, Volume 222, Issue 2, pp 303–311 | Cite as

Effects of acupuncture on stress-induced relapse to cocaine-seeking in rats

  • Seong Shoon Yoon
  • Eun Jin Yang
  • Bong Hyo Lee
  • Eun Young Jang
  • Hee Young Kim
  • Sun-Mi Choi
  • Scott C. Steffensen
  • Chae Ha Yang
Original Investigation



Cocaine addiction is associated with high rates of relapse, and stress has been identified as a major risk factor. We have previously demonstrated that acupuncture reduces drug self-administration and dopamine release in the nucleus accumbens (NAc), a brain structure implicated in stress-induced reinstatement of drug-seeking behavior.


This study was conducted to investigate the effects of acupuncture on footshock-induced reinstatement of cocaine-seeking and the expression of c-Fos and the transcription factor cAMP response element-binding protein (CREB) in the NAc, used as markers of neuronal activation in conditions of stress-induced reinstatement to cocaine.


Male Sprague–Dawley rats were trained to self-administer cocaine (1.0 mg/kg) for 14 days, followed by extinction and then footshock stress. Acupuncture was applied at bilateral Shenmen (HT7) points for 1 min after footshock stress.

Results and conclusions

Acute footshock stress reinstated cocaine-seeking behavior and enhanced c-Fos expression and phosphorylated CREB (pCREB) activation in the NAc shell in cocaine pre-exposed rats. On the other hand, acupuncture at HT7, but not at control point (LI5), markedly reduced reinstatement of cocaine-seeking (86.5 % inhibition vs. control value), c-Fos expression (81.7% inhibition), and pCREB activation (79.3% inhibition) in the NAc shell. These results suggest that acupuncture attenuates stress-induced relapse by regulating neuronal activation in the NAc shell.


Cocaine reinstatement Footshock Stress Acupuncture Nucleus accumbens c-Fos pCREB 



This work was supported by grants (K08010 and K11010) from Korea Institute of Oriental Medicine (KIOM), South Korea.


