, Volume 225, Issue 1, pp 21–30 | Cite as

The muscarinic M1 receptor positive allosteric modulator PQCA improves cognitive measures in rat, cynomolgus macaque, and rhesus macaque

  • Jason M. Uslaner
  • Donnie Eddins
  • Vanita Puri
  • Christopher E. Cannon
  • Jane Sutcliffe
  • Chan Sing Chew
  • Michelle Pearson
  • Jeffrey A. Vivian
  • Ronald K. Chang
  • William J. Ray
  • Scott D. Kuduk
  • Marion Wittmann
Original Investigation



The current standards of care for Alzheimer’s disease, acetylcholinesterase inhibitors, have limited efficacy due to a host of mechanism-related side effects arising from indiscriminate activation of muscarinic and nicotinic receptors. The M1 muscarinic receptor is predominantly expressed in the brain in regions involved in cognition, and therefore selective activation of the M1 receptor would be expected to boost cognitive performance with reduced risk of peripheral side effects.


Here we investigated whether the selective M1 muscarinic receptor positive allosteric modulator, PQCA, improves cognitive performance and cerebral blood flow.


PQCA attenuated a scopolamine-induced deficit in novel object recognition in rat, self-ordered spatial search in cynomolgus macaque, and the object retrieval detour task in rhesus macaque. Beneficial effects in each of these assays and species were observed at similar plasma drug concentrations. Furthermore, at similar drug concentrations that were effective in the behavioral studies, PQCA increased blood flow in the frontal cortex of mice, providing a translational biomarker that could be used to guide dose selection for clinical studies.


These findings provide a framework for appropriately testing an M1 selective compound in patients with Alzheimer’s disease.


Alzheimer’s disease Acetylcholine Muscarinic Cognition Object recognition Working memory 



The authors would like to thank the Merck Bioanalytic group for analyzing plasma exposures for these studies. JU, DE, VP, CC, MP, RC, and SK are current employees of Merck and Co., Inc. (USA) and potentially own stock and/or stock options in the company.


  1. Anagnostaras SG, Murphy GG, Hamilton SE, Mitchell SL, Rahnama NP, Nathanson NM, Silva AJ (2003) Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice. Nat Neurosci 6:51–58PubMedCrossRefGoogle Scholar
  2. Baker SJ, Chin CL, Basso AM, Fox GB, Marek GJ, Day M (2011) Xanomeline modulation of the BOLD signal in awake rats: development of phMRI as a translatable pharmacodynamic biomarker for central activity and dose selection. J Pharmacol Exp Ther. 341:263–273Google Scholar
  3. Bartolomeo AC, Morris H, Buccafusco JJ, Kille N, Rosenzweig-Lipson S, Husbands MG, Sabb AL, Abou-Gharbia M, Moyer JA, Boast CA (2000) The preclinical pharmacological profile of WAY-132983, a potent M1 preferring agonist. J Pharmacol Exp Ther 292:584–596PubMedGoogle Scholar
  4. Bartus RT, Dean RL 3rd, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408–414PubMedCrossRefGoogle Scholar
  5. Beguin P, Beggah A, Cotecchia S, Geering K (1996) Adrenergic, dopaminergic, and muscarinic receptor stimulation leads to PKA phosphorylation of Na-K-ATPase. Am J Physiol 270:C131–C137PubMedGoogle Scholar
