, Volume 219, Issue 2, pp 647–659 | Cite as

Schedule-induced polydipsia as a model of compulsive behavior: neuropharmacological and neuroendocrine bases




Schedule-induced polydipsia (SIP), characterized by the development of excessive drinking under intermittent food-reinforcement schedules, has been proposed as a successful model for obsessive–compulsive disorder (OCD), schizophrenia, and alcohol abuse.


The purpose of this study was to review the main findings and current thinking regarding the use of SIP for compulsivity assessment and evaluate its contribution to improving our knowledge of the neurobehavioral mechanisms underlying the excessive behavior manifested in SIP relevant to compulsive behavior disorders.


The literature reviews SIP procedure and surveys main findings about its neurobehavioral basis and pharmacology relevant to its possible status as a model for compulsive disorders. Specifically, we reviewed effects of antipsychotics and serotoninergic drugs used in the treatment of OCD and schizophrenia. We also considered individual differences in SIP and its relevance as a possible compulsivity endophenotype.


SIP represents an animal model of non-regulatory and excessive drinking that may be valid for studying the psychopharmacology of the compulsive phenotype and modeling different psychopathologies from compulsivity spectrum disorders.


Compulsivity Schedule-induced polydipsia Endophenotype Obsessive–compulsive disorder Schizophrenia 


  1. American Psychiatric Association (2010). Diagnostic and statistical manual of mental disorders, 5th edn. Accessed 10 May 2011
  2. American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Press, Washington, DCGoogle Scholar
  3. Baxter L (1999) Functional imaging of brain systems mediating obsessive–compulsive disorder. In: Charney DS, Nestler EJ, Bunney BS (eds) Neurobiology of mental illness. Oxford University Press, USA, pp 534–547Google Scholar
  4. Belin D, Mar AC, Dalley JW, Robbins TW, Everitt BJ (2008) High impulsivity predicts the switch to compulsive cocaine-taking. Science 320:1352–1355. doi:10.1126/science.1158136 PubMedCrossRefGoogle Scholar
  5. Bernotas RC, Lenicek S, Antane S, Cole DC, Harrison BL, Robichaud AJ, Zhang GM, Smith D, Platt B, Lin Q, Li P, Coupet J, Rosenzweig-Lipson S, Beyer CE, Schechter LE (2009) Novel 1-aminoethyl-3-arylsulfonyl-1H-pyrrolo[2,3-b]pyridines are potent 5-HT(6) agonists. Bioorg Med Chem 17:5153–5163. doi:10.1016/j.bmc.2009.05.055 PubMedCrossRefGoogle Scholar
  6. Boulougouris V, Chamberlain SR, Robbins TW (2009) Cross-species models of OCD spectrum disorders. Psychiatry Res 170:15–21. doi:10.1016/j.psychres.2008.07.016 CrossRefGoogle Scholar
  7. Brett LP, Levine S (1979) Schedule-induced polydipsia suppresses pituitary-adrenal activity in rats. J Comp Physiol Psychol 93:946–956. doi:10.1037/h0077619 PubMedCrossRefGoogle Scholar
  8. Brett LP, Levine S (1981) The pituitary-adrenal response to “minimized” schedule-induced drinking. Physiol Behav 26:153–158. doi:10.1016/0031-9384(81)90003-2 PubMedCrossRefGoogle Scholar
  9. Brown JS Jr (1992) The aggression theory of schizophrenia: revisited. Neurosci Biobehav Rev 16:39–42. doi:10.1016/S0149-7634(05)80049-1 PubMedCrossRefGoogle Scholar
  10. Cardona D, López-Grancha M, Lopez-Crespo G, Nieto-Escamez F, Sanchez-Santed F, Flores P (2006) Vulnerability of long-term neurotoxicity of chlorpyrifos: effect on schedule-induced polydipsia and a delay discounting task. Psychopharmacology 189:47–57. doi:10.1007/s00213-006-0547-4 PubMedCrossRefGoogle Scholar
  11. Cardona D, Montes de Oca L, Moreno M, Flores P, Sanchez-Santed F (2009) Strain differences in schedule-induced polydipsia. Behav Pharmacol 20:S58Google Scholar
  12. Cardona D, Lopez-Crespo G, Sanchez-Amate MC, Flores P, Sanchez-Santed F (2011) Impulsivity as long-term sequelae after chlorpyrifos intoxication: time course and individual differences. Neurotox Res 19:128–137. doi:10.1007/s12640-009-9149-3 PubMedCrossRefGoogle Scholar
