, Volume 219, Issue 2, pp 607–620 | Cite as

Reversal learning as a measure of impulsive and compulsive behavior in addictions

  • Alicia IzquierdoEmail author
  • J. David Jentsch



Our ability to measure the cognitive components of complex decision-making across species has greatly facilitated our understanding of its neurobiological mechanisms. One task in particular, reversal learning, has proven valuable in assessing the inhibitory processes that are central to executive control. Reversal learning measures the ability to actively suppress reward-related responding and to disengage from ongoing behavior, phenomena that are biologically and descriptively related to impulsivity and compulsivity. Consequently, reversal learning could index vulnerability for disorders characterized by impulsivity such as proclivity for initial substance abuse as well as the compulsive aspects of dependence.


Though we describe common variants and similar tasks, we pay particular attention to discrimination reversal learning, its supporting neural circuitry, neuropharmacology and genetic determinants. We also review the utility of this task in measuring impulsivity and compulsivity in addictions.


We restrict our review to instrumental, reward-related reversal learning studies as they are most germane to addiction.


The research reviewed here suggests that discrimination reversal learning may be used as a diagnostic tool for investigating the neural mechanisms that mediate impulsive and compulsive aspects of pathological reward-seeking and -taking behaviors. Two interrelated mechanisms are posited for the neuroadaptations in addiction that often translate to poor reversal learning: frontocorticostriatal circuitry dysregulation and poor dopamine (D2 receptor) modulation of this circuitry. These data suggest new approaches to targeting inhibitory control mechanisms in addictions.


Orbitofrontal cortex Striatum Decision-making Dopamine Serotonin Psychostimulant Methamphetamine Noradrenaline Response control 



This work was supported by Public Health Service grants 1SC2MH087974 (Izquierdo), the NIH MBRS program at CSULA (grant R25 GM61331) and by the Consortium for Neuropsychiatric Phenomics at UCLA (UL1-DE019580 and RL1-MH083270). Additional support was derived from PHS grants P20-DA022539 and P50-MH077248 (Jentsch).


  1. American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn. APA, Washington DCGoogle Scholar
  2. Arnsten AF, Lin CH, Van Dyck CH, Stanhope KJ (1997) The effects of 5-HT3 receptor antagonists on cognitive performance in aged monkeys. Neurobiol Aging 18:21–28PubMedCrossRefGoogle Scholar
  3. Aron AR, Robbins TW, Poldrack RA (2004) Inhibition and the right inferior frontal cortex. Trends Cogn Sci 8:170–177PubMedCrossRefGoogle Scholar
  4. Balleine BW, O’Doherty JP (2010) Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology 35:48–69PubMedCrossRefGoogle Scholar
  5. Bannerman DM, Deacon RM, Seeburg PH, Rawlins JN (2003) GluR-A-deficient mice display normal acquisition of a hippocampus-dependent spatial reference memory task but are impaired during spatial reversal. Behav Neurosci 117:866–870PubMedCrossRefGoogle Scholar
  6. Bari A, Theobald DE, Caprioli D, Mar AC, Aidoo-Micah A, Dalley JW, Robbins TW (2010) Serotonin modulates sensitivity to reward and negative feedback in a probabilistic reversal learning task in rats. Neuropsychopharmacology 35:1290–1301PubMedCrossRefGoogle Scholar
  7. Barkus C, Feyder M, Graybeal C, Wright T, Wiedholz L, Izquierdo A, Kiselycznyk C, Schmitt W, Sanderson DJ, Rawlins JN, Saksida LM, Bussey TJ, Sprengel R, Bannerman D, Holmes A (2011) Do GluA1 knockout mice exhibit behavioral abnormalities relevant to the negative or cognitive symptoms of schizophrenia and schizoaffective disorder? Neuropharmacology.Google Scholar
  8. Barnes JM, Costall B, Coughlan J, Domeney AM, Gerrard PA, Kelly ME, Naylor RJ, Onaivi ES, Tomkins DM, Tyers MB (1990) The effects of ondansetron, a 5-HT3 receptor antagonist, on cognition in rodents and primates. Pharmacol Biochem Behav 35:955–962PubMedCrossRefGoogle Scholar
  9. Belin D, Mar AC, Dalley JW, Robbins TW, Everitt BJ (2008) High impulsivity predicts the switch to compulsive cocaine-taking. Science 320:1352–1355PubMedCrossRefGoogle Scholar