  6. Bernard V, Normand E, Bloch B (1992) Phenotypical characterization of the rat striatal neurons expressing muscarinic receptor genes. J Neurosci 12:3591–3600PubMedGoogle Scholar
  7. Birks J (2006) Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst Rev: CD005593Google Scholar
  8. Bodick NC, Offen WW, Levey AI, Cutler NR, Gauthier SG, Satlin A, Shannon HE, Tollefson GD, Rasmussen K, Bymaster FP, Hurley DJ, Potter WZ, Paul SM (1997a) Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease. Arch Neurol 54:465–473PubMedCrossRefGoogle Scholar
  9. Bodick NC, Offen WW, Shannon HE, Satterwhite J, Lucas R, van Lier R, Paul SM (1997b) The selective muscarinic agonist xanomeline improves both the cognitive deficits and behavioral symptoms of Alzheimer disease. Alzheimer Dis Assoc Disord 11(Suppl 4):S16–S22PubMedGoogle Scholar
  10. Bradley SR, Lameh J, Ohrmund L, Son T, Bajpai A, Nguyen D, Friberg M, Burstein ES, Spalding TA, Ott TR, Schiffer HH, Tabatabaei A, McFarland K, Davis RE, Bonhaus DW (2010) AC-260584, an orally bioavailable M(1) muscarinic receptor allosteric agonist, improves cognitive performance in an animal model. Neuropharmacology 58:365–373PubMedCrossRefGoogle Scholar
  11. Brann MR, Buckley NJ, Bonner TI (1988) The striatum and cerebral cortex express different muscarinic receptor mRNAs. FEBS Lett 230:90–94PubMedCrossRefGoogle Scholar
  12. Bridges TM, Reid PR, Lewis LM, Dawson ES, Weaver CD, Wood MR, Lindsley CW (2011) Discovery and development of a second highly selective M1 positive allosteric modulator (PAM). In: Probe Reports from the NIH Molecular Libraries Program, Bethesda, Maryland, 104–121Google Scholar
  13. Buchanan KA, Petrovic MM, Chamberlain SE, Marrion NV, Mellor JR (2010) Facilitation of long-term potentiation by muscarinic M(1) receptors is mediated by inhibition of SK channels. Neuron 68:948–963PubMedCrossRefGoogle Scholar
  14. Caulfield MP, Robbins J, Higashida H, Brown DA (1993) Postsynaptic actions of acetylcholine: the coupling of muscarinic receptor subtypes to neuronal ion channels. Prog Brain Res 98:293–301PubMedCrossRefGoogle Scholar
  15. Collins P, Roberts AC, Dias R, Everitt BJ, Robbins TW (1998) Perseveration and strategy in a novel spatial self-ordered sequencing task for nonhuman primates: effects of excitotoxic lesions and dopamine depletions of the prefrontal cortex. J Cogn Neurosci 10:332–354PubMedCrossRefGoogle Scholar
  16. Cui YH, Si W, Yin L, An SM, Jin J, Deng SN, Cao XH (2008) A novel derivative of xanomeline improved memory function in aged mice. Neurosci Bull 24:251–257PubMedCrossRefGoogle Scholar
  17. Delrieu J, Piau A, Caillaud C, Voisin T, Vellas B (2011) Managing cognitive dysfunction through the continuum of Alzheimer’s disease: role of pharmacotherapy. CNS Drugs 25:213–226PubMedCrossRefGoogle Scholar
  18. Diamond A, Zola-Morgan S, Squire LR (1989) Successful performance by monkeys with lesions of the hippocampal formation on AB and object retrieval, two tasks that mark developmental changes in human infants. Behav Neurosci 103:526–537PubMedCrossRefGoogle Scholar
  19. Dias R, Robbins TW, Roberts AC (1996) Primate analogue of the Wisconsin Card Sorting Test: effects of excitotoxic lesions of the prefrontal cortex in the marmoset. Behav Neurosci 110:872–886PubMedCrossRefGoogle Scholar
