, Volume 222, Issue 1, pp 89–97 | Cite as

High anxiety is a predisposing endophenotype for loss of control over cocaine, but not heroin, self-administration in rats

  • Ruth Dilleen
  • Yann Pelloux
  • Adam C. Mar
  • Anna Molander
  • Trevor W. Robbins
  • Barry J. Everitt
  • Jeffrey W. Dalley
  • David Belin
Original Investigation



Although high anxiety is commonly associated with drug addiction, its causal role in this disorder is unclear.


In light of strong evidence for dissociable neural mechanisms underlying heroin and cocaine addiction, the present study investigated whether high anxiety predicts the propensity of rats to lose control over intravenous cocaine or heroin self-administration.


Sixty-four rats were assessed for anxiety in the elevated plus-maze, prior to extended access to intravenous cocaine or heroin self-administration.


High-anxious rats, identified in the lower quartile of the population, showed a greater escalation of cocaine, but not heroin, self-administration compared with low-anxious rats selected in the upper quartile of the population. Anxiety scores were also positively correlated with the extent of escalation of cocaine self-administration.


The present data suggest that high anxiety predisposes rats to lose control over cocaine—but not heroin—intake. High anxiety may therefore be a vulnerability trait for the escalation of stimulant but not opiate self-administration.


Addiction Anxiety Cocaine Escalation Heroin Self-administration 



This work was supported by the United Kingdom Medical Research Council (Grant 9536855 to BJE and Grant G0701500 to JWD) and was conducted within the MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute. RD was financially supported by a Young Foreign Researcher grant from the University of Poitiers. DB is supported by an INSERM AVENIR grant.

Financial disclosures

The authors report no competing interests.

Authors contribution

DB and BJE were responsible for the study concept. RD, BJE, JWD and DB designed the experiments. RD, YP, ACM and AM performed the experiments. RD and DB performed statistical analyses and designed the figures. RD drafted the manuscript. DB, BJE, JWD and TWR provided critical revision of the manuscript for important intellectual content. All authors critically reviewed content and approved final version for publication.

Supplementary material

213_2011_2626_MOESM1_ESM.doc (78 kb)
ESM 1 (DOC 77 kb)


