Skip to main content
Log in

Social rank, chronic ethanol self-administration, and diurnal pituitary–adrenal activity in cynomolgus monkeys

Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Dominance hierarchies affect ethanol self-administration, with greater intake among subordinate animals compared to dominant animals. Excessive ethanol intake disrupts circadian rhythms. Diurnal rhythms of the hypothalamic–pituitary–adrenal axis have not been characterized in the context of ethanol self-administration with regard to social rank.

Objective

This study aimed to determine whether diurnal pituitary–adrenal hormonal rhythms account for differences between social ranks in ethanol self-administration or are differentially affected by ethanol self-administration between social ranks.

Methods

During alternating individual (n = 11–12) and social (n = 3 groups) housing of male cynomolgus monkeys (Macaca fascicularis), diurnal measures of cortisol and adrenocorticotropic hormone (ACTH) were obtained from plasma samples three times per week. Social rank was determined, ethanol (4 %, w/v) self-administration was induced, and then the monkeys were allowed a choice of water or ethanol for 22 h/day for 49 weeks.

Results

For all social ranks, plasma ACTH was elevated during social housing, but cortisol was stable, although greater among dominant monkeys. Ethanol self-administration blunted the effect of social housing, cortisol, and the diurnal rhythm for both hormones, regardless of daily ethanol intake (1.2–4.2 g/kg/day). Peak ACTH and cortisol were more likely to be observed in the morning during ethanol access. Ethanol, not vehicle, intake was lower during social housing across social ranks. Only dominant monkeys showed significantly lower blood–ethanol concentration during social housing.

Conclusions

There was a low threshold for disruption of diurnal pituitary rhythms by ethanol drinking, but sustained adrenal corticosteroid rhythms. Protection against heavy drinking among dominant monkeys may have constrained ethanol intoxication, possibly to preserve dominance rank.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbott DH, Keverne EB, Bercovitch FB, Shively CA, Mendoza SP, Saltzman W, Snowdon CT, Ziegler TE, Banjevic M, Garland T Jr, Sapolsky RM (2003) Are subordinates always stressed? A comparative analysis of rank differences in cortisol levels among primates. Horm Behav 43:67–82

    Article  PubMed  CAS  Google Scholar 

  • Balkin TJ, Braun AR, Wesensten NJ, Jeffries K, Varga M, Baldwin P, Belenky G, Herscovitch P (2002) The process of awakening: a PET study of regional brain activity patterns mediating the re-establishment of alertness and consciousness. Brain 125:2308–2319

    Article  PubMed  Google Scholar 

  • Barr CS, Dvoskin RL, Yuan Q, Lipsky RH, Gupte M, Hu X, Zhou Z, Schwandt ML, Lindell SG, McKee M, Becker ML, Kling MA, Gold PW, Higley JD, Heilig M, Suomi SJ, Goldman D (2008) CRH haplotype predicts CSF CRH, HPA axis activity, temperament, and alcohol consumption in rhesus macaques. Arch Gen Psychiatry 65:934–944

    Article  PubMed  CAS  Google Scholar 

  • Barr CS, Dvoskin RL, Gupte M, Sommer W, Sun H, Schwandt ML, Lindell SG, Kasckow JW, Suomi SJ, Goldman D, Higley JD, Heilig M (2009) Functional CRH variation increases stress-induced alcohol consumption in primates. PNAS 106:14593–14598

    Article  PubMed  CAS  Google Scholar 

  • Blomeyer D, Treutlein J, Esser G, Schmidt MH, Schumann G, Laucht M (2008) Interaction between CRHR1 gene and stressful life events predicts adolescent heavy alcohol use. Biol Psychiatry 63:146–151

    Article  PubMed  CAS  Google Scholar 

  • Bohem C (2004) Hierarchy in the forest: the evolution of egalitarian behavior. Harvard University Press, Cambridge

    Google Scholar 

  • Boschloo L, Vogelzangs N, Licht CMM, Vreeburg SA, Smit JH, van den Brink W, Veltman DJ, de Geus EJC, Beekman ATF, Penninx BWJH (2011) Heavy alcohol use, rather than alcohol dependence, is associated with dysregulation of the hypothalamic–pituitary–adrenal axis and the autonomic nervous system. Drug Alcohol Depend 116:170–176