  13. Carli M, Baviera M, Invernizzi RW, Balducci C (2006) Dissociable contribution of 5-HT1A and 5-HT2A receptors in the medial prefrontal cortex to different aspects of executive control such as impulsivity and compulsive perseveration in rats. Neuropsychopharmacology 31:757–767. doi:10.1038/sj.npp.1300893 PubMedCrossRefGoogle Scholar
  14. Carli M, Calcagno E, Mainini E, Arnt J, Invernizzi RW (2011a) Sertindole restores attentional performance and suppresses glutamate release induced by the NMDA receptor antagonist CPP. Psychopharmacology 214:625–637. doi:10.1007/s00213-010-2066-6 PubMedCrossRefGoogle Scholar
  15. Carli M, Calcagno E, Mainolfi P, Mainini E, Invernizzi RW (2011b) Effects of aripiprazole, olanzapine, and haloperidol in a model of cognitive deficit of schizophrenia in rats: relationship with glutamate release in the medial prefrontal cortex. Psychopharmacology 214:639–652. doi:10.1007/s00213-010-2065-7 PubMedCrossRefGoogle Scholar
  16. Chamberlain SR, Menzies L, Hampshire A, Suckling J, Fineberg NA, del Campo N, Aitken M, Craig K, Owen AM, Bullmore ET, Robbins TW, Sahakian BJ (2008) Orbitofrontal dysfunction in patients with obsessive–compulsive disorder and their unaffected relatives. Science 321:421–422. doi:10.1126/science.1154433 PubMedCrossRefGoogle Scholar
  17. Cole DC, Joseph R, Lennox WJ, Bernotas RC, Ellingboe JW, Boikess S, Coupet J, Smith DL, Leung L, Zhang GM (2007) Discovery of N1-(6-chloroimidazo[2,1-b][1, 3]thiazole-5-sulfonyl) tryptamine as a potent, selective, and orally active 5-HT6 receptor agonist. J Med Chem 50:5535–5538. doi:10.1021/jm070521y PubMedCrossRefGoogle Scholar
  18. Collier G, Levitsky DA (1968) Operant running as a function of deprivation and effort. J Comp Physiol Psychol 66:522–523PubMedCrossRefGoogle Scholar
  19. Colotla VA (1981) Adjunctive polydipsia as a model of alcoholism. Neurosci Biobehav Rev 5:335–342. doi:10.1016/0149-7634(81)90028-2 PubMedCrossRefGoogle Scholar
  20. Coryell WH, Black DW, Kelly MW, Noyes R (1989) HPA axis disturbance in obsessive–compulsive disorder. Psychiatry Res 30:243–251. doi:10.1016/0165-1781(89)90015-2 PubMedCrossRefGoogle Scholar
  21. Dalley J, Everitt B, Robbins T (2011) Impulsivity, compulsivity, and top-down cognitive control. Neuron 69:680–694. doi:10.1016/j.neuron.2011.01.020 PubMedCrossRefGoogle Scholar
  22. Dantzer R, Terlouw C, Mormède P, Le Moal M (1988a) Schedule-induced polydipsia experience decreases plasma corticosterone levels but increases plasma prolactin levels. Physiol Behav 43:275–279. doi:10.1016/0031-9384(88)90187-4 PubMedCrossRefGoogle Scholar
  23. Dantzer R, Terlouw C, Tazi A, Koolhaas JM, Bohus B, Koob GF, Le Moal M (1988b) The propensity for schedule-induced polydipsia is related to differences in conditioned avoidance behaviour and in defense reactions in a defeat test. Physiol Behav 43:269–273. doi:10.1016/0031-9384(88)90186-2 PubMedCrossRefGoogle Scholar
  24. Davis CM, Riley AL (2010) Conditioned taste aversion learning: implications for animal models of drug abuse. Ann N Y Acad Sci 1187:247–275. doi:10.1111/j.1749-6632.2009.05147.x PubMedCrossRefGoogle Scholar
  25. de Leon J, Verghese C, Tracy JI, Josiassen RC, Simpson GM (1994) Polydipsia and water intoxication in psychiatric patients: a review of the epidemiological literature. Biol Psychiatry 35:408–419. doi:10.1016/0006-3223(94)90008-6 PubMedCrossRefGoogle Scholar
  26. de Leon J, Tracy J, McCann E, McGrory A (2002) Polydipsia and schizophrenia in a psychiatric hospital: a replication study. Schizophr Res 57:293–301. doi:10.1016/S0920-9964(01)00292-4 PubMedCrossRefGoogle Scholar
  27. de Wit H, Enggasser JL, Richards JB (2002) Acute administration of d-amphetamine decreases impulsivity in healthy volunteers. Neuropsychopharmacology 27:813–825. doi:10.1038/S0893-133X(02)00343-3 PubMedCrossRefGoogle Scholar
  28. DeCarolis NA, Myracle A, Erbach J, Glowa J, Flores P, Riley AL (2003) Strain-dependent differences in schedule-induced polydipsia: an assessment in Lewis and Fischer rats. Pharmacol Biochem Behav 74:755–763. doi:10.1016/S0091-3057(02)01071-7 PubMedCrossRefGoogle Scholar