  20. Eglen RM (2005) Muscarinic receptor subtype pharmacology and physiology. Prog Med Chem 43:105–136PubMedCrossRefGoogle Scholar
  21. Elhusseiny A, Cohen Z, Olivier A, Stanimirovic DB, Hamel E (1999) Functional acetylcholine muscarinic receptor subtypes in human brain microcirculation: identification and cellular localization. J Cereb Blood Flow Metab 19:794–802PubMedCrossRefGoogle Scholar
  22. Felder CC (1995) Muscarinic acetylcholine receptors: signal transduction through multiple effectors. FASEB J 9:619–625PubMedGoogle Scholar
  23. Fernandez de Sevilla D, Buno W (2010) The muscarinic long-term enhancement of NMDA and AMPA receptor-mediated transmission at Schaffer collateral synapses develop through different intracellular mechanisms. J Neurosci 30:11032–11042PubMedCrossRefGoogle Scholar
  24. Fisahn A, Yamada M, Duttaroy A, Gan JW, Deng CX, McBain CJ, Wess J (2002) Muscarinic induction of hippocampal gamma oscillations requires coupling of the M1 receptor to two mixed cation currents. Neuron 33:615–624PubMedCrossRefGoogle Scholar
  25. Giessel AJ, Sabatini BL (2010) M1 muscarinic receptors boost synaptic potentials and calcium influx in dendritic spines by inhibiting postsynaptic SK channels. Neuron 68:936–947PubMedCrossRefGoogle Scholar
  26. Hanyu H, Shimizu T, Tanaka Y, Takasaki M, Koizumi K, Abe K (2003) Regional cerebral blood flow patterns and response to donepezil treatment in patients with Alzheimer’s disease. Dement Geriatr Cogn Disord 15:177–182PubMedCrossRefGoogle Scholar
  27. Heinrich JN, Butera JA, Carrick T, Kramer A, Kowal D, Lock T, Marquis KL, Pausch MH, Popiolek M, Sun SC, Tseng E, Uveges AJ, Mayer SC (2009) Pharmacological comparison of muscarinic ligands: historical versus more recent muscarinic M1-preferring receptor agonists. Eur J Pharmacol 605:53–56PubMedCrossRefGoogle Scholar
  28. Hotta H, Uchida S, Kagitani F, Maruyama N (2011) Control of cerebral cortical blood flow by stimulation of basal forebrain cholinergic areas in mice. J Physiol Sci 61:201–209PubMedCrossRefGoogle Scholar
  29. Jones CK, Brady AE, Davis AA, Xiang Z, Bubser M, Tantawy MN, Kane AS, Bridges TM, Kennedy JP, Bradley SR, Peterson TE, Ansari MS, Baldwin RM, Kessler RM, Deutch AY, Lah JJ, Levey AI, Lindsley CW, Conn PJ (2008) Novel selective allosteric activator of the M1 muscarinic acetylcholine receptor regulates amyloid processing and produces antipsychotic-like activity in rats. J Neurosci 28:10422–10433PubMedCrossRefGoogle Scholar
  30. Kuduk SD, Di Marco CN, Cofre V, Pitts DR, Ray WJ, Ma L, Wittmann M, Seager MA, Koeplinger K, Thompson CD, Hartman GD, Bilodeau MT (2010a) Pyridine containing M(1) positive allosteric modulators with reduced plasma protein binding. Bioorg Med Chem Lett 20:657–661PubMedCrossRefGoogle Scholar
  31. Kuduk SD, Di Marco CN, Cofre V, Pitts DR, Ray WJ, Ma L, Wittmann M, Veng L, Seager MA, Koeplinger K, Thompson CD, Hartman GD, Bilodeau MT (2010b) N-heterocyclic derived M1 positive allosteric modulators. Bioorg Med Chem Lett 20:1334–1337PubMedCrossRefGoogle Scholar