  1. Anderson SM, Bari AA, Pierce RC (2003) Administration of the D1-like dopamine receptor antagonist SCH-23390 into the medial nucleus accumbens shell attenuates cocaine priming-induced reinstatement of drug-seeking behavior in rats. Psychopharmacology (Berl) 168:132–8CrossRefGoogle Scholar
  2. Ashby CR Jr, Rohatgi R, Ngosuwan J, Borda T, Gerasimov MR, Morgan AE, Kushner S, Brodie JD, Dewey SL (1999) Implication of the GABA(B) receptor in gamma vinyl-GABA’s inhibition of cocaine-induced increases in nucleus accumbens dopamine. Synapse 31:151–3PubMedCrossRefGoogle Scholar
  3. Bachtell RK, Whisler K, Karanian D, Self DW (2005) Effects of intra-nucleus accumbens shell administration of dopamine agonists and antagonists on cocaine-taking and cocaine-seeking behaviors in the rat. Psychopharmacology (Berl) 183:41–53CrossRefGoogle Scholar
  4. Backstrom P, Bachteler D, Koch S, Hyytia P, Spanagel R (2004) mGluR5 antagonist MPEP reduces ethanol-seeking and relapse behavior. Neuropsychopharmacology 29:921–8PubMedCrossRefGoogle Scholar
  5. Boutrel B, Kenny PJ, Specio SE, Martin-Fardon R, Markou A, Koob GF, de Lecea L (2005) Role for hypocretin in mediating stress-induced reinstatement of cocaine-seeking behavior. Proc Natl Acad Sci USA 102:19168–73PubMedCrossRefGoogle Scholar
  6. Brebner K, Phelan R, Roberts DC (2000) Intra-VTA baclofen attenuates cocaine self-administration on a progressive ratio schedule of reinforcement. Pharmacol Biochem Behav 66:857–62PubMedCrossRefGoogle Scholar
  7. Brog JS, Salyapongse A, Deutch AY, Zahm DS (1993) The patterns of afferent innervation of the core and shell in the “accumbens” part of the rat ventral striatum: immunohistochemical detection of retrogradely transported fluoro-gold. J Comp Neurol 338:255–78PubMedCrossRefGoogle Scholar
  8. Brown RM, Short JL, Lawrence AJ (2010) Identification of brain nuclei implicated in cocaine-primed reinstatement of conditioned place preference: a behaviour dissociable from sensitization. PLoS One 5:e15889PubMedCrossRefGoogle Scholar
  9. Campbell UC, Lac ST, Carroll ME (1999) Effects of baclofen on maintenance and reinstatement of intravenous cocaine self-administration in rats. Psychopharmacology (Berl) 143:209–14CrossRefGoogle Scholar
  10. Chan J, Briscomb D, Waterhouse E, Cannaby AM (2002) An uncontrolled pilot study of HT7 for ‘stress’. Acupunct Med 20:74–7PubMedCrossRefGoogle Scholar
  11. Chen Y, Fenoglio KA, Dube CM, Grigoriadis DE, Baram TZ (2006) Cellular and molecular mechanisms of hippocampal activation by acute stress are age-dependent. Mol Psychiatry 11:992–1002PubMedCrossRefGoogle Scholar
  12. Cippitelli A, Damadzic R, Hansson AC, Singley E, Sommer WH, Eskay R, Thorsell A, Heilig M (2010) Neuropeptide Y (NPY) suppresses yohimbine-induced reinstatement of alcohol seeking. Psychopharmacology (Berl) 208:417–26CrossRefGoogle Scholar
  13. Cousins MS, Roberts DC, de Wit H (2002) GABA(B) receptor agonists for the treatment of drug addiction: a review of recent findings. Drug Alcohol Depend 65:209–20PubMedCrossRefGoogle Scholar
  14. Cui CL, Wu LZ, Luo F (2008) Acupuncture for the treatment of drug addiction. Neurochem Res 33:2013–22PubMedCrossRefGoogle Scholar
  15. Cullinan WE, Ziegler DR, Herman JP (2008) Functional role of local GABAergic influences on the HPA axis. Brain Struct Funct 213:63–72PubMedCrossRefGoogle Scholar
  16. Di Ciano P, Everitt BJ (2004) Contribution of the ventral tegmental area to cocaine-seeking maintained by a drug-paired conditioned stimulus in rats. Eur J Neurosci 19:1661–7PubMedCrossRefGoogle Scholar
  17. Doherty M, Gratton A (2007) Differential involvement of ventral tegmental GABA(A) and GABA(B) receptors in the regulation of the nucleus accumbens dopamine response to stress. Brain Res 1150:62–8PubMedCrossRefGoogle Scholar
  18. Erb S, Salmaso N, Rodaros D, Stewart J (2001) A role for the CRF-containing pathway from central nucleus of the amygdala to bed nucleus of the stria terminalis in the stress-induced reinstatement of cocaine seeking in rats. Psychopharmacology (Berl) 158:360–5CrossRefGoogle Scholar