  29. Devenport L (1978) Schedule-induced polydipsia in rats: adrenocortical and hippocampal modulation. J Comp Physiol Psychol 92:651–660. doi:10.1037/h0077499 PubMedCrossRefGoogle Scholar
  30. Didriksen M, Christensen AV (1993) The attenuation of schedule-induced polydipsia by dopamine blockers is not an expression of extrapyramidal side effect liability. Behav Pharmacol 4:517–522. doi:10.1097/00008877-199310000-00007 PubMedCrossRefGoogle Scholar
  31. Didriksen M, Christensen AV (1994) The effects of amphetamine, phencyclidine, dopaminergic antagonists and atypical neuroleptics on schedule-induced polydipsia (SIP) are distinguishable. Behav Pharmacol 5:32–41. doi:10.1097/00008877-199402000-00004 PubMedCrossRefGoogle Scholar
  32. Didriksen M, Olsen GM, Christensen AV (1993) Effect of clozapine upon schedule-induced polydipsia (SIP) resembles neither the actions of dopamine D1 nor D2 blockade. Psychopharmacology 113:250–256. doi:10.1007/BF02245706 PubMedCrossRefGoogle Scholar
  33. Driscoll P, Escorihuela RM, Fernandez-Teruel A, Giorgi O, Schwegler H, Steimer TH et al (1998) Genetic selection and differential stress response: the Roman lines/strain of rats. In: Csermely P (ed) Stress of life: from molecules to man. New York Academy of Sciences, New York, pp 501–510Google Scholar
  34. Dundas B, Harris M, Narasimhan M (2007) Psychogenic polydipsia review: etiology, differential, and treatment. Curr Psychiatry Rep 9:236–241. doi:10.1007/s11920-007-0025-7 PubMedCrossRefGoogle Scholar
  35. Dwyer JM, Platt BJ, Sukoff Rizzo SJ, Pulicicchio CM, Wantuch C, Zhang MY, Cummons T, Leventhal L, Bender CN, Zhang J et al (2010) Preclinical characterization of BRL 44408: antidepressant- and analgesic-like activity through selective alpha2A-adrenoceptor antagonism. Int J Neuropsychopharmacol 13:1193–1205. doi:10.1017/S1461145709991088 PubMedCrossRefGoogle Scholar
  36. Escher T, Mittleman G (2006) Schedule-induced alcohol drinking: non-selective effects of acamprosate and naltrexone. Addict Biol 11:55–63. doi:10.1111/j.1369-1600.2006.00004.x PubMedCrossRefGoogle Scholar
  37. Escorihuela RM, Fernandez-Teruel A, Tobena A, Langhans W, Battig K, Driscoll P (1997) Labyrinth exploration, emotional reactivity, and conditioned fear in young Roman/Verh inbred rats. Behav Genet 27:573–578. doi:10.1023/A:1021413200461 PubMedCrossRefGoogle Scholar
  38. Escorihuela RM, Fernandez-Teruel A, Gil L, Aguilar R, Tobena A, Driscoll P (1999) Inbred Roman high- and low-avoidance rats: differences in anxiety, novelty-seeking, and shuttlebox behaviors. Physiol Behav 67:19–26. doi:10.1016/S0031-9384(99)00064-5 PubMedCrossRefGoogle Scholar
  39. Falk JL (1961) Production of polydipsia in normal rats by an intermittent food schedule. Science 133:195–196. doi:10.1126/science.133.3447.195 PubMedCrossRefGoogle Scholar
  40. Falk JL (1966a) Schedule-induced polydipsia as a function of fixed interval length. J Exp Anal Behav 9:37–39. doi:10.1901/jeab.1966.9-37 PubMedCrossRefGoogle Scholar
  41. Falk JL (1966b) The motivational properties of schedule-induced polydipsia. J Exp Anal Behav 9:19–25. doi:10.1901/jeab.1966.9-19 PubMedCrossRefGoogle Scholar
  42. Falk JL (1971) The nature and determinants of adjunctive behavior. Physiol Behav 6:577–588. doi:10.1016/0031-9384(71)90209-5 PubMedCrossRefGoogle Scholar
  43. Falk JL, Kupfer AS (1998) Adjunctive behavior: application to the analysis and treatment of behavior problems. In: O’Donohue W (ed) Learning and Behavior Therapy. Allyn and Bacon, Boston, pp 334–351Google Scholar
  44. Falk JL, Tang M (1988) What schedule-induced polydipsia can tell us about alcoholism. Alcohol Clin Exp Res 12:577–585. doi:10.1111/j.1530-0277.1988.tb00246.x PubMedCrossRefGoogle Scholar
  45. Fattore L, Piras G, Corda MG, Giorgi O (2009) The Roman high- and low-avoidance rat lines differ in the acquisition, maintenance, extinction, and reinstatement of intravenous cocaine self-administration. Neuropsychopharmacology 34:1091–1101. doi:10.1038/npp.2008.43 PubMedCrossRefGoogle Scholar
  46. Fernando AB, Robbins TW (2011) Animal models of neuropsychiatric disorders. Annu Rev Clin Psychol 7:39–61. doi:10.1146/annurev-clinpsy-032210-104454 PubMedCrossRefGoogle Scholar
