, Volume 221, Issue 4, pp 541–550 | Cite as

On the measurement of the effects of alcohol and illicit substances on inhibition of return




Inhibition of return (IOR) refers to the delayed orienting of attention to previously inspected locations in favour of novel locations. Given its implications for visual attention and search, researchers have begun to investigate whether IOR may be impaired by the use of alcohol or illicit substances (e.g. d-amphetamine).


The present paper reviews the existing literature exploring the impact of alcohol and other drugs on IOR through the use of the model spatial cueing task developed by Posner.


Studies were located that investigated IOR paradigm with respect to either (a) acute effects of alcohol or other psychoactive substances and (b) hallucinogenic drug states as models for psychosis. Findings suggest that alcohol, d-amphetamine and some hallucinogens may alter the timecourse of IOR. This review also yields a critical qualitative analysis of the methodology of studies in this field of research and the implications of particular methodological features for interpreting previous findings.


The importance of using multiple stimulus onset asynchronies, employing a cue-back to centre paradigm and distinguishing between acute and chronic substance use are emphasized. Furthermore, questions are raised as to whether findings suggest an impact of psychoactive substances on the subcortical mechanisms that play a critical role in the generation of IOR or are an indirect effect resulting from impairment of the cortical mechanisms responsible for voluntary disengagement of attention. Directions for future research and particular methodological approaches are highlighted.


