, Volume 220, Issue 4, pp 647–672

Spontaneous object recognition and its relevance to schizophrenia: a review of findings from pharmacological, genetic, lesion and developmental rodent models




Spontaneous (novel) object recognition (SOR) is one of the most widely used rodent behavioural tests. The opportunity for rapid data collection has made SOR a popular choice in studies that explore cognitive impairment in rodent models of schizophrenia, and that test the efficacy of drugs intended to reverse these deficits.


We provide an overview of the many recent studies that have used SOR to explore the mnemonic effects of manipulation of the key transmitter systems relevant to schizophrenia—the dopamine, glutamate, GABA, acetylcholine, serotonin and cannabinoid systems—alone or in combination. We also review the use of SOR in studying memory in genetically modified mouse models of schizophrenia, as well as in neurodevelopmental and lesion models. We end by discussing the construct and predictive validity, and translational relevance, of SOR with respect to cognitive impairment in schizophrenia.


Perturbation of the dopamine or glutamate systems can generate robust and reliable impairment in SOR. Impaired performance is also seen following antagonism of the muscarinic acetylcholine system, or exposure to cannabinoid agonists. Cognitive enhancement has been reported using alpha7-nicotinic acetylcholine receptor agonists and 5-HT6 antagonists. Among non-pharmacological models, neonatal ventral hippocampal lesions and maternal immune activation can impair SOR, while mixed results have been obtained with mice carrying mutations in schizophrenia risk-associated genes, including neuregulin and COMT.


While SOR is not without its limitations, the task represents a useful method for studying manipulations with relevance to cognitive impairment in schizophrenia, as well as the interactions between them.


Spontaneous object recognition Novel Schizophrenia Memory Dopamine Glutamate Neuregulin COMT 


  1. Abe H, Ishida Y, Iwasaki T (2004) Perirhinal N-methyl-D-aspartate and muscarinic systems participate in object recognition in rats. Neurosci Lett 356:191–194PubMedCrossRefGoogle Scholar
  2. Adler CM, Malhotra AK, Elman I, Goldberg T, Egan M, Pickar D, Breier A (1999) Comparison of ketamine-induced thought disorder in healthy volunteers and thought disorder in schizophrenia. Am J Psychiatry 156:1646–1649PubMedGoogle Scholar
  3. Aggleton JP, Brown MW (2006) Interleaving brain systems for episodic and recognition memory. Trends Cogn Sci 10:455–463PubMedCrossRefGoogle Scholar
  4. Aggleton JP, Hunt PR, Rawlins JN (1986) The effects of hippocampal lesions upon spatial and non-spatial tests of working memory. Behav Brain Res 19:133–146PubMedCrossRefGoogle Scholar
  5. Aggleton JP, Keen S, Warburton EC, Bussey TJ (1997) Extensive cytotoxic lesions involving both the rhinal cortices and area TE impair recognition but spare spatial alternation in the rat. Brain Res Bull 43:279–287PubMedCrossRefGoogle Scholar
  6. Aisa B, Tordera R, Lasheras B, Del Rio J, Ramirez MJ (2008) Effects of maternal separation on hypothalamic-pituitary-adrenal responses, cognition and vulnerability to stress in adult female rats. Neuroscience 154:1218–1226PubMedCrossRefGoogle Scholar
  7. Akhondzadeh S, Gerami M, Noroozian M, Karamghadiri N, Ghoreishi A, Abbasi SH, Rezazadeh SA (2008) A 12-week, double-blind, placebo-controlled trial of donepezil adjunctive treatment to risperidone in chronic and stable schizophrenia. Prog Neuropsychopharmacol Biol Psychiatr 32:1810–1815CrossRefGoogle Scholar