    Article  PubMed  CAS  Google Scholar 

  • Boyd KN, Kumar S, O’Buckley TK, Morrow AL (2010) Chronic ethanol exposure produces tolerance to elevations in neuroactive steroids: mechanisms and reversal by exogenous ACTH. J Neurochem 115:142–152

    Article  PubMed  CAS  Google Scholar 

  • Chen CP, Kuhn P, Advis JP, Sarkar DK (2004) Chronic ethanol consumption impairs the circadian rhythm of pro-opiomelanocortin and period genes mRNA expression in the hypothalamus of the male rat. J Neurochem 88:1547–1554

    Article  PubMed  CAS  Google Scholar 

  • Crowley TJ (1983) Substance abuse research in monkey social groups. Prog Clin Biol Res 131:255–275

    PubMed  CAS  Google Scholar 

  • Cuzon Carlson VC, Seabold GK, Helms CM, Garg N, Odagiri M, Rau AR, Daunais J, Alvarez VA, Lovinger DM, Grant KA (2011) Synaptic and morphological neuroadaptations in the putamen associated with long-term, relapsing alcohol drinking in primates. Neuropsychopharmacology 36:2513–2528

    Article  PubMed  CAS  Google Scholar 

  • Czoty PW, Morgan D, Shannon EE, Gage HD, Nader MA (2004) Characterization of dopamine D1 and D2 receptor function in socially housed cynomolgus monkeys self-administering cocaine. Psychopharmacology 174:381–388

    Article  PubMed  CAS  Google Scholar 

  • Czoty PW, Gould RW, Nader MA (2008) Relationship between social rank and cortisol and testosterone concentrations in male cynomolgus monkeys (Macaca fascicularis). J Neuroendocrinol 21:68–76

    Article  Google Scholar 

  • Dong L, Bilbao A, Laucht M, Henriksson R, Yakovleva T, Ridinger M, Desrivieres S, Clarke T-K, Lourdusamy A, Smolka MN, Cichon S, Blomeyer D, Treutlein J, Perreau-Lenz S, Witt S, Leonardi-Essmann F, Wodarz N, Zill P, Soyka M, Albrecht U, Rietschel M, Lathrop M, Bakalkin G, Spanagel R, Schumann G (2011) Effects of the circadian rhythm gene period 1 (Per1) on psychosocial stress-induced alcohol drinking. Am J Psychiatry 168:1090–1098

    Article  PubMed  Google Scholar 

  • Edwards S, Evans P, Hucklebridge F, Clow A (2001) Association between time of awakening and diurnal cortisol secretory activity. Psychoneuroendocrinology 26:613–622

    Article  PubMed  CAS  Google Scholar 

  • Ehlers CJ, Walker BM, Pian JP, Roth JL, Slawecki CJ (2007) Increased alcohol drinking in isolate-housed alcohol-preferring rats. Behav Neurosci 121:111–119

    Article  PubMed  Google Scholar 

  • Ekman A-C, Vakkuri O, Vuolteenaho O, Leppäluoto J (1994) Delayed pro-opiomelanocortin activation after ethanol intake in man. Alcohol Clin Exp Res 18:1226–1229

    Article  PubMed  CAS  Google Scholar 

  • Flack JC, De Waal FBM (2004) Dominance style, social power, and conflict management: a conceptual framework. In: Thierry B, Singh M, Kaumanns W (eds) Macaque societies: a model for the study of social organization. Cambridge University Press, Cambridge

    Google Scholar 

  • Foley R, Gamble C (2009) The ecology of social transitions in human evolution. Phil Trans R Soc B 364:3267–3279

    Article  PubMed  Google Scholar 

  • Fonzi S, Solinas GP, Costelli P, Parodi C, Murialdo G, Bo P, Albergati A, Montalbetti L, Savoldi F, Polleri A (1994) Melatonin and cortisol circadian secretion during ethanol withdrawal in chronic alcoholics. Chronobiologia 21:109–112

    PubMed  CAS  Google Scholar 

  • Gonzalez CA, Gunnar MR, Levine S (1981) Behavioral and hormonal responses to social disruption and infant stimuli in female rhesus monkeys. Psychoneuroendocrinology 6:53–64

    Article  PubMed  CAS  Google Scholar 

  • Goo GP, Sassenrath EN (1980) Persistent adrenocortical activation in female rhesus monkeys after new breeding group formation. J Med Primatol 9:325–334