Alcohol Attention Illicit substances Inhibition of return Orienting 


  1. Abroms BA, Fillmore MT (2004) Alcohol-induced impairment of inhibitory mechanisms involved in visual search. Exp Clin Psychopharmacol 12:243–250. doi: 10.1037/1064-1297.12.4.243 PubMedCrossRefGoogle Scholar
  2. Abroms BD, Gottlob LR, Fillmore MT (2006) Alcohol effects on inhibitory control of attention: distinguishing between intentional and automatic mechanisms. Psychopharmacology 188:324–334. doi: 10.1007/s00213-006-0524-y PubMedCrossRefGoogle Scholar
  3. Aron AR, Dowson JH, Sahakian BJ, Robbins TW (2003) Methylphenidate improves response inhibition in adults with attention-deficit/hyperactivity disorder. Biol Psychiatry 54:1465–1468. doi: 10.1016/S0006-3223(03)00609-7 PubMedCrossRefGoogle Scholar
  4. Berlucchi G (2006) Inhibition of return: a phenomenon in search of a mechanism and a better name. Cogn Neuropsychol 23:1065–1074. doi: 10.1080/02643290600588426 PubMedCrossRefGoogle Scholar
  5. Catafau AM, Parellada E, Lomena FJ et al (1994) Prefrontal and temporal blood flow in schizophrenia: resting and activation technetium-99m-HMPAO SPECT patterns in young neuroleptic-naive patients with acute disease. J Nucl Med 35:935–941PubMedGoogle Scholar
  6. Colzato LS, Hommel B (2008) Cannabis, cocaine, and visuomotor integration: evidence for a role of dopamine D1 receptors in binding perception and action. Neuropsychologia 46:1570–1575. doi: 10.1016/j.neuropsychologia.2007.12.014 PubMedCrossRefGoogle Scholar
  7. Colzato LS, Hommel B (2009) Recreational use of cocaine eliminates inhibition of return. Neuropsychology 23:125–129. doi: 10.1037/a0013821 PubMedCrossRefGoogle Scholar
  8. Cunha PJ, Nicastri S, de Andrade AG, Bolla KI (2010) The frontal assessment battery (FAB) reveals neurocognitive dysfunction in substance-dependent individuals in distinct executive domains: abstract reasoning, motor programming, and cognitive flexibility. Addict Behav 35:875–881. doi: 10.1016/j.addbeh.2010.05.005 PubMedCrossRefGoogle Scholar
  9. Danziger S, Fendrich R, Rafal R (1997) Inhibitory tagging of locations in the blind field of hemianopic patients. Conscious Cogn 6:291–307. doi: 10.1006/ccog.1997.0312 CrossRefGoogle Scholar
  10. Daumann J, Heekeren K, Neukirch A, Thiel CM, Moller-Hartmann W, Gouzoulis-Mayfrank E (2008) Pharmacological modulation of the neural basis underlying inhibition of return (IOR) in the human 5-HT2A agonist and NMDA antagonist model of psychosis. Psychopharmacology 200:573–583. doi: 10.1007/s00213-008-1237-1 PubMedCrossRefGoogle Scholar
  11. de Wit H, Enggasser MA, Richards JB (2002) Acute administration of d-amphetamine decreases impulsivity in healthy volunteers. Neuropsychopharmacology 27:813–825. doi: 10.1016/S0893-133X(02)00343-3 PubMedCrossRefGoogle Scholar
  12. Dorris MC, Klein RM, Everling S, Munoz DP (2002) Contribution of the primate superior colliculus to inhibition of return. J Cogn Neurosci 14:1256–1263. doi: 10.1162/089892902760807249 PubMedCrossRefGoogle Scholar
  13. Dukewich KR (2009) Reconceptualizing inhibition of return as habituation of the orienting response. Psychon Bull Rev 16:238–251. doi: 10.3758/PBR.16.2.238 PubMedCrossRefGoogle Scholar
  14. Easdon CM, Vogel-Sprott M (2000) Alcohol and behavioural control: impaired response inhibition and flexibility in social drinkers. Exp Clin Psychopharmacol 8:387–394. doi: 10.1037/1064-1297.8.3.387 PubMedCrossRefGoogle Scholar
  15. Fernandez-Serrano MJ, Perez-Garcia M, Rio-Valle JS, Verdejo-Garcia A (2010) Neuropsychological consequences of alcohol and drug abuse on different components of executive functions. J Psychopharmacol 24:1317–1332. doi: 10.1177/0269881109349841 PubMedCrossRefGoogle Scholar
  16. Fillmore MT (2007) Acute alcohol-induced impairment of cognitive functions: past and present findings. Int J Disabil Hum Dev 6:115–125. doi: 10.1515/IJDHD.2007.6.2.115 CrossRefGoogle Scholar
  17. Fillmore MT, Dixon MJ, Schweizer TA (2000) Alcohol effects processing of ignored stimuli in a negative priming paradigm. J Stud Alcohol 61:571–578PubMedGoogle Scholar