  32. Kuduk SD, Chang RK, Di Marco CN, Pitts DR, Greshock TJ, Ma L, Wittmann M, Seager MA, Koeplinger KA, Thompson CD, Hartman GD, Bilodeau MT, Ray WJ (2011a) Discovery of a selective allosteric M1 receptor modulator with suitable development properties based on a quinolizidinone carboxylic acid scaffold. J Med Chem 54:4773–4780PubMedCrossRefGoogle Scholar
  33. Kuduk SD, Di Marco CN, Cofre V, Ray WJ, Ma L, Wittmann M, Seager MA, Koeplinger KA, Thompson CD, Hartman GD, Bilodeau MT (2011b) Fused heterocyclic M1 positive allosteric modulators. Bioorg Med Chem Lett 21:2769–2772PubMedCrossRefGoogle Scholar
  34. Kuduk SD, Chang RK, Di Marco CN, Ray WJ, Ma L, Wittmann M, Seager MA, Koeplinger KA, Thompson CD, Hartman GD, Bilodeau MT (2011c) Quinolizidinone carboxylic acid selective M1 allosteric modulators: SAR in the piperidine series. Bioorg Med Chem Lett 21:1710–1715PubMedCrossRefGoogle Scholar
  35. Lanzafame AA, Christopoulos A, Mitchelson F (2003) Cellular signaling mechanisms for muscarinic acetylcholine receptors. Receptors Channels 9:241–260PubMedCrossRefGoogle Scholar
  36. Lebois EP, Bridges TM, Lewis LM, Dawson ES, Kane AS, Xiang Z, Jadhav SB, Yin H, Kennedy JP, Meiler J, Niswender CM, Jones CK, Conn PJ, Weaver CD, Lindsley CW (2010) Discovery and characterization of novel subtype-selective allosteric agonists for the investigation of M(1) receptor function in the central nervous system. ACS Chem Neurosci 1:104–121PubMedCrossRefGoogle Scholar
  37. Levey AI (1993) Immunological localization of m1–m5 muscarinic acetylcholine receptors in peripheral tissues and brain. Life Sci 52:441–448PubMedCrossRefGoogle Scholar
  38. Levey AI, Kitt CA, Simonds WF, Price DL, Brann MR (1991) Identification and localization of muscarinic acetylcholine receptor proteins in brain with subtype-specific antibodies. J Neurosci 11:3218–3226PubMedGoogle Scholar
  39. Li W, Antuono PG, Xie C, Chen G, Jones JL, Ward BD, Franczak MB, Goveas JS, Li SJ (2012) Changes in regional cerebral blood flow and functional connectivity in the cholinergic pathway associated with cognitive performance in subjects with mild Alzheimer’s disease after 12-week donepezil treatment. Neuroimage 60:1083–1091PubMedCrossRefGoogle Scholar
  40. Linville DG, Giacobini E, Arneric SP (1992) Heptyl-physostigmine enhances basal forebrain control of cortical cerebral blood flow. J Neurosci Res 31:573–577PubMedCrossRefGoogle Scholar
  41. Lockhart IA, Mitchell SA, Kelly S (2009) Safety and tolerability of donepezil, rivastigmine and galantamine for patients with Alzheimer’s disease: systematic review of the ‘real-world’ evidence. Dement Geriatr Cogn Disord 28:389–403PubMedCrossRefGoogle Scholar
  42. Ma L, Seager MA, Wittmann M, Jacobson M, Bickel D, Burno M, Jones K, Graufelds VK, Xu G, Pearson M, McCampbell A, Gaspar R, Shughrue P, Danziger A, Regan C, Flick R, Pascarella D, Garson S, Doran S, Kreatsoulas C, Veng L, Lindsley CW, Shipe W, Kuduk S, Sur C, Kinney G, Seabrook GR, Ray WJ (2009) Selective activation of the M1 muscarinic acetylcholine receptor achieved by allosteric potentiation. Proc Natl Acad Sci USA 106:15950–15955PubMedCrossRefGoogle Scholar