    PubMed  CAS  Google Scholar 

  • Grant KA, Shively CA, Nader MA, Ehrenkaufer RL, Line SW, Morton TE, Gage HD, Mach RH (1998) Effect of social status on striatal dopamine D2 receptor binding characteristics in cynomolgus monkeys assessed with positron emission tomography. Synapse 29:80–83

    Article  PubMed  CAS  Google Scholar 

  • Grant KA, Leng X, Green HL, Szeliga KT, Rogers LS, Gonzales SW (2008) Drinking typography established by scheduled induction predicts chronic heavy drinking in a monkey model of ethanol self-administration. Alcohol Clin Exp Res 32:1824–1838

    Article  PubMed  CAS  Google Scholar 

  • Herod SM, Dettmer AM, Novak MA, Meyer JS, Cameron JL (2011) Sensitivity to stress-induced reproductive dysfunction is associated with a selective but not a generalized increase in activity of the adrenal axis. Am J Physiol Endocrinol Metab 300:E28–E36

    Article  PubMed  CAS  Google Scholar 

  • Higley JD, Hasert MF, Suomi SJ, Linnoila M (1991) Nonhuman primate model of alcohol abuse: effects of early experience, personality, and stress on alcohol consumption in nonhuman primates. Alcohol 34:402–418

    Google Scholar 

  • Higley JD, Suomi SJ, Linnoila M (1996) A nonhuman primate model of type II excessive alcohol consumption? Part 1. Low cerebrospinal fluid 5-hydroxyindoleaceetic acid concentrations and diminished social competence correlate with excessive alcohol consumption. Alcohol Clin Exp Res 20:629–642

    Google Scholar 

  • Huang M-C, Ho C-W, Chen C-H, Liu S-C, Chen C-C, Leu S-J (2010) Reduced expression of circadian clock genes in male alcoholic patients. Alcohol Clin Exp Res 34:1899–1904

    Article  PubMed  CAS  Google Scholar 

  • Iranmanesh A, Veldhuis JD, Johnson ML, Lizarralde G (1989) 24-hour pulsatile and circadian patterns of cortisol secretion in alcoholic men. J Androl 10:54–63

    PubMed  CAS  Google Scholar 

  • Kakihana R, Moore JA (1976) Circadian rhythm of corticosterone in mice: the effect of chronic consumption of alcohol. Psychopharmacologia 46:301–305

    Article  PubMed  CAS  Google Scholar 

  • Kraemer GW, McKinney WT (1985) Social separation increases alcohol consumption in rhesus monkeys. Psychopharmacology 104:367–376

    Google Scholar 

  • Krieger DT (1974) Food and water restriction shifts corticosterone, temperature, activity and brain amine periodicity. Endocrinology 95:1195–1201

    Article  PubMed  CAS  Google Scholar 

  • Krieger DT, Hauser H, Krey LC (1977) Suprachiasmatic nuclear lesions do not abolish food-shifted circadian adrenal and temperature rhythmicity. Science 197:398–399

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Selvage D, Hansen K, Rivier C (2004) Site of action of acute alcohol administration in stimulating the rat hypothalamic–pituitary–adrenal axis: comparison between the effect of systemic and intracerebroventricular injection of this drug on pituitary and hypothalamic responses. Endocrinology 145:4470–4479

    Article  PubMed  CAS  Google Scholar 

  • Lyons DM, Wang OJ, Lindley SE, Levine S, Kalin NH, Schatzberg AF (1999) Separation induced changes in squirrel monkey hypothalamic–pituitary–adrenal physiology resemble aspects of hypercortisolism in humans. Psychoneuroendocrinology 24:131–142

    Article  PubMed  CAS  Google Scholar 

  • Matthews K, Schwartz J, Cohen S, Seeman T (2006) Diurnal cortisol decline is related to coronary calcification: CARDIA study. Psychosom Med 68:657–661

    Article  PubMed  CAS  Google Scholar 

  • McKenzie-Quirk SD, Miczek KA (2008) Social rank and social separation as determinants of alcohol drinking in squirrel monkeys. Psychopharmacology 201:137–145

    Article  PubMed  CAS  Google Scholar 

  • Meier AH (1976) Daily variation in concentration of plasma corticosteroid in hypophysectomized rats. Endocrinology 98:1475–1479