  10. Birrell JM, Brown VJ (2000) Medial frontal cortex mediates perceptual attentional set shifting in the rat. J Neurosci 20:4320–4324PubMedGoogle Scholar
  11. Bissonette GB, Powell EM (2011) Reversal learning and attentional set-shifting in mice. Neuropharmacology.Google Scholar
  12. Bissonette GB, Martins GJ, Franz TM, Harper ES, Schoenbaum G, Powell EM (2008) Double dissociation of the effects of medial and orbital prefrontal cortical lesions on attentional and affective shifts in mice. J Neurosci 28:11124–11130PubMedCrossRefGoogle Scholar
  13. Boulougouris V, Robbins TW (2010) Enhancement of spatial reversal learning by 5-HT2C receptor antagonism is neuroanatomically specific. J Neurosci 30:930–938PubMedCrossRefGoogle Scholar
  14. Boulougouris V, Dalley JW, Robbins TW (2007) Effects of orbitofrontal, infralimbic and prelimbic cortical lesions on serial spatial reversal learning in the rat. Behav Brain Res 179:219–228PubMedCrossRefGoogle Scholar
  15. Boulougouris V, Castane A, Robbins TW (2008a) Dopamine D2/D3 receptor agonist quinpirole impairs spatial reversal learning in rats: investigation of D3 receptor involvement in persistent behavior. Psychopharmacology (Berl) 202:611–620CrossRefGoogle Scholar
  16. Boulougouris V, Glennon JC, Robbins TW (2008b) Dissociable effects of selective 5-HT2A and 5-HT2C receptor antagonists on serial spatial reversal learning in rats. Neuropsychopharmacology 33:2007–2019PubMedCrossRefGoogle Scholar
  17. Brewer JA, Potenza MN (2008) The neurobiology and genetics of impulse control disorders: relationships to drug addictions. Biochem Pharmacol 75:63–75PubMedCrossRefGoogle Scholar
  18. Brigman JL, Mathur P, Harvey-White J, Izquierdo A, Saksida LM, Bussey TJ, Fox S, Deneris E, Murphy DL, Holmes A (2010) Pharmacological or genetic inactivation of the serotonin transporter improves reversal learning in mice. Cereb Cortex 20:1955–1963PubMedCrossRefGoogle Scholar
  19. Bussey TJ, Saksida LM, Rothblat LA (2001) Discrimination of computer-graphic stimuli by mice: a method for the behavioral characterization of transgenic and gene-knockout models. Behav Neurosci 115:957–960PubMedCrossRefGoogle Scholar
  20. Bymaster FP, Katner JS, Nelson DL, Hemrick-Luecke SK, Threlkeld PG, Heiligenstein JH, Morin SM, Gehlert DR, Perry KW (2002) Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 27:699–711PubMedCrossRefGoogle Scholar
  21. Castane A, Theobald DE, Robbins TW (2010) Selective lesions of the dorsomedial striatum impair serial spatial reversal learning in rats. Behav Brain Res 210:74–83PubMedCrossRefGoogle Scholar
  22. Cheng RK, Etchegaray M, Meck WH (2007) Impairments in timing, temporal memory, and reversal learning linked to neurotoxic regimens of methamphetamine intoxication. Brain Res 1186:255–266PubMedCrossRefGoogle Scholar
  23. Chudasama Y (2011) Animal models of prefrontal-executive function. Behav Neurosci 125:327–343PubMedCrossRefGoogle Scholar
  24. Chudasama Y, Robbins TW (2003) Dissociable contributions of the orbitofrontal and infralimbic cortex to pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex. J Neurosci 23:8771–8780PubMedGoogle Scholar
  25. Chudasama Y, Robbins TW (2006) Functions of frontostriatal systems in cognition: comparative neuropsychopharmacological studies in rats, monkeys and humans. Biol Psychol 73:19–38PubMedCrossRefGoogle Scholar
  26. Chudasama Y, Bussey TJ, Muir JL (2001) Effects of selective thalamic and prelimbic cortex lesions on two types of visual discrimination and reversal learning. Eur J Neurosci 14:1009–1020PubMedCrossRefGoogle Scholar
  27. Clarke HF, Dalley JW, Crofts HS, Robbins TW, Roberts AC (2004) Cognitive inflexibility after prefrontal serotonin depletion. Science 304:878–880PubMedCrossRefGoogle Scholar
  28. Clarke HF, Walker SC, Crofts HS, Dalley JW, Robbins TW, Roberts AC (2005) Prefrontal serotonin depletion affects reversal learning but not attentional set shifting. J Neurosci 25:532–538PubMedCrossRefGoogle Scholar
  29. Clarke HF, Walker SC, Dalley JW, Robbins TW, Roberts AC (2007) Cognitive inflexibility after prefrontal serotonin depletion is behaviorally and neurochemically specific. Cereb Cortex 17:18–27PubMedCrossRefGoogle Scholar