  47. Fineberg NA, Potenza MN, Chamberlain SR, Berlin HA, Menzies L, Bechara A, Sahakian BJ, Robbins TW, Bullmore ET, Hollander E (2010) Probing compulsive and impulsive behaviors, from animal models to endophenotypes: a narrative review. Neuropsychopharmacology 35:591–604. doi:10.1038/npp.2009.185 PubMedCrossRefGoogle Scholar
  48. Fineberg N, Chamberlain S, Hollander E, Boulougouris V, Robbins T (2011) Translational approaches to obsessive-compulsive disorder: from animal models to clinical treatment. Br J Pharmacol 164:1044–1061. doi:10.1111/j.1476-5381.2011.01422.x Google Scholar
  49. Flores P, Pellón R (1995) Rate-dependency hypothesis and the rate-decreasing effects of d-amphetamine on schedule-induced drinking. Behav Pharmacol 6:16–23. doi:10.1097/00008877-199501000-00004 PubMedCrossRefGoogle Scholar
  50. Flory RK (1971) The control of schedule-induced polydipsia: frequency and magnitude of reinforcement. Learn Motiv 2:215–227. doi:10.1016/0023-9690(71)90022-1 CrossRefGoogle Scholar
  51. Geyer MA, Markou A (1995) Animal models of psychiatric disorders. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress. Raven Press, New York, pp 787–798Google Scholar
  52. Geyer MA, Markou A (2002) The role of preclinical models in the development of psychotropic drugs. In: Davis KL, Coyle JT, Nemeroff C (eds) Psychopharmacology: the fifth generation of progress. Lippincott Williams & Wilkins, Philadelphia, pp 445–455Google Scholar
  53. Gilpin N, Badia-Elder N, Elder R, Stewart R (2008) Schedule-induced polydipsia in lines of rats selectively bred for high and low ethanol preference. Behav Gen 38:515–524. doi:10.1007/s10519-008-9224-1 CrossRefGoogle Scholar
  54. Goldman MB, Robertson GL, Luchins DJ, Hedeker D, Pandey GN (1997) Psychotic exacerbations and enhanced vasopressin secretion in schizophrenic patients with hyponatremia and polydipsia. Arch Gen Psychiatry 54:443–449PubMedCrossRefGoogle Scholar
  55. Goldman MB, Gnerlich J, Hussain N (2007a) Neuroendocrine responses to a cold pressor stimulus in polydipsic hyponatremic and in matched schizophrenic patients. Neuropsychopharmacology 32:1611–1621. doi:10.1038/sj.npp.1301282 PubMedCrossRefGoogle Scholar
  56. Goldman MB, Torres IJ, Keedy S, Marlow-O’Connor M, Beenken B, Pilla R (2007b) Reduced anterior hippocampal formation volume in hyponatremic schizophrenic patients. Hippocampus 17:554–562. doi:10.1002/hipo.20292 PubMedCrossRefGoogle Scholar
  57. Goldman MB, Wood G, Goldman MB, Gavin M, Paul S, Zaheer S, Fayyaz G, Pilla RS (2007c) Diminished glucocorticoid negative feedback in polydipsic hyponatremic schizophrenic patients. J Clin Endocrinol Metabol 92:698–704. doi:10.1210/jc.2006-1131 CrossRefGoogle Scholar
  58. Grant KA, Leng X, Green HL, Szeliga KT, Rogers LSM, Gonzales SW (2008) Drinking typography established by scheduled induction predicts chronic heavy drinking in a monkey model of ethanol self-administration. Alcohol Clin Exp Res 32:1824–1838. doi:10.1111/j.1530-0277.2008.00765.x PubMedCrossRefGoogle Scholar
  59. Gustafsson PE, Gustafsson PA, Ivarsson T, Nelson N (2008) Diurnal cortisol levels and cortisol response in youths with obsessive–compulsive disorder. Neuropsychobiology 57:14–21. doi:10.1159/000123117 PubMedCrossRefGoogle Scholar
  60. Hawken ER, Delva NJ, Reynolds JN, Beninger RJ (2011) Increased schedule-induced polydipsia in the rat following subchronic treatment with MK-801. Schizophr Res 125:93–98. doi:10.1016/j.schres.2010.07.022 PubMedCrossRefGoogle Scholar
  61. Hogg S, Dalvi A (2004) Acceleration of onset of action in schedule-induced polydipsia: combinations of SSRI and 5-HT1A and 5-HT1B receptor antagonists. Pharmacol Biochem Behav 77:69–75. doi:10.1016/j.pbb.2003.09.020 PubMedCrossRefGoogle Scholar
  62. Hollander E (1993) Obsessive–compulsive related disorders. American Psychiatric Press, Washington, DCGoogle Scholar
  63. Hollander E, Kim S, Khanna S, Pallanti S (2007) Obsessive-compulsive disorder and obsessive–compulsive spectrum disorders: diagnostic and dimensional issues. CNS Spectr 12:5–13PubMedGoogle Scholar