  8. Albuquerque EX, Alkondon M, Pereira EF, Castro NG, Schrattenholz A, Barbosa CT, Bonfante-Cabarcas R, Aracava Y, Eisenberg HM, Maelicke A (1997) Properties of neuronal nicotinic acetylcholine receptors: pharmacological characterization and modulation of synaptic function. J Pharmacol Exp Ther 280:1117–1136PubMedGoogle Scholar
  9. Andreasson S, Allebeck P, Engstrom A, Rydberg U (1987) Cannabis and schizophrenia. A longitudinal study of Swedish conscripts. Lancet 2:1483–1486PubMedCrossRefGoogle Scholar
  10. Arnt J, Bang-Andersen B, Grayson B, Bymaster FP, Cohen MP, DeLapp NW, Giethlen B, Kreilgaard M, McKinzie DL, Neill JC, Nelson DL, Nielsen SM, Poulsen MN, Schaus JM, Witten LM (2010) Lu AE58054, a 5-HT(6) antagonist, reverses cognitive impairment induced by subchronic phencyclidine in a novel object recognition test in rats. Int J Neuropsychopharmacol 13:1021–1033PubMedCrossRefGoogle Scholar
  11. Arseneault L, Cannon M, Poulton R, Murray R, Caspi A, Moffitt TE (2002) Cannabis use in adolescence and risk for adult psychosis: longitudinal prospective study. BMJ 325:1212–1213PubMedCrossRefGoogle Scholar
  12. Babovic D, O’Tuathaigh CM, O’Connor AM, O’Sullivan GJ, Tighe O, Croke DT, Karayiorgou M, Gogos JA, Cotter D, Waddington JL (2008) Phenotypic characterization of cognition and social behavior in mice with heterozygous versus homozygous deletion of catechol-O-methyltransferase. Neuroscience 155:1021–1029PubMedCrossRefGoogle Scholar
  13. Baker KB, Kim JJ (2002) Effects of stress and hippocampal NMDA receptor antagonism on recognition memory in rats. Learn Mem 9:58–65PubMedCrossRefGoogle Scholar
  14. Ballaz SJ, Akil H, Watson SJ (2007) The 5-HT7 receptor: role in novel object discrimination and relation to novelty-seeking behavior. Neuroscience 149:192–202PubMedCrossRefGoogle Scholar
  15. Barker GR, Bashir ZI, Brown MW, Warburton EC (2006) A temporally distinct role for group I and group II metabotropic glutamate receptors in object recognition memory. Learn Mem 13:178–186PubMedCrossRefGoogle Scholar
  16. Barna I, Soproni K, Arszovszki A, Csabai K, Haller J (2007) WIN-55,212-2 chronically implanted into the CA3 region of the dorsal hippocampus impairs learning: a novel method for studying chronic, brain-area-specific effects of cannabinoids. Behav Pharmacol 18:515–520PubMedCrossRefGoogle Scholar
  17. Barnett JH, Werners U, Secher SM, Hill KE, Brazil R, Masson K, Pernet DE, Kirkbride JB, Murray GK, Bullmore ET, Jones PB (2007) Substance use in a population-based clinic sample of people with first-episode psychosis. Br J Psychiatry 190:515–520PubMedCrossRefGoogle Scholar
  18. Bartko SJ, Winters BD, Cowell RA, Saksida LM, Bussey TJ (2007) Perceptual functions of perirhinal cortex in rats: zero-delay object recognition and simultaneous oddity discriminations. J Neurosci 27:2548–2559PubMedCrossRefGoogle Scholar
  19. Beaulieu JM, Gainetdinov RR (2011) The physiology, signaling and pharmacology of dopamine receptors. Pharmacol Rev 63:182–217PubMedCrossRefGoogle Scholar
  20. Belcher AM, Feinstein EM, O’Dell SJ, Marshall JF (2008) Methamphetamine influences on recognition memory: comparison of escalating and single-day dosing regimens. Neuropsychopharmacology 33:1453–1463PubMedCrossRefGoogle Scholar
  21. Bentley J, Marsden C, Sleight A, Fone K (1999) Effect of the 5-HT6 antagonist, Ro 04–6790, on food consumption in rats trained to a fixed feeding regime. Br J Pharmacol: U38-U38Google Scholar