  30. Clarke HF, Robbins TW, Roberts AC (2008) Lesions of the medial striatum in monkeys produce perseverative impairments during reversal learning similar to those produced by lesions of the orbitofrontal cortex. J Neurosci 28:10972–10982PubMedCrossRefGoogle Scholar
  31. Clarke HF, Hill GJ, Robbins TW, Roberts AC (2011) Dopamine, but not serotonin, regulates reversal learning in the marmoset caudate nucleus. J Neurosci 31:4290–4297PubMedCrossRefGoogle Scholar
  32. Cools R, Frank MJ, Gibbs SE, Miyakawa A, Jagust W, D’Esposito M (2009) Striatal dopamine predicts outcome-specific reversal learning and its sensitivity to dopaminergic drug administration. J Neurosci 29:1538–1543PubMedCrossRefGoogle Scholar
  33. Crews FT, Boettiger CA (2009) Impulsivity, frontal lobes and risk for addiction. Pharmacol Biochem Behav 93:237–247PubMedCrossRefGoogle Scholar
  34. Dalley JW, Fryer TD, Brichard L, Robinson ES, Theobald DE, Laane K, Pena Y, Murphy ER, Shah Y, Probst K, Abakumova I, Aigbirhio FI, Richards HK, Hong Y, Baron JC, Everitt BJ, Robbins TW (2007) Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science 315:1267–1270PubMedCrossRefGoogle Scholar
  35. Dalley JW, Mar AC, Economidou D, Robbins TW (2008) Neurobehavioral mechanisms of impulsivity: fronto-striatal systems and functional neurochemistry. Pharmacol Biochem Behav 90:250–260PubMedCrossRefGoogle Scholar
  36. Dalley JW, Everitt BJ, Robbins TW (2011) Impulsivity, compulsivity, and top-down cognitive control. Neuron 69:680–694PubMedCrossRefGoogle Scholar
  37. De Steno DA, Schmauss C (2009) A role for dopamine D2 receptors in reversal learning. Neuroscience 162:118–127PubMedCrossRefGoogle Scholar
  38. Delatour B, Gisquet-Verrier P (1999) Lesions of the prelimbic–infralimbic cortices in rats do not disrupt response selection processes but induce delay-dependent deficits: evidence for a role in working memory? Behav Neurosci 113:941–955PubMedCrossRefGoogle Scholar
  39. Delatour B, Gisquet-Verrier P (2000) Functional role of rat prelimbic–infralimbic cortices in spatial memory: evidence for their involvement in attention and behavioural flexibility. Behav Brain Res 109:113–128PubMedCrossRefGoogle Scholar
  40. Dias R, Robbins TW, Roberts AC (1996) Primate analogue of the Wisconsin Card Sorting Test: effects of excitotoxic lesions of the prefrontal cortex in the marmoset. Behav Neurosci 110:872–886PubMedCrossRefGoogle Scholar
  41. Diergaarde L, Pattij T, Poortvliet I, Hogenboom F, de Vries W, Schoffelmeer AN, De Vries TJ (2008) Impulsive choice and impulsive action predict vulnerability to distinct stages of nicotine seeking in rats. Biol Psychiatry 63:301–308PubMedCrossRefGoogle Scholar
  42. Divac I, Rosvold HE, Szwarcbart MK (1967) Behavioral effects of selective ablation of the caudate nucleus. J Comp Physiol Psychol 63:184–190PubMedCrossRefGoogle Scholar
  43. Domeney AM, Costall B, Gerrard PA, Jones DN, Naylor RJ, Tyers MB (1991) The effect of ondansetron on cognitive performance in the marmoset. Pharmacol Biochem Behav 38:169–175PubMedCrossRefGoogle Scholar
  44. Eagle DM, Bari A, Robbins TW (2008) The neuropsychopharmacology of action inhibition: cross-species translation of the stop-signal and go/no-go tasks. Psychopharmacology (Berl) 199:439–456CrossRefGoogle Scholar
  45. El-Ghundi M, O’Dowd BF, Erclik M, George SR (2003) Attenuation of sucrose reinforcement in dopamine D1 receptor deficient mice. Eur J Neurosci 17:851–862PubMedCrossRefGoogle Scholar
  46. Ersche KD, Roiser JP, Robbins TW, Sahakian BJ (2008) Chronic cocaine but not chronic amphetamine use is associated with perseverative responding in humans. Psychopharmacology (Berl) 197:421–431CrossRefGoogle Scholar
  47. Ersche KD, Roiser JP, Abbott S, Craig KJ, Muller U, Suckling J, Ooi C, Shabbir SS, Clark L, Sahakian BJ, Fineberg NA, Merlo-Pich EV, Robbins TW, Bullmore ET (2011) Response perseveration in stimulant dependence is associated with striatal dysfunction and can be ameliorated by a d(2/3) receptor agonist. Biol Psychiatry 70:754–762PubMedCrossRefGoogle Scholar
  48. Evenden JL (1999) Varieties of impulsivity. Psychopharmacology (Berl) 146:348–361CrossRefGoogle Scholar
