholar
  41. Mechri A, Micallef J, Blin O, Saoud M, Daléry J, Gaha L (2001a) Pharmacological modulation of the effects induced by ketamine at subanesthetic doses. Therapie 56(5):617–622, ReviewPubMedGoogle Scholar
  42. Mechri A, Saoud M, Khiari G, d’Amato T, Dalery J, Gaha L (2001b) Glutaminergic hypothesis of schizophrenia: clinical research studies with ketamine. Encephale 27(1):53–59, ReviewPubMedGoogle Scholar
  43. Meyer-Lindenberg AS, Olsen RK, Kohn PD, Brown T, Egan MF, Weinberger DR, Berman KF (2005) Regionally specific disturbance of dorsolateral prefrontal-hippocampal functional connectivity in schizophrenia. Arch Gen Psychiatry 62(4):379–386PubMedCrossRefGoogle Scholar
  44. Nagai T, Noda Y, Une T, Furukawa K et al (2003) Effect of AD-5423 on animal models of schizophrenia: phencyclidine-induced behavioral changes in mice. Neuroreport 14:269–272PubMedCrossRefGoogle Scholar
  45. Olney JW, Farber NB (1995) NMDA antagonists as neurotherapeutic drugs, psychotogens, neurotoxins, and research tools for studying schizophrenia. Neuropsychopharmacology 13:335–345PubMedCrossRefGoogle Scholar
  46. Olney JW, Labruyere J, Wang G, Wozniak DF, Price MT, Sesma MA (1991) NMDA antagonist neurotoxicity: mechanism and prevention. Science 254:1515–1518PubMedCrossRefGoogle Scholar
  47. Parsons CG, Stoffler A, Danysz W (2007) Memantine: a NMDA receptor antagonist that improves memory by restoration of homeostasis in the glutamatergic system—too little activation is bad, too much is even worse. Neuropharmacology 53:699–723PubMedCrossRefGoogle Scholar
  48. Pawela CP, Biswal BB, Hudetz AG, Schulte ML, Li R, Cho YR, Matloub HS, Hyde JS (2009) A protocol for use of medetomidine anesthesia in rats for extended studies using task-induced BOLD contrast and resting-state functional connectivity. NeuroImage 46:1137–1147PubMedCrossRefGoogle Scholar
  49. Peskind ER, Potkin SG, Pomara N, Ott BR, Graham SM, Olin JT, McDonald S (2006) Memantine treatment in mild to moderate alzheimer disease: a 24-week randomized, controlled trial. Am J Geriatr Psychiatry 14(8):704–715PubMedCrossRefGoogle Scholar
  50. Schridde U, Khubchandani M, Motelow JE, Sanganahalli BG, Hyder F, Blumenfeld H (2008) Negative BOLD with large increases in neuronal activity. Cerebr Cortex 18(8):1814–1827CrossRefGoogle Scholar
  51. Schwarz AJ, Gozzi A, Reese T, Heidbreder CA, Bifone A (2007) Pharmacological modulation of functional connectivity: the correlation structure underlying the phMRI response to d-amphetamine modified by selective dopamine D3 receptor antagonist SB277011A. Magn Reson Imaging 25(6):811–820PubMedCrossRefGoogle Scholar
  52. Sekar S, Raley JM, Lowe AS, Sharp T, Sibson NR, Blamire AM, Steckler T, Shoaib M (2010) Mapping of anxiogenic neuronal profiles induced by the GABA inverse agonist FG-7142 and caffeine using pharmacological magnetic resonance imaging. Eur Neuropsychopharmacol 20(1):S23CrossRefGoogle Scholar
  53. Sekar S, Verhoye M, Van Audekerke J, Vanhoutte G, Lowe AS, Blamire AM, Steckler T, Van der Linden A, Shoaib M (2011a) Neuroadaptive responses to citalopram in rats using pharmacological magnetic resonance imaging. Psychopharmacol (Berl) 213:521–531CrossRefGoogle Scholar
  54. Sekar S, Van Audekerke J, Vanhoutte G, Lowe AS, Blamire AM, Van der Linden A, Steckler T, Shoaib M, Verhoye M (2011b) Neuroanatomical targets of reboxetine and bupropion as revealed by pharmacological magnetic resonance imaging. Psychopharmacol (Berl) 217(4):549–557CrossRefGoogle Scholar
  55. Sigurdsson T, Stark KL, Karayiorgou M, Gogos JA, Gordon JA (2010) Impaired hippocampal-prefrontal synchrony in a genetic mouse model of schizophrenia. Nature 464(7289):763–767PubMedCrossRefGoogle Scholar