  1. Ahmed SH, Koob GF (1998) Transition from moderate to excessive drug intake: change in hedonic set point. Science 282(5387):298–300PubMedCrossRefGoogle Scholar
  2. Ahmed SH, Walker JR, Koob GF (2000) Persistent increase in the motivation to take heroin in rats with a history of drug escalation. Neuropsychopharmacology 22(4):413–421PubMedCrossRefGoogle Scholar
  3. Ambrose-Lanci LM, Sterling RC, Van Bockstaele EJ (2010) Cocaine withdrawal-induced anxiety in females: impact of circulating estrogen and potential use of delta-opioid receptor agonists for treatment. J Neurosci Res 88(4):816–824PubMedGoogle Scholar
  4. Anthony JC, Tien AY, Petronis KR (1989) Epidemiologic evidence on cocaine use and panic attacks. Am J Epidemiol 129(3):543–549PubMedGoogle Scholar
  5. APA (2000) Diagnostic and statistical manual of mental Disorders fourth edition, text revision (DSM-IV TR). American Psychiatric Association, WashingtonGoogle Scholar
  6. Badiani A, Belin D, Epstein D, Calu D, Shaham Y (2011) Opiate versus psychostimulant addiction: the differences do matter. Nat Rev Neurosci 12(11):685–700PubMedCrossRefGoogle Scholar
  7. Bardo MT (1998) Neuropharmacological mechanisms of drug reward: beyond dopamine in the nucleus accumbens. Crit Rev Neurobiol 12(1–2):37–67PubMedGoogle Scholar
  8. Belin D, Everitt BJ (2008) Cocaine-seeking habits depend upon dopamine-dependent serial connectivity linking the ventral with the dorsal striatum. Neuron 57(3):432–441PubMedCrossRefGoogle Scholar
  9. Belin D, Mar A, Dalley JW, Robbins TW, Everitt BJ (2008) High impulsivity predicts the switch to compulsive cocaine-taking. Science 320(5881):1352–1355PubMedCrossRefGoogle Scholar
  10. Belin D, Berson N, Balado E, Piazza PV, Deroche-Gamonet V (2011) High-novelty-preference rats are predisposed to compulsive cocaine self-administration. Neuropsychopharmacology 36(3):569–579PubMedCrossRefGoogle Scholar
  11. Blanchard DC, Blanchard RJ (1999) Cocaine potentiates defensive behaviors related to fear and anxiety. Neurosci Biobehav Rev 23(7):981–991PubMedCrossRefGoogle Scholar
  12. Blanchard RJ, Kaawaloa JN, Hebert MA, Blanchard DC (1999) Cocaine produces panic-like flight responses in mice in the mouse defense test battery. Pharmacol Biochem Behav 64(3):523–528PubMedCrossRefGoogle Scholar
  13. Blanchard RJ, Hebert M, Dulloog L, Markham C, Figueira R, Nishimura O, Newsham K, Kaawaloa JN, Blanchard DC (2000) Cocaine-induced sniffing stereotypy changes in response to threat. Pharmacol Biochem Behav 66(2):249–256PubMedCrossRefGoogle Scholar
  14. Bush D, Vaccarino F (2007) Individual differences in elevated plus-maze exploration predicted progressive-ratio cocaine self-administration break points in Wistar rats. Psychopharmacology 194(2):211–219PubMedCrossRefGoogle Scholar
  15. Bystritsky A, Ackerman DL, Pasnau RO (1991) Low dose desipramine treatment of cocaine-related panic attacks. J Nerv Ment Dis 179(12):755–758PubMedCrossRefGoogle Scholar
  16. Cruz FC, Quadros IM, Hogenelst K, Planeta CS, Miczek KA (2011) Social defeat stress in rats: escalation of cocaine and “speedball” binge self-administration, but not heroin. Psychopharmacology (Berl) 215:165-175Google Scholar
  17. Dalley JW, Fryer T, Brichard L, Robinson E, Theobald DE, Laane K, Pena Y, Murphy E, Shah Y, Probst K, Abakumova I, Aigbirhio F, Richards H, Hong Y, Baron J, Everitt BJ, Robbins TW (2007) Nucleus accumbens d2/3 receptors predict trait impulsivity and cocaine reinforcement. Science 315(5816):1267–1270PubMedCrossRefGoogle Scholar
  18. David V, Gold LH, Koob GF, Cazala P (2001) Anxiogenic-like effects limit rewarding effects of cocaine in balb/cbyj mice. Neuropsychopharmacology 24(3):300–318PubMedCrossRefGoogle Scholar
  19. Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A 85(14):5274–5278PubMedCrossRefGoogle Scholar