  49. Everitt BJ, Hutcheson DM, Ersche KD, Pelloux Y, Dalley JW, Robbins TW (2007) The orbital prefrontal cortex and drug addiction in laboratory animals and humans. Ann N Y Acad Sci 1121:576–597PubMedCrossRefGoogle Scholar
  50. Evers EA, Cools R, Clark L, van der Veen FM, Jolles J, Sahakian BJ, Robbins TW (2005a) Serotonergic modulation of prefrontal cortex during negative feedback in probabilistic reversal learning. Neuropsychopharmacology 30:1138–1147PubMedCrossRefGoogle Scholar
  51. Evers EA, Tillie DE, van der Veen FM, Lieben CK, Jolles J, Deutz NE, Schmitt JA (2005b) Effects of a novel method of acute tryptophan depletion on plasma tryptophan and cognitive performance in healthy volunteers. Psychopharmacology (Berl) 178:92–99CrossRefGoogle Scholar
  52. Fellows LK, Farah MJ (2003) Ventromedial frontal cortex mediates affective shifting in humans: evidence from a reversal learning paradigm. Brain 126:1830–1837PubMedCrossRefGoogle Scholar
  53. Fineberg NA, Potenza MN, Chamberlain SR, Berlin HA, Menzies L, Bechara A, Sahakian BJ, Robbins TW, Bullmore ET, Hollander E (2010) Probing compulsive and impulsive behaviors, from animal models to endophenotypes: a narrative review. Neuropsychopharmacology 35:591–604PubMedCrossRefGoogle Scholar
  54. Flagel SB, Clark JJ, Robinson TE, Mayo L, Czuj A, Willuhn I, Akers CA, Clinton SM, Phillips PE, Akil H (2011) A selective role for dopamine in stimulus-reward learning. Nature 469:53–57PubMedCrossRefGoogle Scholar
  55. Floresco SB, Block AE, Tse MT (2008) Inactivation of the medial prefrontal cortex of the rat impairs strategy set-shifting, but not reversal learning, using a novel, automated procedure. Behav Brain Res 190:85–96PubMedCrossRefGoogle Scholar
  56. Franken IH, van Strien JW, Nijs I, Muris P (2008) Impulsivity is associated with behavioral decision-making deficits. Psychiatry Res 158:155–163PubMedCrossRefGoogle Scholar
  57. Ghahremani DG, Monterosso J, Jentsch JD, Bilder RM, Poldrack RA (2010) Neural components underlying behavioral flexibility in human reversal learning. Cereb Cortex 20:1843–1852PubMedCrossRefGoogle Scholar
  58. Ghods-Sharifi S, Haluk DM, Floresco SB (2008) Differential effects of inactivation of the orbitofrontal cortex on strategy set-shifting and reversal learning. Neurobiol Learn Mem 89:567–573PubMedCrossRefGoogle Scholar
  59. Gisquet-Verrier P, Delatour B (2006) The role of the rat prelimbic/infralimbic cortex in working memory: not involved in the short-term maintenance but in monitoring and processing functions. Neuroscience 141:585–596PubMedCrossRefGoogle Scholar
  60. Graybeal C, Feyder M, Schulman E, Saksida LM, Bussey TJ, Brigman JL, Holmes A (2011) Paradoxical reversal learning enhancement by stress or prefrontal cortical damage: rescue with BDNF. Nature Neurosci. doi: 10.1038/nn.2954
  61. Groman SM, Jentsch JD (2011) Cognitive control and the dopamine D2-like receptor: a dimensional understanding of addiction. Depress Anxiety. doi: 10.1002/da.20897
  62. Groman SM, James AS, Jentsch JD (2008) Poor response inhibition: at the nexus between substance abuse and attention deficit/hyperactivity disorder. Neurosci Biobehav RevGoogle Scholar
  63. Groman SM, Lee B, London ED, Mandelkern MA, James AS, Feiler K, Rivera R, Dahlbom M, Sossi V, Vandervoort E, Jentsch JD (2011) Dorsal striatal D2-like receptor availability covaries with sensitivity to positive reinforcement during discrimination learning. J Neurosci 31:7291–7299PubMedCrossRefGoogle Scholar
  64. Haber SN (2003) The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat 26:317–330PubMedCrossRefGoogle Scholar
  65. Hornak J, O’Doherty J, Bramham J, Rolls ET, Morris RG, Bullock PR, Polkey CE (2004) Reward-related reversal learning after surgical excisions in orbito-frontal or dorsolateral prefrontal cortex in humans. J Cogn Neurosci 16:463–478PubMedCrossRefGoogle Scholar
  66. Idris NF, Repeto P, Neill JC, Large CH (2005) Investigation of the effects of lamotrigine and clozapine in improving reversal-learning impairments induced by acute phencyclidine and D-amphetamine in the rat. Psychopharmacology (Berl) 179:336–348CrossRefGoogle Scholar
  67. Itami S, Uno H (2002) Orbitofrontal cortex dysfunction in attention-deficit hyperactivity disorder revealed by reversal and extinction tasks. Neuroreport 13:2453–2457PubMedCrossRefGoogle Scholar