    Article  PubMed  CAS  Google Scholar 

  • Mendoza SP, Coe CL, Lowe EL, Levine S (1979) The physiological response to group formation in adult male squirrel monkeys. Psychoneuroendocrinology 3:221–229

    Article  Google Scholar 

  • Morgan D, Grant KA, Prioleau OA, Nader SH, Kaplan JR, Nader MA (2000) Predictors of social status in cynomolgus monkeys (Macaca fasicularis) after group formation. Am J Primatol 52:115–131

    Article  PubMed  CAS  Google Scholar 

  • Morgan D, Grant KA, Gage HD, Mach RH, Kaplan JR, Prioleau O, Nader SH, Buchheimer N, Ehrenkaufer RL, Nader MA (2002) Social dominance in monkeys: dopamine D2 receptors and cocaine self-administration. Nat Neurosci 5:169–174

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee S, Kazerooni M, Simasko SM (2008) Dose–response study of chronic alcohol induced changes in sleep patterns in rats. Brain Res 1208:120–127

    Article  PubMed  CAS  Google Scholar 

  • Oster H, Damerow S, Kiessling S, Jakubcakova V, Abraham D, Tian J, Hoffman MW, Eichele G (2006) The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell Metab 4:163–173

    Article  PubMed  CAS  Google Scholar 

  • Parker LF, Radow BL (1974) Isolation stress and volitional ethanol consumption in the rat. Physiol Behav 12:1–3

    Article  PubMed  CAS  Google Scholar 

  • Porcu P, Sogliano C, Ibba C, Piredda M, Tocco S, Marra C, Purdy RH, Biggio G, Concas A (2004) Failure of γ-hydroxybutyric acid both to increase neuroactive steroid concentrations in adrenalectomized–orchiectomized rats and to induce tolerance to its steroidogenic effect in intact animals. Brain Res 1012:160–168

    Article  PubMed  CAS  Google Scholar 

  • Porcu P, Rogers LS, Morrow AL, Grant KA (2006) Plasma pregnenolone levels in cynomolgus monkeys following pharmacological challenges of the hypothalamic–pituitary–adrenal axis. Pharmacol Biochem Behav 84:618–627

    Article  PubMed  CAS  Google Scholar 

  • Richman JA, Shinsako SA, Rospenda KM, Flaherty JA, Freels S (2002) Workplace harassment/abuse and alcohol-related outcomes: the mediating role of psychological distress. J Stud Alcohol 63:412–419

    PubMed  Google Scholar 

  • Riddick NV, Czoty PW, Gage HD, Kaplan JR, Nader SH, Icenhower M, Pierre PJ, Bennett A, Garg PK, Garg S, Nader MA (2009) Behavioral and neurobiological characteristics influencing social hierarchy formation in female cynomolgus monkeys. Neuroscience 158:1257–1265

    Article  PubMed  CAS  Google Scholar 

  • Risher-Flowers D, Adinoff B, Ravitz B, Bone GH, Martin PR, Nutt D, Linnoila M (1988) Circadian rhythms of cortisol during alcohol withdrawal. Adv Alcohol Subst Abus 7:37–41

    Article  CAS  Google Scholar 

  • Rosenwasser AM, Logan RW, Fecteau ME (2005) Chronic ethanol intake alters circadian period-responses to brief light pulses in rats. Chronobiol Int 22:227–236

    Article  PubMed  CAS  Google Scholar 

  • Rosmond R, Bjorntorp P (2000) The hypothalamic–pituitary–adrenal axis activity as a predictor of cardiovascular disease, type 2 diabetes and stroke. J Intern Med 247:188–197

    Article  PubMed  CAS  Google Scholar 

  • Sephton SE, Sapolsky RM, Kraemer HC, Spiegel D (2000) Diurnal cortisol rhythm as a predictor of breast cancer survival. J Nat Cancer Inst 92:994–1000

    Article  PubMed  CAS  Google Scholar 

  • Shively CA (1998) Social subordination stress, behavior, and central monoaminergic function in female cynomolgus monkeys. Biol Psych 44:882–891

    Article  CAS  Google Scholar 

  • Sillaber I, Rammes G, Zimmermann S, Mahal B, Zieglgänsberger W, Wurst W, Holsboer F, Spanagel R (2002) Enhanced and delayed stress-induced alcohol drinking in mice lacking function CRH1 receptors. Science 296:931–933