  19. Erb S, Lopak V, Smith C (2004) Cocaine pre-exposure produces a sensitized and context-specific c-fos mRNA response to footshock stress in the central nucleus of the AMYGDALA. Neuroscience 129:719–25PubMedCrossRefGoogle Scholar
  20. Finlay JM, Zigmond MJ, Abercrombie ED (1995) Increased dopamine and norepinephrine release in medial prefrontal cortex induced by acute and chronic stress: effects of diazepam. Neuroscience 64:619–28PubMedCrossRefGoogle Scholar
  21. Funk D, Li Z, Le AD (2006) Effects of environmental and pharmacological stressors on c-fos and corticotropin-releasing factor mRNA in rat brain: relationship to the reinstatement of alcohol seeking. Neuroscience 138:235–43PubMedCrossRefGoogle Scholar
  22. Giardino L, Zanni M, Pozza M, Bettelli C, Covelli V (1998) Dopamine receptors in the striatum of rats exposed to repeated restraint stress and alprazolam treatment. Eur J Pharmacol 344:143–7PubMedCrossRefGoogle Scholar
  23. Goeders NE (2003) The impact of stress on addiction. Eur Neuropsychopharmacol 13:435–41PubMedCrossRefGoogle Scholar
  24. Guimaraes CM, Pinge MC, Yamamura Y, Mello LE (1997) Effects of acupuncture on behavioral, cardiovascular and hormonal responses in restraint-stressed Wistar rats. Braz J Med Biol Res 30:1445–50PubMedGoogle Scholar
  25. Herman JP, Mueller NK, Figueiredo H (2004) Role of GABA and glutamate circuitry in hypothalamo-pituitary-adrenocortical stress integration. Ann N Y Acad Sci 1018:35–45PubMedCrossRefGoogle Scholar
  26. Iwa M, Nakade Y, Pappas TN, Takahashi T (2006) Electroacupuncture elicits dual effects: stimulation of delayed gastric emptying and inhibition of accelerated colonic transit induced by restraint stress in rats. Dig Dis Sci 51:1493–500PubMedCrossRefGoogle Scholar
  27. Jindal V, Ge A, Mansky PJ (2008) Safety and efficacy of acupuncture in children: a review of the evidence. J Pediatr Hematol Oncol 30:431–42PubMedCrossRefGoogle Scholar
  28. Kalivas PW, Duffy P (1995) Selective activation of dopamine transmission in the shell of the nucleus accumbens by stress. Brain Res 675:325–8PubMedCrossRefGoogle Scholar
  29. Kim MR, Kim SJ, Lyu YS, Kim SH, Lee Y, Kim TH, Shim I, Zhao R, Golden GT, Yang CH (2005) Effect of acupuncture on behavioral hyperactivity and dopamine release in the nucleus accumbens in rats sensitized to morphine. Neurosci Lett 387:17–21PubMedCrossRefGoogle Scholar
  30. Kim H, Park HJ, Han SM, Hahm DH, Lee HJ, Kim KS, Shim I (2009) The effects of acupuncture stimulation at PC6 (Neiguan) on chronic mild stress-induced biochemical and behavioral responses. Neurosci Lett 460:56–60PubMedCrossRefGoogle Scholar
  31. Kotlinska JH, Gibula-Bruzda E, Pachuta A, Kunce D, Witkowska E, Chung NN, Schiller PW, Izdebski J (2010) Influence of new deltorphin analogues on reinstatement of cocaine-induced conditioned place preference in rats. Behav Pharmacol 21:638–48PubMedCrossRefGoogle Scholar
  32. Kreibich AS, Blendy JA (2004) cAMP response element-binding protein is required for stress but not cocaine-induced reinstatement. J Neurosci 24:6686–92PubMedCrossRefGoogle Scholar
  33. Le AD, Poulos CX, Harding S, Watchus J, Juzytsch W, Shaham Y (1999) Effects of naltrexone and fluoxetine on alcohol self-administration and reinstatement of alcohol seeking induced by priming injections of alcohol and exposure to stress. Neuropsychopharmacology 21:435–44PubMedCrossRefGoogle Scholar
  34. Lee HJ, Lee B, Choi SH, Hahm DH, Kim MR, Roh PU, Pyun KH, Golden G, Yang CH, Shim I (2004) Electroacupuncture reduces stress-induced expression of c-fos in the brain of the rat. Am J Chin Med 32:795–806PubMedCrossRefGoogle Scholar
  35. Lee B, Han SM, Shim I (2009) Acupuncture attenuates cocaine-induced expression of behavioral sensitization in rats: possible involvement of the dopaminergic system in the ventral tegmental area. Neurosci Lett 449:128–32PubMedCrossRefGoogle Scholar
  36. Lee JH, Kim HY, Jang EY, Choi SH, Han CH, Lee BH, Yang CH (2011) Effect of acupuncture on naloxone-precipitated withdrawal syndrome in morphine-experienced rats: the mediation of GABA receptors. Neurosci Lett 504:301–5PubMedCrossRefGoogle Scholar