  68. Izquierdo A, Murray EA (2005) Opposing effects of amygdala and orbital prefrontal cortex lesions on the extinction of instrumental responding in macaque monkeys. Eur J Neurosci 22:2341–2346PubMedCrossRefGoogle Scholar
  69. Izquierdo A, Murray EA (2007) Selective bilateral amygdala lesions in rhesus monkeys fail to disrupt object reversal learning. J Neurosci 27:1054–1062PubMedCrossRefGoogle Scholar
  70. Izquierdo A, Suda RK, Murray EA (2004) Bilateral orbital prefrontal cortex lesions in rhesus monkeys disrupt choices guided by both reward value and reward contingency. J Neurosci 24:7540–7548PubMedCrossRefGoogle Scholar
  71. Izquierdo A, Wiedholz LM, Millstein RA, Yang RJ, Bussey TJ, Saksida LM, Holmes A (2006) Genetic and dopaminergic modulation of reversal learning in a touchscreen-based operant procedure for mice. Behav Brain Res 171:181–188PubMedCrossRefGoogle Scholar
  72. Izquierdo A, Newman TK, Higley JD, Murray EA (2007) Genetic modulation of cognitive flexibility and socioemotional behavior in rhesus monkeys. Proc Natl Acad Sci USA 104:14128–14133PubMedCrossRefGoogle Scholar
  73. Izquierdo A, Belcher AM, Scott L, Cazares VA, Chen J, O’Dell SJ, Malvaez M, Wu T, Marshall JF (2010) Reversal-specific learning impairments after a binge regimen of methamphetamine in rats: possible involvement of striatal dopamine. Neuropsychopharmacology 35:505–514PubMedCrossRefGoogle Scholar
  74. Jedema HP, Gianaros PJ, Greer PJ, Kerr DD, Liu S, Higley JD, Suomi SJ, Olsen AS, Porter JN, Lopresti BJ, Hariri AR, Bradberry CW (2010) Cognitive impact of genetic variation of the serotonin transporter in primates is associated with differences in brain morphology rather than serotonin neurotransmission. Mol Psychiatry 15(512–522):446CrossRefGoogle Scholar
  75. Jentsch JD, Taylor JR (2001) Impaired inhibition of conditioned responses produced by subchronic administration of phencyclidine to rats. Neuropsychopharmacology 24:66–74PubMedCrossRefGoogle Scholar
  76. Jentsch JD, Redmond DE Jr, Elsworth JD, Taylor JR, Youngren KD, Roth RH (1997) Enduring cognitive deficits and cortical dopamine dysfunction in monkeys after long-term administration of phencyclidine. Science 277:953–955PubMedCrossRefGoogle Scholar
  77. Jentsch JD, Olausson P, De La Garza R 2nd, Taylor JR (2002) Impairments of reversal learning and response perseveration after repeated, intermittent cocaine administrations to monkeys. Neuropsychopharmacology 26:183–190PubMedCrossRefGoogle Scholar
  78. Jocham G, Klein TA, Neumann J, von Cramon DY, Reuter M, Ullsperger M (2009) Dopamine DRD2 polymorphism alters reversal learning and associated neural activity. J Neurosci 29:3695–3704PubMedCrossRefGoogle Scholar
  79. Jones B, Mishkin M (1972) Limbic lesions and the problem of stimulus–reinforcement associations. Exp Neurol 36:362–377PubMedCrossRefGoogle Scholar
  80. Kantak KM, Udo T, Ugalde F, Luzzo C, Di Pietro N, Eichenbaum HB (2005) Influence of cocaine self-administration on learning related to prefrontal cortex or hippocampus functioning in rats. Psychopharmacology (Berl) 181:227–236CrossRefGoogle Scholar
  81. Kosheleff AR, Grimes M, O’Dell SJ, Marshall JF, Izquierdo A (2011) Work aversion and associated changes in dopamine and serotonin transporter after methamphetamine exposure in rats. Psychopharmacology (Berl). doi: 10.1007/s00213-011-2367-4
  82. Kruzich PJ, Grandy DK (2004) Dopamine D2 receptors mediate two-odor discrimination and reversal learning in C57BL/6 mice. BMC Neurosci 5:12PubMedCrossRefGoogle Scholar
  83. Kruzich PJ, Mitchell SH, Younkin A, Grandy DK (2006) Dopamine D2 receptors mediate reversal learning in male C57BL/6J mice. Cogn Affect Behav Neurosci 6:86–90PubMedCrossRefGoogle Scholar
  84. Kulig BM, Calhoun WH (1972) Enhancement of successive discrimination reversal learning by methamphetamine. Psychopharmacologia 27:233–240PubMedCrossRefGoogle Scholar
  85. Lapiz MD, Morilak DA (2006) Noradrenergic modulation of cognitive function in rat medial prefrontal cortex as measured by attentional set shifting capability. Neuroscience 137:1039–1049PubMedCrossRefGoogle Scholar
  86. Lapiz MD, Bondi CO, Morilak DA (2007) Chronic treatment with desipramine improves cognitive performance of rats in an attentional set-shifting test. Neuropsychopharmacology 32:1000–1010PubMedCrossRefGoogle Scholar