  20. Ettenberg A, Pettit HO, Bloom FE, Koob GF (1982) Heroin and cocaine intravenous self-administration in rats: mediation by separate neural systems. Psychopharmacology 78(3):204–209PubMedCrossRefGoogle Scholar
  21. Ettenberg A, Raven MA, Danluck DA, Necessary BD (1999) Evidence for opponent-process actions of intravenous cocaine. Pharmacol Biochem Behav 64(3):507–512PubMedCrossRefGoogle Scholar
  22. Goeders NE (1991) Cocaine differentially affects benzodiazepine receptors in discrete regions of the rat brain: persistence and potential mechanisms mediating these effects. J Pharmacol Exp Ther 259(2):574–581PubMedGoogle Scholar
  23. Gunnarsdottir ED, Pingitore RA, Spring BJ, Konopka LM, Crayton JW, Milo T, Shirazi P (2000) Individual differences among cocaine users. Addict Behav 25(5):641–652PubMedCrossRefGoogle Scholar
  24. Harro J, Kiivet RA, Lang A, Vasar E (1990) Rats with anxious or non-anxious type of exploratory behaviour differ in their brain cck-8 and benzodiazepine receptor characteristics. Behav Brain Res 39(1):63–71PubMedCrossRefGoogle Scholar
  25. Homberg JR, van den Akker M, Raaso HS, Wardeh G, Binnekade R, Schoffelmeer AN, de Vries TJ (2002) Enhanced motivation to self-administer cocaine is predicted by self-grooming behaviour and relates to dopamine release in the rat medial prefrontal cortex and amygdala. Eur J Neurosci 15(9):1542–1550PubMedCrossRefGoogle Scholar
  26. Johnson SW, North RA (1992) Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci 12(2):483–488PubMedGoogle Scholar
  27. Khantzian EJ (1985) The self-medication hypothesis of addictive disorders: focus on heroin and cocaine dependence. Am J Psychiatry 142(11):1259–1264PubMedGoogle Scholar
  28. Koob GF, Moal ML (1997) Drug abuse: hedonic homeostatic dysregulation. Science 278(5335):52–58PubMedCrossRefGoogle Scholar
  29. Le Merrer J, Cagniard B, Cazala P (2006) Modulation of anxiety by mu-opioid receptors of the lateral septal region in mice. Pharmacol Biochem Behav 83(3):465–479PubMedCrossRefGoogle Scholar
  30. Lejuez CW, Paulson A, Daughters SB, Bornovalova MA, Zvolensky MJ (2006). The association between heroin use and anxiety sensitivity among inner-city individuals in residential drug use treatment. Behav Res Ther 44(5), 5, 667–677Google Scholar
  31. Lejuez CW, Zvolensky MJ, Daughters SB, Bornovalova MA, Paulson A, Tull MT, Ettinger K, Otto MW (2008) Anxiety sensitivity: a unique predictor of dropout among inner-city heroin and crack/cocaine users in residential substance use treatment. Behav Res Ther 46(7):811–818PubMedCrossRefGoogle Scholar
  32. Maier EY, Ledesma RT, Seiwell AP, Duvauchelle CL (2008) Diazepam alters cocaine self-administration, but not cocaine-stimulated locomotion or nucleus accumbens dopamine. Pharmacol Biochem Behav 91(1):202–207PubMedCrossRefGoogle Scholar
  33. McNamara R, Dalley JW, Robbins TW, Everitt BJ, Belin D (2010) Trait-like impulsivity does not predict escalation of heroin self-administration in the rat. Psychopharmacology 212(4):453–464PubMedCrossRefGoogle Scholar
  34. Molander AC, Mar A, Norbury A, Steventon S, Moreno M, Caprioli D, Theobald DE, Belin D, Everitt BJ, Robbins TW, Dalley JW (2011) High impulsivity predicting vulnerability to cocaine addiction in rats: some relationship with novelty preference but not novelty reactivity, anxiety or stress. Psychopharmacology (Berl) 215(4):721–731CrossRefGoogle Scholar
  35. Nestler EJ (2005) Is there a common molecular pathway for addiction? Nat Neurosci 8(11):1445–1449PubMedCrossRefGoogle Scholar
  36. Norton GR (2001) Substance use/abuse and anxiety sensitivity what are the relationships? Addict Behav 26:935-946Google Scholar
  37. Pelloux Y, Costentin J, Duterte-Boucher D (2009) Anxiety increases the place conditioning induced by cocaine in rats. Behav Brain Res 197(2):311–316PubMedCrossRefGoogle Scholar