  56. Tamminga CA (2006) The neurobiology of cognition in schizophrenia. J Clin Psychiatry 67(Suppl 9):9–13, discussion 36-42PubMedGoogle Scholar
  57. Van Hecke W, Sijbers J, D'Agostino E, Maes F, De Backer S, Vandervliet E, Parizel PM, Leemans A (2008) On the construction of an inter-subject diffusion tensor magnetic resonance atlas of the healthy human brain. NeuroImage 43(1):69–80PubMedCrossRefGoogle Scholar
  58. Ver Donck L, Duytschaever H, Willems R (2011): Low dose subchronic phencyclidine (PCP) pretreatment potentiates acute PCP-induced hyperlocomotion in adult rats: a model of schizophrenia? Society for Neuroscience, abstract 368.13.Google Scholar
  59. Veraart J, Poot DH, Van Hecke W, Blockx I, Van der Linden A, Verhoye M, Sijbers J (2011) More accurate estimation of diffusion tensor parameters using diffusion Kurtosis imaging. Magn Reson Med 65(1):138–145PubMedCrossRefGoogle Scholar
  60. Weber R, Ramos-Cabrer P, Wiedermann D, van Camp N, Hoehn M (2006) A fully noninvasive and robust experimental protocol for longitudinal fMRI studies in the rat. NeuroImage 29:1303–1310PubMedCrossRefGoogle Scholar
  61. White T, Kendi AT, Lehericy S, Kendi M, Karatekin C, Guimaraes A, Davenport N, Schulz SC, Lim KO (2007) Disruption of hippocampal connectivity in children and adolescents with schizophrenia—a voxel-based diffusion tensor imaging study. Schizophr Res 90:302–307PubMedCrossRefGoogle Scholar
  62. Wilcock G, Mobius HJ, Stoffler A (2002) A double-blind, placebo-controlled multicentre study of memantine in mild to moderate vascular dementia. Int Clin Pychopharmacol 17:297–305CrossRefGoogle Scholar
  63. Williams KA, Magnuson M, Majeed W, Laconte SM, Peltier SJ, Keilholz SD (2010) Comparison of alpha-chloralose, medetomidine and isoflurane anesthesia for functional connectivity mapping in the rat. Magn Reson Imaging 28:995–1003PubMedCrossRefGoogle Scholar
  64. Williamson PC, Allman JM (2012) A framework for interpreting functional networks in schizophrenia. Front Hum Neurosci 6:184PubMedCrossRefGoogle Scholar
  65. Winblad B, Jones RW, Wirth Y, Stöffler A, Möbius HJ (2007) Memantine in Moderate to Severe Alzheimer´s Disease: A Meta-Analysis of Randomised Clinical Trials. Dement Geriatr Cogn Disord 24:20–27PubMedCrossRefGoogle Scholar
  66. Wong DF, Tauscher J, Grunder G (2009) The role of imaging in proof of concept for CNS drug discovery and development. Neuropsychopharmacology 34:187–203PubMedCrossRefGoogle Scholar
  67. Yu H, Li Q, Wang D, Shi L, Lu G, Sun L, Wang L, Zhu W, Mak YT, Wong N, Wang Y, Pan F, Yew DT (2011) Mapping the central effects of Chronic ketamine administration in an adolescent primate model by functional magnetic resonance imaging (fMRI). Neurotoxicology 33(1):70–77PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • S. Sekar
    • 1
    • 2
    • 7
    Email author
  • E. Jonckers
    • 1
  • M. Verhoye
    • 1
  • R. Willems
    • 2
  • J. Veraart
    • 3
  • J. Van Audekerke
    • 1
  • J. Couto
    • 4
  • M. Giugliano
    • 4
  • K. Wuyts
    • 5
  • S. Dedeurwaerdere
    • 6
  • J. Sijbers
    • 3
  • C. Mackie
    • 5
  • L. Ver Donck
    • 2
  • T. Steckler
    • 2
  • A. Van der Linden
    • 1
  1. 1.Bio-Imaging Lab, Department of Biomedical SciencesUniversity of AntwerpWilrijkBelgium
  2. 2.Neuroscience DiscoveryJanssen Research and DevelopmentBeerseBelgium
  3. 3.Vision LabUniversity of AntwerpAntwerpBelgium
  4. 4.Theoretical NeurobiologyUniversity of AntwerpAntwerpBelgium
  5. 5.ADME/ToxJanssen Research and DevelopmentBeerseBelgium
  6. 6.Translational NeuroscienceUniversity of AntwerpAntwerpBelgium
  7. 7.SBIC, A*StarBiopolisSingapore

Personalised recommendations