  87. Lapiz-Bluhm MD, Soto-Pina AE, Hensler JG, Morilak DA (2009) Chronic intermittent cold stress and serotonin depletion induce deficits of reversal learning in an attentional set-shifting test in rats. Psychopharmacology (Berl) 202:329–341CrossRefGoogle Scholar
  88. Laughlin RE, Grant TL, Williams RW, Jentsch JD (2011) Genetic dissection of behavioral flexibility: reversal learning in mice. Biol Psychiatry 69:1109–1116PubMedCrossRefGoogle Scholar
  89. Lee B, Groman S, London ED, Jentsch JD (2007) Dopamine D2/D3 receptors play a specific role in the reversal of a learned visual discrimination in monkeys. Neuropsychopharmacology 32:2125–2134PubMedCrossRefGoogle Scholar
  90. Lee B, London ED, Poldrack RA, Farahi J, Nacca A, Monterosso JR, Mumford JA, Bokarius AV, Dahlbom M, Mukherjee J, Bilder RM, Brody AL, Mandelkern MA (2009) Striatal dopamine d2/d3 receptor availability is reduced in methamphetamine dependence and is linked to impulsivity. J Neurosci 29:14734–14740PubMedCrossRefGoogle Scholar
  91. Man MS, Clarke HF, Roberts AC (2008) The role of the orbitofrontal cortex and medial striatum in the regulation of prepotent responses to food rewards. Cereb CortexGoogle Scholar
  92. Masaki D, Yokoyama C, Kinoshita S, Tsuchida H, Nakatomi Y, Yoshimoto K, Fukui K (2006) Relationship between limbic and cortical 5-HT neurotransmission and acquisition and reversal learning in a go/no-go task in rats. Psychopharmacology (Berl) 189:249–258CrossRefGoogle Scholar
  93. McAlonan K, Brown VJ (2003) Orbital prefrontal cortex mediates reversal learning and not attentional set shifting in the rat. Behav Brain Res 146:97–103PubMedCrossRefGoogle Scholar
  94. McLean SL, Neill JC, Idris NF, Marston HM, Wong EH, Shahid M (2010) Effects of asenapine, olanzapine, and risperidone on psychotomimetic-induced reversal-learning deficits in the rat. Behav Brain Res 214:240–247PubMedCrossRefGoogle Scholar
  95. Mehta MA, Swainson R, Ogilvie AD, Sahakian J, Robbins TW (2001) Improved short-term spatial memory but impaired reversal learning following the dopamine D(2) agonist bromocriptine in human volunteers. Psychopharmacology (Berl) 159:10–20CrossRefGoogle Scholar
  96. Millan MJ, Lejeune F, Gobert A, Brocco M, Auclair A, Bosc C, Rivet JM, Lacoste JM, Cordi A, Dekeyne A (2000) S18616, a highly potent spiroimidazoline agonist at alpha(2)-adrenoceptors: II. Influence on monoaminergic transmission, motor function, and anxiety in comparison with dexmedetomidine and clonidine. J Pharmacol Exp Ther 295:1206–1222PubMedGoogle Scholar
  97. Morellini F, Sivukhina E, Stoenica L, Oulianova E, Bukalo O, Jakovcevski I, Dityatev A, Irintchev A, Schachner M (2010) Improved reversal learning and working memory and enhanced reactivity to novelty in mice with enhanced GABAergic innervation in the dentate gyrus. Cereb Cortex 20:2712–2727PubMedCrossRefGoogle Scholar
  98. Murphy FC, Smith KA, Cowen PJ, Robbins TW, Sahakian BJ (2002) The effects of tryptophan depletion on cognitive and affective processing in healthy volunteers. Psychopharmacology (Berl) 163:42–53CrossRefGoogle Scholar
  99. Murray EA, Gaffan D (2006) Prospective memory in the formation of learning sets by rhesus monkeys (Macaca mulatta). J Exp Psychol Anim Behav Process 32:87–90PubMedCrossRefGoogle Scholar
  100. Murray EA, Richmond BJ (2001) Role of perirhinal cortex in object perception, memory, and associations. Curr Opin Neurobiol 11:188–193PubMedCrossRefGoogle Scholar
  101. Murray EA, Baxter MG, Gaffan D (1998) Monkeys with rhinal cortex damage or neurotoxic hippocampal lesions are impaired on spatial scene learning and object reversals. Behav Neurosci 112:1291–1303PubMedCrossRefGoogle Scholar
  102. Nonkes LJ, Maes JH, Homberg J (2011) Improved cognitive flexibility in serotonin transporter knockout rats is unchanged following chronic cocaine self-administration. Addict Biol. doi: 10.1111/j.1369-1600.2011.00351.x
  103. O’Doherty J, Kringelbach ML, Rolls ET, Hornak J, Andrews C (2001) Abstract reward and punishment representations in the human orbitofrontal cortex. Nat Neurosci 4:95–102PubMedCrossRefGoogle Scholar