  18. Fillmore MT, Rush CR, Abroms BD (2005) d-Amphetamine-induced enhancement of inhibitory mechanisms involved in visual search. Exp Clin Psychopharmacol 13:200–208. doi: 10.1037/1064-1297.13.3.200 PubMedCrossRefGoogle Scholar
  19. Fuentes LJ, Boucart M, Alvarez R, Vivas AB, Zimmerman MA (1999) Inhibitory processing in visuospatial attention in healthy adults and schizophrenic patients. Schizophr Res 40:75–80. doi: 10.1016/S0920-9964(99)00044-4 PubMedCrossRefGoogle Scholar
  20. Gouzoulis-Mayfrank E, Thelen B, Maier S, Heekeren K, Kovar K-A, Sass H, Spitzer M (2002) Effects of the hallucinogen psilocybin on covert orienting of visual attention in humans. Neuropsychobiology 45:205–212. doi: 10.1159/000063672 PubMedCrossRefGoogle Scholar
  21. Gouzoulis-Mayfrank E, Heekeren K, Voss T, Moerth D, Thelen B, Meincke U (2004) Blunted inhibition of return in schizophrenia—evidence from a longitudinal study. Prog Neuropsychopharmacol Biol Psychiatry 28:389–396. doi: 10.1016/j.pnpbp.2003.11.010 PubMedCrossRefGoogle Scholar
  22. Gouzoulis-Mayfrank E, Heekeren K, Timmerbeil A, Stoll M, Stock C, Obradovic M, Kovar K-A (2005) Psychological effects of (S)-ketamine and N, N-dimethyltryptamine (DMT): a double-blind, cross-over study in healthy volunteers. Pharmacopsychiatry 38:301–311. doi: 10.1055/s-2005-916185 PubMedCrossRefGoogle Scholar
  23. Gouzoulis-Mayfrank E, Heekeren K, Neukirch A, Stoll M, Stock C, Daumann J, Obradovic M, Kovar K-A (2006) Inhibition of return in the human 5HT2A agonist and NMCA antagonist model of psychosis. Neuropsychopharmacol 31:431–441. doi: 10.1038/sj.npp.1300882 CrossRefGoogle Scholar
  24. Guillot CR, Fanning JR, Bullock JS, McCloskey MS, Berman ME (2010) Effects of alcohol on tests of executive functioning in men and women: a dose response examination. Exp Clin Psychopharmacol 18:409–417. doi: 10.1037/a0021053 PubMedCrossRefGoogle Scholar
  25. Honey GD, Honey RAE, Sharar SR et al (2004) Impairment of specific episodic memory processes by sub-psychotic doses of ketamine: the effects of levels of processing at encoding and of subsequent retrieval task. Psychopharmacol 181:445–457. doi: 10.1007/s00213-005-0001-z Google Scholar
  26. Hoyer WJ, Semenec SC, Buchler NEG (2007) Acute alcohol intoxication impairs controlled search across the visual field. J Stud Alcohol Drugs 68:748–758PubMedGoogle Scholar
  27. Huey ED, Wexler BE (1994) Abnormalities in rapid, automatic aspects of attention in schizophrenia: blunted inhibition of return. Schizophr Res 14:57–63PubMedCrossRefGoogle Scholar
  28. Kebir O, Ben Azouz O, Rabah Y, Dellagi L, Johnson I, Amado I, Tabbane K (2010) Confirmation for a delayed inhibition of return by systematic sampling in schizophrenia. Psychiatry Res 176:17–21. doi: 10.1016/j.psychres.2008.10.010 PubMedCrossRefGoogle Scholar
  29. Kerr JS, Hindmarch I (1998) The effects of alcohol alone or in combination with other drugs on information processing, task performance and subjective responses. Hum Psychopharamacol 13:1–9. doi:10.1002/(SICI)1099-1077(199801)13:1<1::AID-HUP939>3.0.CO;2-0CrossRefGoogle Scholar
  30. Klein RM (1988) Inhibitory tagging system facilitates visual search. Nature 334:430–431. doi: 10.1038/334430a0 PubMedCrossRefGoogle Scholar
  31. Klein RM (2000) Inhibition of return. Trends Cogn Sci 4:138–147. doi: 10.1016/S1364-6613(00)01452-2 PubMedCrossRefGoogle Scholar
  32. Klein RM (2004) Orienting and inhibition of return. In: Gazzaniga MS (ed) The cognitive neurosciences, 3rd edn. MIT, Cambridge, pp 545–559Google Scholar
  33. Klein RM (2005) On the role of endogenous orienting in the inhibitory aftermath of exogenous orienting. In: Mayr U, Awh E, Keele S (eds) Developing individuality in the human brain: a tribute to Michael I. Posner. American Psychological Association, Washington, DC, pp 45–64CrossRefGoogle Scholar
  34. Lundqvist T (2005) Cognitive consequences of cannabis use: comparison with abuse of stimulants and heroin with regard to attention, memory and executive functions. Psychopharmacol Biochem Behav 81:319–330. doi: 10.1016/j.pbb.2005.02.017 CrossRefGoogle Scholar