  64. Hooks MS, Jones GH, Juncos JL, Neill DB, Justice JB (1994) Individual differences in schedule-induced and conditioned behaviors. Behav Brain Res 60:199–209. doi:10.1016/0166-4328(94)90148-1 PubMedCrossRefGoogle Scholar
  65. Ibias J, Pellón R (2011) Schedule-induced polydipsia in the spontaneously hypertensive rat and its relation to impulsive behaviour. Behav Brain Res 223:58–69. doi:10.1016/j.bbr.2011.04.017
  66. Illowsky B, Kirch D (1988a) New information on polydipsia and hyponatremia in psychiatric patients. Am J Psychiatry 145:1039PubMedGoogle Scholar
  67. Illowsky BP, Kirch DG (1988b) Polydipsia and hyponatremia in psychiatric patients. Am J Psychiatry 145:675–683PubMedGoogle Scholar
  68. Jones GH, Hooks MS, Juncos JL, Justice JB (1994) Effects of cocaine microinjections into the nucleus accumbens and medial prefrontal cortex on schedule-induced behaviour: comparison with systemic cocaine administration. Psychopharmacology 115:375–382. doi:10.1007/BF02245080 PubMedCrossRefGoogle Scholar
  69. Killeen P (1970) Preference for fixed-interval schedules of reinforcement. J Exp Anal Behav 14:127–131. doi:10.1901/jeab.1970.14-127 PubMedCrossRefGoogle Scholar
  70. Killeen PR, Hanson SJ, Osborne SR (1978) Arousal: its genesis and manifestation as response rate. Psychol Rev 85:571–581. doi:10.1037/0033-295X.85.6.571 PubMedCrossRefGoogle Scholar
  71. Kluge M, Schüssler P, Künzel HE, Dresler M, Yassouridis A, Steiger A (2007) Increased nocturnal secretion of ACTH and cortisol in obsessive compulsive disorder. J Psychiatr Res 41:928–933. doi:10.1016/j.jpsychires.2006.08.005 PubMedCrossRefGoogle Scholar
  72. Koob GF (2009) Neurobiological substrates for the dark side of compulsivity in addiction. Neuropharmacology 56:18–31. doi:10.1016/j.neuropharm.2008.07.043 PubMedCrossRefGoogle Scholar
  73. Kosten TA, Ambrosio E (2002) HPA axis function and drug addictive behaviors: insights from studies with Lewis and Fischer 344 inbred rats. Psychoneuroendocrinology 27:35–69. doi:10.1016/S0306-4530(01)00035-X PubMedCrossRefGoogle Scholar
  74. Levine R, Levine S (1989) Role of the pituitary-adrenal hormones in the acquisition of schedule-induced polydipsia. Behav Neurosci 103:621–637. doi:10.1037/0735-7044.103.3.621 PubMedCrossRefGoogle Scholar
  75. Looney TA, Cohen PS (1982) Aggression induced by intermittent positive reinforcement. Neurosci Biobehav Rev 6:15–37. doi:10.1016/0149-7634(82)90004-5 PubMedCrossRefGoogle Scholar
  76. López-Crespo G, Rodríguez M, Pellón R, Flores P (2004) Acquisition of schedule-induced polydipsia by rats in proximity to upcoming food delivery. Learn Behav 32:491–499. doi:10.3758/BF03196044 PubMedCrossRefGoogle Scholar
  77. López-Grancha M, Lopez-Crespo G, Sanchez-Amate MC, Flores P (2006a) Los efectos de la anfetamina administrada en el córtex prefrontal medial sobre las diferencias individuales en polidipsia inducida por programa. International Journal of Psychology and Psychological Therapy 6:261–272Google Scholar
  78. López-Grancha M, López-Crespo G, Venero C, Cañadas F, Sánchez-Santed F, Sandi C, Flores P (2006b) Differences in corticosterone level due to inter-food interval length: Implications for schedule-induced polydipsia. Horm Behav 49:166–172. doi:10.1016/j.yhbeh.2005.05.019 PubMedCrossRefGoogle Scholar
  79. López-Grancha M, Lopez-Crespo G, Sanchez-Amate MC, Flores P (2008) Individual differences in schedule-induced polydipsia and the role of gabaergic and dopaminergic systems. Psychopharmacology 197:487–498. doi:10.1007/s00213-007-1059-6 PubMedCrossRefGoogle Scholar
  80. Luchins DJ, Nettles KW, Goldman MB (1997) Anterior medial temporal lobe volumes in polydipsic schizophrenic patients with and without hypo-osmolemia: a pilot study. Biol Psychiatry 42:767–770. doi:10.1016/S0006-3223(96)00491-X PubMedCrossRefGoogle Scholar
  81. Markou A, Chiamulera C, Geyer MA, Tricklebank M, Steckler T (2009) Removing obstacles in neuroscience drug discovery: the future path for animal models. Neuropsychopharmacology 34:74–89. doi:10.1038/npp.2008.173 PubMedCrossRefGoogle Scholar