  104. Perkins KA, Lerman C, Coddington SB, Jetton C, Karelitz JL, Scott JA, Wilson AS (2008) Initial nicotine sensitivity in humans as a function of impulsivity. Psychopharmacology (Berl) 200:529–544CrossRefGoogle Scholar
  105. Perry JL, Carroll ME (2008) The role of impulsive behavior in drug abuse. Psychopharmacology (Berl) 200:1–26CrossRefGoogle Scholar
  106. Ragozzino ME, Adams S, Kesner RP (1998) Differential involvement of the dorsal anterior cingulate and prelimbic–infralimbic areas of the rodent prefrontal cortex in spatial working memory. Behav Neurosci 112:293–303PubMedCrossRefGoogle Scholar
  107. Ragozzino ME, Detrick S, Kesner RP (1999a) Involvement of the prelimbic–infralimbic areas of the rodent prefrontal cortex in behavioral flexibility for place and response learning. J Neurosci 19:4585–4594PubMedGoogle Scholar
  108. Ragozzino ME, Wilcox C, Raso M, Kesner RP (1999b) Involvement of rodent prefrontal cortex subregions in strategy switching. Behav Neurosci 113:32–41PubMedCrossRefGoogle Scholar
  109. Remijnse PL, Nielen MM, van Balkom AJ, Cath DC, van Oppen P, Uylings HB, Veltman DJ (2006) Reduced orbitofrontal–striatal activity on a reversal learning task in obsessive-compulsive disorder. Arch Gen Psychiatry 63:1225–1236PubMedCrossRefGoogle Scholar
  110. Rich EL, Shapiro M (2009) Rat prefrontal cortical neurons selectively code strategy switches. J Neurosci 29:7208–7219PubMedCrossRefGoogle Scholar
  111. Ridley RM, Baker HF, Haystead TA (1981a) Perseverative behaviour after amphetamine; dissociation of response tendency from reward association. Psychopharmacology (Berl) 75:283–286CrossRefGoogle Scholar
  112. Ridley RM, Haystead TA, Baker HF (1981b) An analysis of visual object reversal learning in the marmoset after amphetamine and haloperidol. Pharmacol Biochem Behav 14:345–351PubMedCrossRefGoogle Scholar
  113. Robbins TW (2005) Chemistry of the mind: neurochemical modulation of prefrontal cortical function. J Comp Neurol 493:140–146PubMedCrossRefGoogle Scholar
  114. Robbins TW, James M, Owen AM, Sahakian BJ, Lawrence AD, McInnes L, Rabbitt PM (1998) A study of performance on tests from the CANTAB battery sensitive to frontal lobe dysfunction in a large sample of normal volunteers: implications for theories of executive functioning and cognitive aging. Cambridge Neuropsychological Test Automated Battery. J Int Neuropsychol Soc 4:474–490PubMedCrossRefGoogle Scholar
  115. Roberts AC, Wallis JD (2000) Inhibitory control and affective processing in the prefrontal cortex: neuropsychological studies in the common marmoset. Cereb Cortex 10:252–262PubMedCrossRefGoogle Scholar
  116. Romer D, Betancourt L, Giannetta JM, Brodsky NL, Farah M, Hurt H (2009) Executive cognitive functions and impulsivity as correlates of risk taking and problem behavior in preadolescents. Neuropsychologia 47:2916–2926PubMedCrossRefGoogle Scholar
  117. Rudebeck PH, Murray EA (2008) Amygdala and orbitofrontal cortex lesions differentially influence choices during object reversal learning. J Neurosci 28:8338–8343PubMedCrossRefGoogle Scholar
  118. Rudebeck PH, Murray EA (2011) Dissociable effects of subtotal lesions within the macaque orbital prefrontal cortex on reward-guided behavior. J Neurosci 31:10569–10578PubMedCrossRefGoogle Scholar
  119. Rudebeck PH, Behrens TE, Kennerley SW, Baxter MG, Buckley MJ, Walton ME, Rushworth MF (2008) Frontal cortex subregions play distinct roles in choices between actions and stimuli. J Neurosci 28:13775–13785PubMedCrossRefGoogle Scholar
  120. Schoenbaum G, Setlow B (2005) Cocaine makes actions insensitive to outcomes but not extinction: implications for altered orbitofrontal–amygdalar function. Cereb Cortex 15:1162–1169PubMedCrossRefGoogle Scholar
  121. Schoenbaum G, Shaham Y (2008) The role of orbitofrontal cortex in drug addiction: a review of preclinical studies. Biol Psychiatry 63:256–262PubMedCrossRefGoogle Scholar
  122. Schoenbaum G, Setlow B, Nugent SL, Saddoris MP, Gallagher M (2003) Lesions of orbitofrontal cortex and basolateral amygdala complex disrupt acquisition of odor-guided discriminations and reversals. Learn Mem 10:129–140PubMedCrossRefGoogle Scholar
  123. Schoenbaum G, Saddoris MP, Ramus SJ, Shaham Y, Setlow B (2004) Cocaine-experienced rats exhibit learning deficits in a task sensitive to orbitofrontal cortex lesions. Eur J Neurosci 19:1997–2002PubMedCrossRefGoogle Scholar