  35. Lupianez J (2011) Inhibition of return. In: Nobre K, Coull J (eds) Attention and time. Oxford University Press, Oxford, pp 17–34Google Scholar
  36. Lussier I, Stip E (2001) Memory and attention deficits in drug naive patients with schizophrenia. Schizphr Res 48:45–55. doi: 10.1016/S0920-9964(00)00102-X CrossRefGoogle Scholar
  37. Mayer AR, Seidenberg M, Dorflinger JM, Rao SM (2004) An event-related fMRI study of exogenous orienting: supporting evidence for the cortical basis of inhibition of return. J Cogn Neurosci 16:1262–1271. doi: 10.1162/0898929041920531 PubMedCrossRefGoogle Scholar
  38. Molnar M, Boha R, Czigler B, Gaal ZA (2010) The acute effect of alcohol on various memory processes. J Psychophysiol 24:249–252. doi: 10.1027/0269-8803/a000038 CrossRefGoogle Scholar
  39. Mushquash AR, Fawcett MJ, Klein RM (2012) Inhibition of return and schizophrenia: A meta-analysis. Schizophr Res 135:55–61PubMedCrossRefGoogle Scholar
  40. Nigg JT, Wong MM, Martel MM et al (2006) Poor response inhibition as a predictor of problem drinking and illicit drug use in adolescents at risk for alcoholism and other substance use disorders. J Am Acad Child Adolesc Psychiatry 45:468–475. doi: 10.1097/01.chi.0000199028.76452.a9 PubMedCrossRefGoogle Scholar
  41. Posner MI, Cohen Y (1984) Components of visual orienting. In: Houma H, Bouwhuis DG (eds) Attention and performance X: control of language processes. Erlbaum, Hillsdale, pp 531–556Google Scholar
  42. Posner MI, Rafal RD, Choate LS, Vaughan J (1985) Inhibition of return: neural basis and function. Cogn Neuropsychol 2:211–228. doi: 10.1080/02643298508252866 CrossRefGoogle Scholar
  43. Rafal RD, Posner MI, Friedman JH, Inhoff AW, Bernstein E (1988) Orienting of visual attention in progressive supranuclear palsy. Brain 111:267–280PubMedCrossRefGoogle Scholar
  44. Rafal RD, Calabresi PA, Brennan CW, Sciolto TK (1989) Saccade preparation inhibits reorienting to recently attended locations. J Exp Psychol Hum Percept Perform 25:730–746. doi: 10.1037/0096-1523.15.4.673 Google Scholar
  45. Reay JL, Hamilton C, Kennedy DO, Scholey AB (2006) MDMA polydrug users show process specific central executive impairments coupled with impaired social and emotional judgement processes. J Psychopharmacol 20:385–388. doi: 10.1177/0269881106063269 PubMedCrossRefGoogle Scholar
  46. Samuel AG, Kat D (2003) Inhibition of return: a graphical meta-analysis of its time course and an empirical test of its temporal and spatial properties. Psychon Bull Rev 10:897–906. doi: 10.3758/BF03196550 PubMedCrossRefGoogle Scholar
  47. Sapir A, Soroker N, Berger A, Henik A (1999) Inhibition of return in spatial attention: direct evidence for collicular generation. Nat Neurosci 2:1053–1054. doi: 10.1038/15977 PubMedCrossRefGoogle Scholar
  48. Sapir A, Dobrusin M, Ben-Bashat G, Henik A (2007) Neuroleptics reverse attentional effects in schizophrenia patients. Neuropsychologia 45:3263–3271. doi: 10.1016/j.neuropsychologia.2007.06.007 PubMedCrossRefGoogle Scholar
  49. Tipper SP, Rafal R, Reuter-Lorenz PA et al (1997) Object-based facilitation and inhibition from visual orienting in the human split-brain. J Exp Psychol Hum Percept Perform 23:1522–1532. doi: 10.1037/0096-1523.23.5.1522 PubMedCrossRefGoogle Scholar
  50. Valenza E, Simion F, Umilta CL (1994) Inhibition of return in newborn infants. Infant Behav Dev 17:293–302. doi: 10.1016/0163-6383(94)90009-4 CrossRefGoogle Scholar
  51. Verbaten MN (2010) Deterioration of executive functioning in chronic ecstasy users; evidence for multiple drugs effects. Curr Drug Abuse Rev 3:129–138. doi: 10.2174/1874473711003030129 PubMedCrossRefGoogle Scholar
  52. Weissenborn R, Duka T (2003) Acute alcohol effects on cognitive function in social drinkers: their relationship to drinking habits. J Psychopharmacol 165:306–312Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of PsychologyDalhousie UniversityHalifaxCanada

Personalised recommendations