  82. Martin J, Bös M, Jenck F, Moreau JL, Mutel V, Sleight A, Wichmann J, Andrews J, Berendsen H, Broekkamp C (1998) 5-HT2C receptor agonists: pharmacological characteristics and therapeutic potential. J Pharmacol Exp Ther 286:913–924PubMedGoogle Scholar
  83. Martin JR, Ballard TM, Higgins GA (2002) Influence of the 5-HT2C receptor antagonist, SB-242084, in tests of anxiety. Pharmacol Biochem Behav 71:615–625. doi:10.1016/S0091-3057(01)00713-4 PubMedCrossRefGoogle Scholar
  84. Matsumoto C, Shinkai T, De Luca V, Hwang R, Hori H, Lanktree M, Ohmori O, Kennedy J, Nakamura J (2005) Association between three functional polymorphisms of the dopamine D2 receptor gene and polydipsia in schizophrenia. Int J Neuropsychopharmacol 8:245–253. doi:10.1017/S1461145704004900 PubMedCrossRefGoogle Scholar
  85. Menzies L, Achard S, Chamberlain SR, Fineberg N, Chen C, del Campo N, Sahakian BJ, Robbins TW, Bullmore E (2007) Neurocognitive endophenotypes of obsessive–compulsive disorder. Brain 130:3223–3236. doi:10.1093/brain/awm205 PubMedCrossRefGoogle Scholar
  86. Menzies L, Chamberlain SR, Laird AR, Thelen SM, Sahakian BJ, Bullmore ET (2008) Integrating evidence from neuroimaging and neuropsychological studies of obsessive-compulsive disorder: the orbitofronto-striatal model revisited. Neurosci Biobehav Rev 32:525–549. doi:10.1016/j.neubiorev.2007.09.005 PubMedCrossRefGoogle Scholar
  87. Mittleman G, Valenstein ES (1984) Ingestive behavior evoked by hypothalamic stimulation and schedule-induced polydipsia are related. Science 224:415–417. doi:10.1126/science.6710151 PubMedCrossRefGoogle Scholar
  88. Mittleman G, Valenstein ES (1985) Individual differences in non-regulatory ingestive behavior and catecholamine systems. Brain Res 348:112–117. doi:10.1016/0006-8993(85)90366-X PubMedCrossRefGoogle Scholar
  89. Mittleman G, Jones GH, Robbins TW (1988a) The relationship between schedule-induced polydipsia and pituitary–adrenal activity: pharmacological and behavioral manipulations. Behav Brain Res 28:315–324. doi:10.1016/0166-4328(88)90134-9 PubMedCrossRefGoogle Scholar
  90. Mittleman G, Jones GH, Robbins TW (1988b) Effects of diazepam, FG 7142, and RO 15-1788 on schedule-induced polydipsia and the temporal control of behavior. Psychopharmacology 94:103–109. doi:10.1007/BF00735889 PubMedCrossRefGoogle Scholar
  91. Mittleman G, Whishaw IQ, Jones GH, Koch M, Robbins TW (1990) Cortical, hippocampal, and striatal mediation of schedule-induced behaviors. Behav Neurosci 104:399–409. doi:10.1037/0735-7044.104.3.399 PubMedCrossRefGoogle Scholar
  92. Mittleman G, Jones GH, Robbins TW (1991) Sensitization of amphetamine-stereotypy reduces plasma corticosterone: implications for stereotypy as a coping response. Behav Neural Biol 56:170–182. doi:10.1016/0163-1047(91)90584-D PubMedCrossRefGoogle Scholar
  93. Mittleman G, Blaha CD, Phillips AG (1992) Pituitary-adrenal and dopaminergic modulation of schedule-induced polydipsia: behavioral and neurochemical evidence. Behav Neurosci 106:408–420. doi:10.1037/0735-7044.106.2.408 PubMedCrossRefGoogle Scholar
  94. Mittleman G, Rosner AL, Schaub CL (1994) Polydipsia and dopamine: behavioral effects of dopamine D1 and D2 receptor agonists and antagonists. J Pharmacol Exp Ther 271:638–650PubMedGoogle Scholar
  95. Mittleman G, Van Brunt CL, Matthews DB (2003) Schedule-induced ethanol self-administration in DBA/2J and C57BL/6J mice. Alcohol Clin Exp Res 27:918–925. doi:10.1097/01.ALC.0000071930.48632.AE PubMedCrossRefGoogle Scholar
  96. Mittleman G, Call SB, Cockroft JL, Goldowitz D, Matthews DB, Blaha CD (2011) Dopamine dynamics associated with, and resulting from, schedule-induced alcohol self-administration: analyses in dopamine transporter knockout mice. Alcohol 45:325–339. doi:10.1016/j.alcohol.2010.12.006 Google Scholar
  97. Morein-Zamir S, Fineberg NA, Robbins TW, Sahakian BJ (2009) Inhibition of thoughts and actions in obsessive-compulsive disorder: extending the endophenotype? Psychol Med 40:263–272. doi:10.1017/S3329170999033X Google Scholar