  124. Seu E, Jentsch JD (2009) Effect of acute and repeated treatment with desipramine or methylphenidate on serial reversal learning in rats. Neuropharmacology 57:665–672PubMedCrossRefGoogle Scholar
  125. Seu E, Lang A, Rivera RJ, Jentsch JD (2009) Inhibition of the norepinephrine transporter improves behavioral flexibility in rats and monkeys. Psychopharmacology (Berl) 202:505–519CrossRefGoogle Scholar
  126. Shoblock JR, Maisonneuve IM, Glick SD (2003) Differences between d-methamphetamine and d-amphetamine in rats: working memory, tolerance, and extinction. Psychopharmacology (Berl) 170:150–156CrossRefGoogle Scholar
  127. Smith AG, Neill JC, Costall B (1999) The dopamine D3/D2 receptor agonist 7-OH-DPAT induces cognitive impairment in the marmoset. Pharmacol Biochem Behav 63:201–211PubMedCrossRefGoogle Scholar
  128. Stalnaker TA, Franz TM, Singh T, Schoenbaum G (2007) Basolateral amygdala lesions abolish orbitofrontal-dependent reversal impairments. Neuron 54:51–58PubMedCrossRefGoogle Scholar
  129. Takahashi Y, Roesch MR, Stalnaker TA, Schoenbaum G (2007) Cocaine exposure shifts the balance of associative encoding from ventral to dorsolateral striatum. Front Integr Neurosci 1Google Scholar
  130. Vallender EJ, Lynch L, Novak MA, Miller GM (2009) Polymorphisms in the 3′ UTR of the serotonin transporter are associated with cognitive flexibility in rhesus macaques. Am J Med Genet B Neuropsychiatr Genet 150B:467–475PubMedCrossRefGoogle Scholar
  131. van der Plasse G, Feenstra MG (2008) Serial reversal learning and acute tryptophan depletion. Behav Brain Res 186:23–31PubMedCrossRefGoogle Scholar
  132. Verdejo-Garcia A, Lawrence AJ, Clark L (2008) Impulsivity as a vulnerability marker for substance-use disorders: review of findings from high-risk research, problem gamblers and genetic association studies. Neurosci Biobehav Rev 32:777–810PubMedCrossRefGoogle Scholar
  133. Volkow ND, Chang L, Wang GJ, Fowler JS, Ding YS, Sedler M, Logan J, Franceschi D, Gatley J, Hitzemann R, Gifford A, Wong C, Pappas N (2001) Low level of brain dopamine D2 receptors in methamphetamine abusers: association with metabolism in the orbitofrontal cortex. Am J Psychiatry 158:2015–2021PubMedCrossRefGoogle Scholar
  134. Volkow ND, Wang GJ, Telang F, Fowler JS, Logan J, Childress AR, Jayne M, Ma Y, Wong C (2006) Cocaine cues and dopamine in dorsal striatum: mechanism of craving in cocaine addiction. J Neurosci 26:6583–6588PubMedCrossRefGoogle Scholar
  135. Weiner I, Feldon J (1986) Reversal and nonreversal shifts under amphetamine. Psychopharmacology (Berl) 89:355–359CrossRefGoogle Scholar
  136. White IM, Minamoto T, Odell JR, Mayhorn J, White W (2009) Brief exposure to methamphetamine (METH) and phencyclidine (PCP) during late development leads to long-term learning deficits in rats. Brain Res 1266:72–86PubMedCrossRefGoogle Scholar
  137. Wilpizeski CR, Hamilton CL (1964) Drug-induced decrement in spatial reversal learning in the white rat. Psychopharmacologia 6:475–479PubMedCrossRefGoogle Scholar
  138. Winocur G, Eskes G (1998) Prefrontal cortex and caudate nucleus in conditional associative learning: dissociated effects of selective brain lesions in rats. Behav Neurosci 112:89–101PubMedCrossRefGoogle Scholar
  139. Winocur G, Mills JA (1969) Effects of caudate lesions on avoidance behavior in rats. J Comp Physiol Psychol 68:552–557PubMedCrossRefGoogle Scholar
  140. Winstanley CA, Olausson P, Taylor JR, Jentsch JD (2010) Insight into the relationship between impulsivity and substance abuse from studies using animal models. Alcohol Clin Exp Res 34:1306–1318PubMedGoogle Scholar
  141. Zald DH, Cowan RL, Riccardi P, Baldwin RM, Ansari MS, Li R, Shelby ES, Smith CE, McHugo M, Kessler RM (2008) Midbrain dopamine receptor availability is inversely associated with novelty-seeking traits in humans. J Neurosci 28:14372–14378PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of PsychologyCalifornia State University, Los AngelesLos AngelesUSA
  2. 2.Departments of Psychology & Psychiatry and Bio-behavioral Sciences and the Brain Research InstituteUniversity of California at Los AngelesLos AngelesUSA

Personalised recommendations