  22. Bernstein HG, Grecksch G, Becker A, Hollt V, Bogerts B (1999) Cellular changes in rat brain areas associated with neonatal hippocampal damage. Neuroreport 10:2307–2311PubMedCrossRefGoogle Scholar
  23. Bhardwaj SK, Baharnoori M, Sharif-Askari B, Kamath A, Williams S, Srivastava LK (2009) Behavioral characterization of dysbindin-1 deficient sandy mice. Behav Brain Res 197:435–441Google Scholar
  24. Bianchi M, Fone KF, Azmi N, Heidbreder CA, Hagan JJ, Marsden CA (2006) Isolation rearing induces recognition memory deficits accompanied by cytoskeletal alterations in rat hippocampus. Eur J Neurosci 24:2894–2902PubMedCrossRefGoogle Scholar
  25. Biton B, Bergis OE, Galli F, Nedelec A, Lochead AW, Jegham S, Godet D, Lanneau C, Santamaria R, Chesney F, Leonardon J, Granger P, Debono MW, Bohme GA, Sgard F, Besnard F, Graham D, Coste A, Oblin A, Curet O, Vige X, Voltz C, Rouquier L, Souilhac J, Santucci V, Gueudet C, Francon D, Steinberg R, Griebel G, Oury-Donat F, George P, Avenet P, Scatton B (2007) SSR180711, a novel selective alpha7 nicotinic receptor partial agonist: (1) binding and functional profile. Neuropsychopharmacology 32:1–16PubMedCrossRefGoogle Scholar
  26. Boess FG, De Vry J, Erb C, Flessner T, Hendrix M, Luithle J, Methfessel C, Riedl B, Schnizler K, van der Staay FJ, van Kampen M, Wiese WB, Koenig G (2007) The novel alpha7 nicotinic acetylcholine receptor agonist N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-7-[2-(methoxy)phenyl]-1-benzofuran-2-carboxamide improves working and recognition memory in rodents. J Pharmacol Exp Ther 321:716–725PubMedCrossRefGoogle Scholar
  27. Bortolozzi A, Diaz-Mataix L, Toth M, Celada P, Artigas F (2007) In vivo actions of aripiprazole on serotonergic and dopaminergic systems in rodent brain. Psychopharmacology (Berl) 191:745–758CrossRefGoogle Scholar
  28. Botton PH, Costa MS, Ardais AP, Mioranzza S, Souza DO, da Rocha JB, Porciuncula LO (2010) Caffeine prevents disruption of memory consolidation in the inhibitory avoidance and novel object recognition tasks by scopolamine in adult mice. Behav Brain Res 214:254–259PubMedCrossRefGoogle Scholar
  29. Boultadakis A, Liakos P, Pitsikas N (2010) The nitric oxide-releasing derivative of ferulic acid NCX 2057 antagonized delay-dependent and scopolamine-induced performance deficits in a recognition memory task in the rat. Prog Neuropsychopharmacol Biol Psychiatr 34:5–9CrossRefGoogle Scholar
  30. Bradley SR, Lameh J, Ohrmund L, Son T, Bajpai A, Nguyen D, Friberg M, Burstein ES, Spalding TA, Ott TR, Schiffer HH, Tabatabaei A, McFarland K, Davis RE, Bonhaus DW (2010) AC-260584, an orally bioavailable M(1) muscarinic receptor allosteric agonist, improves cognitive performance in an animal model. Neuropharmacology 58:365–373PubMedCrossRefGoogle Scholar
  31. Bromley E (2005) A collaborative approach to targeted treatment development for schizophrenia: a qualitative evaluation of the NIMH-MATRICS project. Schizophr Bull 31:954–961PubMedCrossRefGoogle Scholar
  32. Brown AS (2006) Prenatal infection as a risk factor for schizophrenia. Schizophr Bull 32:200–202PubMedCrossRefGoogle Scholar
  33. Brown MW, Bashir ZI (2002) Evidence concerning how neurons of the perirhinal cortex may effect familiarity discrimination. Philos Trans R Soc Lond B Biol Sci 357:1083–1095PubMedCrossRefGoogle Scholar
  34. Brown MW, Xiang JZ (1998) Recognition memory: neuronal substrates of the judgement of prior occurrence. Prog Neurobiol 55:149–189PubMedCrossRefGoogle Scholar