  98. Moreno M, Cardona D, Gómez M, Sánchez-santed F, Tobeña A, Fernández-teruel A, Campa L, Suñol C, Escarabajal M, Torres C, Flores P (2010) Impulsivity characterization in the roman high- and low-avoidance rat strains: behavioral and neurochemical differences. Neuropsychopharmacology 35:1198–1208. doi:10.1038/npp.2009.224 PubMedCrossRefGoogle Scholar
  99. Moreno M, Gutiérrez-Ferre VE, Ruedas L, Campa L, Suñol L, Flores P (2011) Poor inhibitory control and neurochemical differences in high compulsive drinker rats selected by schedule-induced polydipsia. Psychopharmacology. doi:10.1007/s00213-011-2575-y
  100. Oades RD, Daniels R, Rascher W (1998) Plasma neuropeptide-Y levels, monoamine metabolism, electrolyte excretion and drinking behavior in children with attention-deficit hyperactivity disorder. Psychiatry Res 80:177–186. doi:10.1016/S0165-1781(98)00064-X PubMedCrossRefGoogle Scholar
  101. Oldham JM, Hollander E, Skodol AE (1996) Impulsivity and compulsivity. American Psychiatric Press, Washington, DCGoogle Scholar
  102. Pellón R, Ruíz A, Moreno M, Claro F, Ambrosio E, Flores P (2011) Individual differences in schedule-induced polydipsia: neuroanatomical dopamine divergences. Behav Brain Res 217:195–201. doi:10.1016/j.bbr.2010.10.010 PubMedCrossRefGoogle Scholar
  103. Piazza PV, Mittleman G, Deminiere JM, Le Moal M, Simon H (1993) Relationship between schedule-induced polydipsia and amphetamine intravenous self-administration. Individual differences and role of experience. Behav Brain Res 55:185–193. doi:10.1016/0166-4328(93)90114-6 PubMedCrossRefGoogle Scholar
  104. Platt B, Beyer CE, Schechter LE, Rosenzweig-Lipson S (2008) Schedule-induced polydipsia: a rat model of obsessive–compulsive disorder. Curr Protoc Neurosci 43:1–9. doi:10.1002/0471142301.ns0927s43 Google Scholar
  105. Reimold M, Knobel A, Rapp MA, Batra A, Wiedemann K, Ströhle A, Zimmer A, Schönknecht P, Smolka MN, Weinberger DR, Goldman D, Machulla HJ, Bares R, Heinz A (2011) Central serotonin transporter levels are associated with stress hormone response and anxiety. Psychopharmacology 213:563–572. doi:10.1007/s00213-010-1903-y PubMedCrossRefGoogle Scholar
  106. Robbins TW (2007) Shifting and stopping: fronto-striatal substrates, neurochemical modulation and clinical implications. Philos Trans R Soc Lond B Biol Sci 362:917–932. doi:10.1098/rstb.2007.2097 PubMedCrossRefGoogle Scholar
  107. Robbins TW, Koob GF (1980) Selective disruption of displacement behaviour by lesions of the mesolimbic dopamine system. Nature 285:409–412. doi:10.1038/285409a0 PubMedCrossRefGoogle Scholar
  108. Robbins TW, Roberts DCS, Koob GF (1983) Effects of d-amphetamine and apomorphine upon operant behavior and schedule-induced licking in rats with 6-hydroxydopamine-induced lesions of the nucleus accumbens. J Pharmacol Exp Ther 224:662–673PubMedGoogle Scholar
  109. Rosenzweig-Lipson S, Sabb A, Stack G, Mitchell P, Lucki I, Malberg JE, Grauer S, Brennan J, Cryan JF, Sukoff Rizzo SJ, Dunlop J, Barrett JE, Marquis KL (2007) Antidepressant-like effects of the novel, selective, 5-HT2C receptor agonist WAY-163909 in rodents. Psychopharmacology 192:159–170. doi:10.1007/s00213-007-0710-6 PubMedCrossRefGoogle Scholar
  110. Saxena S, Brody AL, Schwartz JM, Baxter LR (1998) Neuroimaging and frontal–subcortical circuitry in obsessive–compulsive disorder. Br J Psychiatry Suppl 35:26–37PubMedGoogle Scholar
  111. Schechter LE, Lin Q, Smith DL, Zhang G, Shan Q, Platt B, Brandt MR, Dawson LA, Cole D, Bernotas R, Robichaud A, Rosenzweig-Lipson S, Beyer CE (2008) Neuropharmacological profile of novel and selective 5-HT6 receptor agonists: WAY-181187 and WAY-208466. Neuropsychopharmacology 33:1323–1335. doi:10.1038/sj.npp.1301503 PubMedCrossRefGoogle Scholar
  112. Sebens JB, Middelveld RJ, Koch T, Ter Horst GJ, Korf J (2001) Clozapine-induced Fos-protein expression in rat forebrain regions: differential effects of adrenalectomy and corticosterone supplement. Eur J Pharmacol 417:149–155. doi:10.1016/S0014-2999(01)00870-6 PubMedCrossRefGoogle Scholar