    Article  PubMed  CAS  Google Scholar 

  • Spanagel R, Rosenwasser AM, Schumann G, Sarkar DK (2005) Alcohol consumption and the body’s biological clock. Alcohol Clin Exp Res 29:1550–1557

    Article  PubMed  Google Scholar 

  • Thierry B (2007) Unity in diversity: lessons from macaque societies. Evol Anthropol 16:224–238

    Article  Google Scholar 

  • Torres-Farfan C, Valenzuela FJ, Ebensperger R, Méndez N, Campino C, Richter HG, Valenzuela GJ, Serón-Ferré M (2008) Circadian cortisol secretion and circadian adrenal responses to ACTH are maintained in dexamethasone suppressed capuchin monkeys (Cebus paella). Am J Primtol 70:93–100

    Article  CAS  Google Scholar 

  • Urbanski HF (2011) Role of circadian neuroendocrine rhythms in the control of behavior and physiology. Neuroendocrinology 93:211–222

    Article  PubMed  CAS  Google Scholar 

  • Vivian JA, Green HL, Young JE, Majerksy LS, Thomas BW, Shively CA, Tobin JR, Nader MA, Grant KA (2001) Induction and maintenance of ethanol self-administration in cynomolgus monkeys (Macaca fascicularis): long-term characterization of sex and individual differences. Alcohol Clin Exp Res 25:1087–1097

    Article  PubMed  CAS  Google Scholar 

  • Welker C, Schäfer-Witt C, Voigt K (1992) Social position and personality in Macaca fascicularis. Folia Primatol 58:112–117

    Article  Google Scholar 

  • Wilhelm I, Born J, Kudielka BM, Schlotz W, Wüst S (2007) Is the cortisol awakening rise a response to awakening? Psychoneuroendocrinology 32:358–366

    Google Scholar 

  • Wilson ME, Legendre A, Pazol K, Fisher J, Chikazawa K (2005) Gonadal steroid modulation of the limbic–hypothalamic–pituitary–adrenal (LHPA) axis is influenced by social status in female rhesus monkeys. Endocrine 26:89–97

    Article  PubMed  CAS  Google Scholar 

  • Winslow JT, Miczek KA (1985) Social status as a determinant of alcohol effects on aggressive behavior in squirrel monkeys (Saimiri sciureus). Psychopharmacology 85:167–172

    Article  PubMed  CAS  Google Scholar 

  • Wolf OT (2009) Stress and memory in humans: twelve years of progress? Brain Res 1293:142–154

    Article  PubMed  CAS  Google Scholar 

  • Wolffgramm J, Heyne A (1991) Social behavior, dominance, and social deprivation of rats determine drug choice. Pharmacol Biochem Behav 38:389–399

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work and preparation of the manuscript was supported by RR000163, AA019431, AA019355, AA10760, AA13541, AA13510, and T32AA007468.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christa M. Helms.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

Plasma ACTH and cortisol across the experiment among individual monkeys housed together in rack 1 (JPEG 85.0 kb)

High resolution image (TIFF 644 kb)

Supplemental Fig. 2

Plasma ACTH and cortisol across the experiment among individual monkeys housed together in rack 2 (JPEG 111 kb)

High resolution image (TIFF 756 kb)

Supplemental Fig. 3

Plasma ACTH and cortisol across the experiment among individual monkeys housed together in rack 3 (JPEG 68 kb)

High resolution image (TIFF 486 kb)

Supplemental Fig. 4

Mean weekly ethanol (closed) and vehicle (open) intake across the experiment among individual monkeys housed together in rack 1 (JPEG 36 kb)

High resolution image (TIFF 213 kb)

Supplemental Fig. 5

Mean weekly ethanol (closed) and vehicle (open) intake across the experiment among individual monkeys housed together in rack 2 (JPEG 85 kb)

High resolution image (TIFF 515 kb)

Supplemental Fig. 6

Mean weekly ethanol (closed) and vehicle (open) intake across the experiment among individual monkeys housed together in rack 3 (JPEG 78 kb)

High resolution image (TIFF 512 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helms, C.M., McClintick, M.N. & Grant, K.A. Social rank, chronic ethanol self-administration, and diurnal pituitary–adrenal activity in cynomolgus monkeys. Psychopharmacology 224, 133–143 (2012). https://doi.org/10.1007/s00213-012-2707-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-012-2707-z

Keywords

Navigation