  43. Marino MJ, Rouse ST, Levey AI, Potter LT, Conn PJ (1998) Activation of the genetically defined m1 muscarinic receptor potentiates N-methyl-d-aspartate (NMDA) receptor currents in hippocampal pyramidal cells. Proc Natl Acad Sci USA 95:11465–11470PubMedCrossRefGoogle Scholar
  44. Matsui M, Yamada S, Oki T, Manabe T, Taketo MM, Ehlert FJ (2004) Functional analysis of muscarinic acetylcholine receptors using knockout mice. Life Sci 75:2971–2981PubMedCrossRefGoogle Scholar
  45. McDonald AJ, Mascagni F (2010) Neuronal localization of m1 muscarinic receptor immunoreactivity in the rat basolateral amygdala. Brain Struct Funct 215:37–48PubMedCrossRefGoogle Scholar
  46. Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE (1997) Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol 42:85–94PubMedCrossRefGoogle Scholar
  47. Mirza NR, Peters D, Sparks RG (2003) Xanomeline and the antipsychotic potential of muscarinic receptor subtype selective agonists. CNS Drug Rev 9:159–186PubMedCrossRefGoogle Scholar
  48. Miyakawa T, Yamada M, Duttaroy A, Wess J (2001) Hyperactivity and intact hippocampus-dependent learning in mice lacking the M1 muscarinic acetylcholine receptor. J Neurosci 21:5239–5250PubMedGoogle Scholar
  49. Muller W, Petrozzino JJ, Griffith LC, Danho W, Connor JA (1992) Specific involvement of Ca(2+)-calmodulin kinase II in cholinergic modulation of neuronal responsiveness. J Neurophysiol 68:2264–2269PubMedGoogle Scholar
  50. Mumby DG, Pinel JP (1994) Rhinal cortex lesions and object recognition in rats. Behav Neurosci 108:11–18PubMedCrossRefGoogle Scholar
  51. O’Neill J, Fitten LJ, Siembieda D, Halgren E, Kim E, Fisher A, Perryman K (1998) Effects of AF102B and tacrine on delayed match-to-sample in monkeys. Prog Neuropsychopharmacol Biol Psychiatry 22:665–678PubMedCrossRefGoogle Scholar
  52. O’Neill J, Fitten LJ, Siembieda DW, Crawford KC, Halgren E, Fisher A, Refai D (1999) Divided attention-enhancing effects of AF102B and THA in aging monkeys. Psychopharmacology (Berl) 143:123–130CrossRefGoogle Scholar
  53. O’Neill J, Siembieda DW, Crawford KC, Halgren E, Fisher A, Fitten LJ (2003) Reduction in distractibility with AF102B and THA in the macaque. Pharmacol Biochem Behav 76:301–306PubMedCrossRefGoogle Scholar
  54. Owen AM, Sahakian BJ, Semple J, Polkey CE, Robbins TW (1995) Visuo-spatial short-term recognition memory and learning after temporal lobe excisions, frontal lobe excisions or amygdalo-hippocampectomy in man. Neuropsychologia 33:1–24PubMedCrossRefGoogle Scholar
  55. Paxinos G, Watson C (1982) The rat brain in stereotaxic coordinates, 2nd edition. Academic Press, SydneyGoogle Scholar
  56. Peralta EG, Ashkenazi A, Winslow JW, Ramachandran J, Capon DJ (1988) Differential regulation of PI hydrolysis and adenylyl cyclase by muscarinic receptor subtypes. Nature 334:434–437PubMedCrossRefGoogle Scholar
  57. Piche M, Uchida S, Hara S, Aikawa Y, Hotta H (2010) Modulation of somatosensory-evoked cortical blood flow changes by GABAergic inhibition of the nucleus basalis of Meynert in urethane-anaesthetized rats. J Physiol 588:2163–2171PubMedCrossRefGoogle Scholar
  58. Reid PR, Bridges TM, Sheffler DJ, Cho HP, Lewis LM, Days E, Daniels JS, Jones CK, Niswender CM, Weaver CD, Conn PJ, Lindsley CW, Wood MR (2011) Discovery and optimization of a novel, selective and brain penetrant M1 positive allosteric modulator (PAM): the development of ML169, an MLPCN probe. Bioorg Med Chem Lett 21:2697–2701PubMedCrossRefGoogle Scholar