  113. Singer G, Wallace M (1984) Schedule-induced self injection of drugs. Prog Neuropsychopharmacol Biol Psychiatry 8:171–178. doi:10.1016/0278-5846(84)90147-7 PubMedCrossRefGoogle Scholar
  114. Singer G, Oei TP, Wallace M (1982) Schedule-induced self-injection of drugs. Neurosci Biobehav Rev 6:77–83. doi:10.1016/0149-7634(82)90008-2 PubMedCrossRefGoogle Scholar
  115. Snodgrass SH, Allen JD (1987) Effect of dopamine agents on schedule- and deprivation-induced drinking in rats. Pharmacol Biochem Behav 27:463–475. doi:10.1016/0091-3057(87)90350-9 PubMedCrossRefGoogle Scholar
  116. Snodgrass SH, Allen JD (1989) Time-response effects of pimozide on operant behavior and schedule-induced polydipsia. Pharmacol Biochem Behav 32:949–955PubMedCrossRefGoogle Scholar
  117. Stöhr T, Szuran T, Welzl H, Pliska V, Feldon J, Pryce CR (2000) Lewis/Fischer rat strain differences in endocrine and behavioural responses to environmental challenge. Pharmacol Biochem Behav 67:809–819. doi:10.1016/S0091-3057(00)00426-3 PubMedCrossRefGoogle Scholar
  118. Tazi A, Dantzer R, Mormede P, Le Moal M (1986) Pituitary–adrenal correlates of schedule-induced polydipsia and wheel running in rats. Behav Brain Res 19:249–256. doi:10.1016/0166-4328(86)90025-2 PubMedCrossRefGoogle Scholar
  119. Tazi A, Dantzer R, Le Moal M (1988) Schedule-induced polydipsia experience decreases locomotor response to amphetamine. Brain Res 445:211–215. doi:10.1016/0006-8993(88)91180-8 PubMedCrossRefGoogle Scholar
  120. Todd KG, Beck CHM, Martin-Iverson MT (1992) Effects of D1 and D2 dopamine antagonists on behavior of polydipsic rats. Pharmacol Biochem Behav 42:381–388. doi:10.1016/0091-3057(92)90130-8 PubMedCrossRefGoogle Scholar
  121. Tung C, Wu W, Tseng C, Yin T (1994) Effects of amperozide on schedule-induced polydipsia in rats. Eur J Pharmacol 256:193–200. doi:10.1016/0014-2999(94)90245-3 PubMedCrossRefGoogle Scholar
  122. van Kuyck K, Brak K, Das J, Rizopoulos D, Nuttin B (2008) Comparative study of the effects of electrical stimulation in the nucleus accumbens, the mediodorsal thalamic nucleus and the bed nucleus of the stria terminalis in rats with schedule-induced polydipsia. Brain Res 1201:93–99. doi:10.1016/j.brainres.2008.01.043 Google Scholar
  123. Wayner MJ (2002) Craving for alcohol in the rat: adjunctive behavior and the lateral hypothalamus. Pharmacol Biochem Behav 73:27–43. doi:10.1016/S0091-3057(02)00780-3 PubMedCrossRefGoogle Scholar
  124. Weissenborn R, Blaha CD, Winn P, Phillips AG (1996) Schedule-induced polydipsia and the nucleus accumbens: electrochemical measurements of dopamine efflux and effects of excitotoxic lesions in the core. Behav Brain Res 75:147–158. doi:10.1016/0166-4328(95)00202-2 PubMedCrossRefGoogle Scholar
  125. Willner P (1984) The validity of animal models of depression. Psychopharmacology 83:1–16. doi:10.1007/BF00427414 PubMedCrossRefGoogle Scholar
  126. Wilson JF, Cantor MB (1987) An animal model of excessive eating: schedule-induced hyperphagia in food-satiated rats. J Exp Anal Behav 47:335–346. doi:10.1901/jeab.1987.47-335 PubMedCrossRefGoogle Scholar
  127. Woods A, Smith C, Szewczak M, Dunn R, Cornfeldt M, Corbett R (1993) Selective serotonin re-uptake inhibitors decrease schedule-induced polydipsia in rats: a potential model for obsessive compulsive disorder. Psychopharmacology 112:195–198. doi:10.1007/BF02244910 PubMedCrossRefGoogle Scholar
  128. Woods-Kettelberger A, Kongsamut S, Smith CP, Winslow JT, Corbett R (1997) Animal models with potential applications for screening compounds for the treatment of obsessive–compulsive disorder. Expert Opin Investig Drugs 6:1369–1381. doi:10.1517/13543784.6.10.1369 PubMedCrossRefGoogle Scholar
  129. Woods-Kettleberger AT, Smith CP, Corbett R, Szewczak MR, Roehr JE, Bores GM, Klein JT, Kongsamut S (1996) Besipirdine (HP 749) reduces schedule-induced polydipsia in rats. Brain Res Bull 41:125–130. doi:10.1016/0361-9230(96)00163-3 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Departmento de Neurociencia y Ciencias de la SaludUniversidad de AlmeríaAlmeriaSpain

Personalised recommendations