  38. Pellow S, Chopin P, File SE, Briley M (1985) Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14(3):149–167PubMedCrossRefGoogle Scholar
  39. Pettit HO, Ettenberg A, Bloom FE, Koob GF (1984) Destruction of dopamine in the nucleus accumbens selectively attenuates cocaine but not heroin self-administration in rats. Psychopharmacology (Berl) 84(2):167–173CrossRefGoogle Scholar
  40. Rago L, Adojaan A, Harro J, Kiivet RA (1991) Correlation between exploratory activity in an elevated plus-maze and number of central and peripheral benzodiazepine binding sites. Naunyn Schmiedebergs Arch Pharmacol 343(3):301–306PubMedCrossRefGoogle Scholar
  41. Rogerio R, Takahashi RN (1992) Anxiogenic properties of cocaine in the rat evaluated with the elevated plus-maze. Pharmacol Biochem Behav 43(2):631–633PubMedCrossRefGoogle Scholar
  42. Salas-Ramirez KY, Frankfurt M, Alexander A, Luine VN, Friedman E (2010) Prenatal cocaine exposure increases anxiety, impairs cognitive function and increases dendritic spine density in adult rats: influence of sex. Neuroscience 169(3):1287–1295PubMedCrossRefGoogle Scholar
  43. Schulteis G, Yackey M, Risbrough V, Koob GF (1998) Anxiogenic-like effects of spontaneous and naloxone-precipitated opiate withdrawal in the elevated plus-maze. Pharmacol Biochem Behav 60(3):727–731PubMedCrossRefGoogle Scholar
  44. Schwarting RK, Thiel CM, Muller CP, Huston JP (1998) Relationship between anxiety and serotonin in the ventral striatum. NeuroReport 9(6):1025–1029PubMedCrossRefGoogle Scholar
  45. Sherman JE, Zinser MC, Sideroff SI, Baker TB (1989) Subjective dimensions of heroin urges: influence of heroin-related and affectively negative stimuli. Addict Behav 14(6):611–623PubMedCrossRefGoogle Scholar
  46. Sinha R (2001) How does stress increase risk of drug abuse and relapse? Psychopharmacology (Berl) 158(4):343–359CrossRefGoogle Scholar
  47. Van Ree JM, Ramsey N (1987) The dopamine hypothesis of opiate reward challenged. Eur J Pharmacol 134(2):239–243PubMedCrossRefGoogle Scholar
  48. Walker QD, Schramm-Sapyta NL, Caster JM, Waller ST, Brooks MP, Kuhn CM (2009) Novelty-induced locomotion is positively associated with cocaine ingestion in adolescent rats; anxiety is correlated in adults. Pharmacol Biochem Behav 91(3):398–408PubMedCrossRefGoogle Scholar
  49. Waters RP, See RE (2011) Chronic cocaine self-administration attenuates the anxiogenic-like and stress potentiating effects of the benzodiazepine inverse agonist, fg 7142. Pharmacol Biochem Behav 99(3):408–413PubMedCrossRefGoogle Scholar
  50. Wise RA (1996) Neurobiology of addiction. Curr Opin Neurobiol 6:243–251PubMedCrossRefGoogle Scholar
  51. Zhou Y, Spangler R, Ho A, Kreek MJ (2003) Increased crh mrna levels in the rat amygdala during short-term withdrawal from chronic ‘binge’ cocaine. Brain Res Mol Brain Res 114(1):73–79PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Ruth Dilleen
    • 1
    • 2
    • 5
  • Yann Pelloux
    • 1
    • 2
  • Adam C. Mar
    • 1
    • 2
  • Anna Molander
    • 4
  • Trevor W. Robbins
    • 1
    • 2
  • Barry J. Everitt
    • 1
    • 2
  • Jeffrey W. Dalley
    • 1
    • 2
    • 3
  • David Belin
    • 5
    • 6
  1. 1.Behavioural and Clinical Neuroscience InstituteUniversity of CambridgeCambridgeUK
  2. 2.Department of Experimental PsychologyUniversity of CambridgeCambridgeUK
  3. 3.Department of PsychiatryAddenbrooke’s HospitalCambridgeUK
  4. 4.CNS Pharmacology–Psychiatry, NeuroSearch A/SBallerupDenmark
  5. 5.INSERM AVENIR Team Psychobiology of Compulsive DisordersINSERM U1084 Laboratoire de Neurosciences Expérimentales et CliniquesPoitiersFrance
  6. 6.INSERM AVENIR Team Psychobiology of Compulsive DisordersINSERM U1084 Laboratoire de Neurosciences Expérimentales et Clniques-Université de PoitiersPoitiers CedexFrance

Personalised recommendations