  35. Brown AS, Begg MD, Gravenstein S, Schaefer CA, Wyatt RJ, Bresnahan M, Babulas VP, Susser ES (2004) Serologic evidence of prenatal influenza in the etiology of schizophrenia. Arch Gen Psychiatry 61:774–780PubMedCrossRefGoogle Scholar
  36. Buchanan RW, Summerfelt A, Tek C, Gold J (2003) An open-labeled trial of adjunctive donepezil for cognitive impairments in patients with schizophrenia. Schizophr Res 59:29–33PubMedCrossRefGoogle Scholar
  37. Buchanan RW, Conley RR, Dickinson D, Ball MP, Feldman S, Gold JM, McMahon RP (2008) Galantamine for the treatment of cognitive impairments in people with schizophrenia. Am J Psychiatry 165:82–89PubMedCrossRefGoogle Scholar
  38. Bussey TJ, Saksida LM (2005) Object memory and perception in the medial temporal lobe: an alternative approach. Curr Opin Neurobiol 15:730–737PubMedCrossRefGoogle Scholar
  39. Bussey TJ, Muir JL, Aggleton JP (1999) Functionally dissociating aspects of event memory: the effects of combined perirhinal and postrhinal cortex lesions on object and place memory in the rat. J Neurosci 19:495–502PubMedGoogle Scholar
  40. Bussey TJ, Duck J, Muir JL, Aggleton JP (2000) Distinct patterns of behavioural impairments resulting from fornix transection or neurotoxic lesions of the perirhinal and postrhinal cortices in the rat. Behav Brain Res 111:187–202PubMedCrossRefGoogle Scholar
  41. Bussey TJ, Holmes A, Lyon L, Mar AC, McAllister KA, Nithianantharajah J, Oomen CA, Saksida LM (2011) New translational assays for preclinical modelling of cognition in schizophrenia: the touchscreen testing method for mice and rats. Neuropharmacology [Epub ahead of print].Google Scholar
  42. Byrne M, Agerbo E, Bennedsen B, Eaton WW, Mortensen PB (2007) Obstetric conditions and risk of first admission with schizophrenia: a Danish national register based study. Schizophr Res 97:51–59PubMedCrossRefGoogle Scholar
  43. Calkins ME, Gur RC, Ragland JD, Gur RE (2005) Face recognition memory deficits and visual object memory performance in patients with schizophrenia and their relatives. Am J Psychiatry 162:1963–1966PubMedCrossRefGoogle Scholar
  44. Camarasa J, Rodrigo T, Pubill D, Escubedo E (2010) Memantine is a useful drug to prevent the spatial and non-spatial memory deficits induced by methamphetamine in rats. Pharmacol Res 62:450–456PubMedCrossRefGoogle Scholar
  45. Carli M, Bonalumi P, Samanin R (1997) WAY 100635, a 5-HT1A receptor antagonist, prevents the impairment of spatial learning caused by intrahippocampal administration of scopolamine or 7-chloro-kynurenic acid. Brain Res 774:167–174PubMedCrossRefGoogle Scholar
  46. Carlsson A, Lindqvist M (1963) Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol Toxicol (Copenh) 20:140–144CrossRefGoogle Scholar
  47. Chan MH, Chiu PH, Sou JH, Chen HH (2008) Attenuation of ketamine-evoked behavioral responses by mGluR5 positive modulators in mice. Psychopharmacology (Berl) 198:141–148CrossRefGoogle Scholar
  48. Chiu CQ, Puente N, Grandes P, Castillo PE (2010) Dopaminergic modulation of endocannabinoid-mediated plasticity at GABAergic synapses in the prefrontal cortex. J Neurosci 30:7236–7248PubMedCrossRefGoogle Scholar
  49. Chung YC, Lee CR, Park TW, Yang KH, Kim KW (2009) Effect of donepezil added to atypical antipsychotics on cognition in patients with schizophrenia: an open-label trial. World J Biol Psychiatry 10:156–162PubMedCrossRefGoogle Scholar
  50. Clancy B, Darlington RB, Finlay BL (2001) Translating developmental time across mammalian species. Neuroscience 105:7–17PubMedCrossRefGoogle Scholar