  59. Sato A, Sato Y (1990) Cerebral cortical vasodilatation in response to stimulation of cholinergic fibres originating in the nucleus basalis of Meynert. J Auton Nerv Syst 30(Suppl):S137–S140PubMedCrossRefGoogle Scholar
  60. Schwarz RD, Callahan MJ, Coughenour LL, Dickerson MR, Kinsora JJ, Lipinski WJ, Raby CA, Spencer CJ, Tecle H (1999) Milameline (CI-979/RU35926): a muscarinic receptor agonist with cognition-activating properties: biochemical and in vivo characterization. J Pharmacol Exp Ther 291:812–822PubMedGoogle Scholar
  61. Scremin OU, Rovere AA, Raynald AC, Giardini A (1973) Cholinergic control of blood flow in the cerebral cortex of the rat. Stroke 4:233–239PubMedCrossRefGoogle Scholar
  62. Shinoe T, Matsui M, Taketo MM, Manabe T (2005) Modulation of synaptic plasticity by physiological activation of M1 muscarinic acetylcholine receptors in the mouse hippocampus. J Neurosci 25:11194–11200PubMedCrossRefGoogle Scholar
  63. Shirey JK, Brady AE, Jones PJ, Davis AA, Bridges TM, Kennedy JP, Jadhav SB, Menon UN, Xiang Z, Watson ML, Christian EP, Doherty JJ, Quirk MC, Snyder DH, Lah JJ, Levey AI, Nicolle MM, Lindsley CW, Conn PJ (2009) A selective allosteric potentiator of the M1 muscarinic acetylcholine receptor increases activity of medial prefrontal cortical neurons and restores impairments in reversal learning. J Neurosci 29:14271–14286PubMedCrossRefGoogle Scholar
  64. Si W, Zhang X, Niu Y, Yu H, Lei X, Chen H, Cao X (2010) A novel derivative of xanomeline improves fear cognition in aged mice. Neurosci Lett 473:115–119PubMedCrossRefGoogle Scholar
  65. Venneri A (2007) Imaging treatment effects in Alzheimer’s disease. Magn Reson Imaging 25:953–968PubMedCrossRefGoogle Scholar
  66. Volpicelli LA, Levey AI (2004) Muscarinic acetylcholine receptor subtypes in cerebral cortex and hippocampus. Prog Brain Res 145:59–66PubMedCrossRefGoogle Scholar
  67. Wan H, Aggleton JP, Brown MW (1999) Different contributions of the hippocampus and perirhinal cortex to recognition memory. J Neurosci 19:1142–1148PubMedGoogle Scholar
  68. Watt ML, Schober DA, Hitchcock S, Lui B, Chesterfield AK, McKinzie D, Felder CC (2011) Pharmacological characterization of LY593093, an M1 muscarinic acetylcholine receptor-selective partial orthosteric agonist. J Pharmacol Exp Ther. 338:622–632Google Scholar
  69. Wess J (2004) Muscarinic acetylcholine receptor knockout mice: novel phenotypes and clinical implications. Annu Rev Pharmacol Toxicol 44:423–450PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Jason M. Uslaner
    • 1
  • Donnie Eddins
    • 1
  • Vanita Puri
    • 1
  • Christopher E. Cannon
    • 1
  • Jane Sutcliffe
    • 2
  • Chan Sing Chew
    • 2
  • Michelle Pearson
    • 1
  • Jeffrey A. Vivian
    • 2
  • Ronald K. Chang
    • 1
  • William J. Ray
    • 3
  • Scott D. Kuduk
    • 1
  • Marion Wittmann
    • 4
  1. 1.Merck Research LaboratoriesWest PointUSA
  2. 2.MaccineScience Park IISingapore
  3. 3.Envoy TherapeuticsJupiterUSA
  4. 4.Biogen IdecCambridgeUSA

Personalised recommendations