  37. Li J, Bian W, Dave V, Ye JH (2011) Blockade of GABA(A) receptors in the paraventricular nucleus of the hypothalamus attenuates voluntary ethanol intake and activates the hypothalamic–pituitary–adrenocortical axis. Addict Biol 16:600–14PubMedCrossRefGoogle Scholar
  38. Liu S, Zhou W, Liu H, Yang G, Zhao W (2005) Electroacupuncture attenuates morphine withdrawal signs and c-Fos expression in the central nucleus of the amygdala in freely moving rats. Brain Res 1044:155–63PubMedCrossRefGoogle Scholar
  39. Liu X, Weiss F (2002) Additive effect of stress and drug cues on reinstatement of ethanol seeking: exacerbation by history of dependence and role of concurrent activation of corticotropin-releasing factor and opioid mechanisms. J Neurosci 22:7856–61PubMedGoogle Scholar
  40. Mansour A, Khachaturian H, Lewis ME, Akil H, Watson SJ (1988) Anatomy of CNS opioid receptors. Trends Neurosci 11:308–14PubMedCrossRefGoogle Scholar
  41. Margolis EB, Fields HL, Hjelmstad GO, Mitchell JM (2008) Delta-opioid receptor expression in the ventral tegmental area protects against elevated alcohol consumption. J Neurosci 28:12672–81PubMedCrossRefGoogle Scholar
  42. McFarland K, Davidge SB, Lapish CC, Kalivas PW (2004) Limbic and motor circuitry underlying footshock-induced reinstatement of cocaine-seeking behavior. J Neurosci 24:1551–60PubMedCrossRefGoogle Scholar
  43. Mello NK, Negus SS (1996) Preclinical evaluation of pharmacotherapies for treatment of cocaine and opioid abuse using drug self-administration procedures. Neuropsychopharmacology 14:375–424PubMedCrossRefGoogle Scholar
  44. Mogenson GJ, Jones DL, Yim CY (1980) From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 14:69–97PubMedCrossRefGoogle Scholar
  45. Napadow V, Makris N, Liu J, Kettner NW, Kwong KK, Hui KK (2005) Effects of electroacupuncture versus manual acupuncture on the human brain as measured by fMRI. Hum Brain Mapp 24:193–205PubMedCrossRefGoogle Scholar
  46. Orsini C, Izzo E, Koob GF, Pulvirenti L (2002) Blockade of nitric oxide synthesis reduces responding for cocaine self-administration during extinction and reinstatement. Brain Res 925:133–40PubMedCrossRefGoogle Scholar
  47. Peuker E, Cummings M (2003) Anatomy for the acupuncturist—facts & fiction. 3: Upper & lower extremity. Acupunct Med 21:122–32PubMedGoogle Scholar
  48. Schmidt HD, Pierce RC (2006) Cooperative activation of D1-like and D2-like dopamine receptors in the nucleus accumbens shell is required for the reinstatement of cocaine-seeking behavior in the rat. Neuroscience 142:451–61PubMedCrossRefGoogle Scholar
  49. Schoen AM (2001) Veterinary acupuncture: ancient art to modern medicine, 2nd edn. Mosby, St. LouisGoogle Scholar
  50. Shaham Y, Stewart J (1995) Stress reinstates heroin-seeking in drug-free animals: an effect mimicking heroin, not withdrawal. Psychopharmacology (Berl) 119:334–41CrossRefGoogle Scholar
  51. Shaham Y, Erb S, Stewart J (2000) Stress-induced relapse to heroin and cocaine seeking in rats: a review. Brain Res Brain Res Rev 33:13–33PubMedCrossRefGoogle Scholar
  52. Shaham Y, Shalev U, Lu L, De Wit H, Stewart J (2003) The reinstatement model of drug relapse: history, methodology and major findings. Psychopharmacology (Berl) 168:3–20CrossRefGoogle Scholar
  53. Sheng M, McFadden G, Greenberg ME (1990) Membrane depolarization and calcium induce c-fos transcription via phosphorylation of transcription factor CREB. Neuron 4:571–82PubMedCrossRefGoogle Scholar
  54. Shoaib M, Swanner LS, Beyer CE, Goldberg SR, Schindler CW (1998) The GABAB agonist baclofen modifies cocaine self-administration in rats. Behav Pharmacol 9:195–206PubMedGoogle Scholar
  55. Sinha R (2001) How does stress increase risk of drug abuse and relapse? Psychopharmacology (Berl) 158:343–59CrossRefGoogle Scholar
  56. Sinha R (2007) The role of stress in addiction relapse. Curr Psychiatry Rep 9:388–95PubMedCrossRefGoogle Scholar
  57. Steffensen SC, Stobbs SH, Colago EE, Lee RS, Koob GF, Gallegos RA, Henriksen SJ (2006) Contingent and non-contingent effects of heroin on mu-opioid receptor-containing ventral tegmental area GABA neurons. Exp Neurol 202:139–51PubMedCrossRefGoogle Scholar
  58. Stewart J (2000) Pathways to relapse: the neurobiology of drug- and stress-induced relapse to drug-taking. J Psychiatry Neurosci 25:125–36PubMedGoogle Scholar
  59. Stux G, Pomeranz B (1998) Basics of acupuncture, 4th edn. Springer, BerlinGoogle Scholar
  60. Ulett GA, Han S, Han JS (1998) Electroacupuncture: mechanisms and clinical application. Biol Psychiatry 44:129–38PubMedCrossRefGoogle Scholar
  61. Wang Q, Mao L, Han J (1990a) Analgesic electrical stimulation of the hypothalamic arcuate nucleus: tolerance and its cross-tolerance to 2 Hz or 100 Hz electroacupuncture. Brain Res 518:40–6PubMedCrossRefGoogle Scholar
  62. Wang Q, Mao L, Han J (1990b) The arcuate nucleus of hypothalamus mediates low but not high frequency electroacupuncture analgesia in rats. Brain Res 513:60–6PubMedCrossRefGoogle Scholar
  63. Wang B, Shaham Y, Zitzman D, Azari S, Wise RA, You ZB (2005) Cocaine experience establishes control of midbrain glutamate and dopamine by corticotropin-releasing factor: a role in stress-induced relapse to drug seeking. J Neurosci 25:5389–96PubMedCrossRefGoogle Scholar
  64. Ward SJ, Roberts DC (2007) Microinjection of the delta-opioid receptor selective antagonist naltrindole 5′-isothiocyanate site specifically affects cocaine self-administration in rats responding under a progressive ratio schedule of reinforcement. Behav Brain Res 182:140–4PubMedCrossRefGoogle Scholar
  65. Xi ZX, Stein EA (1998) Nucleus accumbens dopamine release modulation by mesolimbic GABAA receptors-an in vivo electrochemical study. Brain Res 798:156–65PubMedCrossRefGoogle Scholar
  66. Xi ZX, Gilbert J, Campos AC, Kline N, Ashby CR Jr, Hagan JJ, Heidbreder CA, Gardner EL (2004) Blockade of mesolimbic dopamine D3 receptors inhibits stress-induced reinstatement of cocaine-seeking in rats. Psychopharmacology (Berl) 176:57–65CrossRefGoogle Scholar
  67. Yamamoto H, Kawada T, Kamiya A, Miyazaki S, Sugimachi M (2011) Involvement of the mechanoreceptors in the sensory mechanisms of manual and electrical acupuncture. Auton Neurosci 160:27–31PubMedCrossRefGoogle Scholar
  68. Yang CH, Lee BB, Jung HS, Shim I, Roh PU, Golden GT (2002) Effect of electroacupuncture on response to immobilization stress. Pharmacol Biochem Behav 72:847–55PubMedCrossRefGoogle Scholar
  69. Yang CH, Lee BH, Sohn SH (2008) A possible mechanism underlying the effectiveness of acupuncture in the treatment of drug addiction. Evid Based Complement Alternat Med 5:257–66PubMedCrossRefGoogle Scholar
  70. Yang CH, Yoon SS, Hansen DM, Wilcox JD, Blumell BR, Park JJ, Steffensen SC (2010) Acupuncture inhibits GABA neuron activity in the ventral tegmental area and reduces ethanol self-administration. Alcohol Clin Exp Res 34:2137–46PubMedCrossRefGoogle Scholar
  71. Yoon SS, Kwon YK, Kim MR, Shim I, Kim KJ, Lee MH, Lee YS, Golden GT, Yang CH (2004) Acupuncture-mediated inhibition of ethanol-induced dopamine release in the rat nucleus accumbens through the GABAB receptor. Neurosci Lett 369:234–8PubMedCrossRefGoogle Scholar
  72. Yoon SS, Kim H, Choi KH, Lee BH, Lee YK, Lim SC, Choi SH, Hwang M, Kim KJ, Yang CH (2010) Acupuncture suppresses morphine self-administration through the GABA receptors. Brain Res Bull 81:625–30PubMedCrossRefGoogle Scholar
  73. Zhao ZQ (2008) Neural mechanism underlying acupuncture analgesia. Prog Neurobiol 85:355–75PubMedCrossRefGoogle Scholar
  74. Zhao RJ, Yoon SS, Lee BH, Kwon YK, Kim KJ, Shim I, Choi KH, Kim MR, Golden GT, Yang CH (2006) Acupuncture normalizes the release of accumbal dopamine during the withdrawal period and after the ethanol challenge in chronic ethanol-treated rats. Neurosci Lett 395:28–32PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Seong Shoon Yoon
    • 1
  • Eun Jin Yang
    • 2
  • Bong Hyo Lee
    • 1
  • Eun Young Jang
    • 1
  • Hee Young Kim
    • 1
  • Sun-Mi Choi
    • 2
  • Scott C. Steffensen
    • 3
  • Chae Ha Yang
    • 1
  1. 1.College of Oriental MedicineDaegu Haany UniversityDaeguSouth Korea
  2. 2.Korea Institute of Oriental MedicineDaejeonSouth Korea
  3. 3.Department of Psychology (1050 SWKT)Brigham Young UniversityProvoUSA

Personalised recommendations