  51. Clark RE, Zola SM, Squire LR (2000) Impaired recognition memory in rats after damage to the hippocampus. J Neurosci 20:8853–8860PubMedGoogle Scholar
  52. Clark RE, Kuczenski R, Segal DS (2007) Escalating dose, multiple binge methamphetamine regimen does not impair recognition memory in rats. Synapse 61:515–522PubMedCrossRefGoogle Scholar
  53. Clarke JR, Rossato JI, Monteiro S, Bevilaqua LR, Izquierdo I, Cammarota M (2008) Posttraining activation of CB1 cannabinoid receptors in the CA1 region of the dorsal hippocampus impairs object recognition long-term memory. Neurobiol Learn Mem 90:374–381PubMedCrossRefGoogle Scholar
  54. Cowell RA, Bussey TJ, Saksida LM (2006) Why does brain damage impair memory? A connectionist model of object recognition memory in perirhinal cortex. J Neurosci 26:12186–12197PubMedCrossRefGoogle Scholar
  55. Coyle JT (2006) Glutamate and schizophrenia: beyond the dopamine hypothesis. Cell Mol Neurobiol 26:365–384PubMedCrossRefGoogle Scholar
  56. Coyle P, Tran N, Fung JN, Summers BL, Rofe AM (2009) Maternal dietary zinc supplementation prevents aberrant behaviour in an object recognition task in mice offspring exposed to LPS in early pregnancy. Behav Brain Res 197:210–218PubMedCrossRefGoogle Scholar
  57. Crabbe JC, Wahlsten D, Dudek BC (1999) Genetics of mouse behavior: interactions with laboratory environment. Science 284:1670–1672PubMedCrossRefGoogle Scholar
  58. Creese I, Burt DR, Snyder SH (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192:481–483PubMedCrossRefGoogle Scholar
  59. Dalman C, Thomas HV, David AS, Gentz J, Lewis G, Allebeck P (2001) Signs of asphyxia at birth and risk of schizophrenia. Population-based case–control study. Br J Psychiatry 179:403–408PubMedCrossRefGoogle Scholar
  60. Damgaard T, Larsen DB, Hansen SL, Grayson B, Neill JC, Plath N (2010) Positive modulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors reverses sub-chronic PCP-induced deficits in the novel object recognition task in rats. Behav Brain Res 207:144–150PubMedCrossRefGoogle Scholar
  61. Damgaard T, Plath N, Neill JC, Hansen SL (2011) Extrasynaptic GABAA receptor activation reverses recognition memory deficits in an animal model of schizophrenia. Psychopharmacology (Berl) 214:403–413CrossRefGoogle Scholar
  62. Danion JM, Huron C, Vidailhet P, Berna F (2007) Functional mechanisms of episodic memory impairment in schizophrenia. Can J Psychiatr 52:693–701Google Scholar
  63. Davis KL, Kahn RS, Ko G, Davidson M (1991) Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry 148:1474–1486PubMedGoogle Scholar
  64. Dawson LA, Li P (2003) Effects of 5-HT(6) receptor blockade on the neurochemical outcome of antidepressant treatment in the frontal cortex of the rat. J Neural Transm 110:577–590PubMedCrossRefGoogle Scholar
  65. Dawson LA, Nguyen HQ, Li P (2000) In vivo effects of the 5-HT(6) antagonist SB-271046 on striatal and frontal cortex extracellular concentrations of noradrenaline, dopamine, 5-HT, glutamate and aspartate. Br J Pharmacol 130:23–26PubMedCrossRefGoogle Scholar
  66. Dawson LA, Nguyen HQ, Li P (2001) The 5-HT(6) receptor antagonist SB-271046 selectively enhances excitatory neurotransmission in the rat frontal cortex and hippocampus. Neuropsychopharmacology 25:662–668PubMedCrossRefGoogle Scholar
  67. de Bruin N, Pouzet B (2006) Beneficial effects of galantamine on performance in the object recognition task in Swiss mice: deficits induced by scopolamine and by prolonging the retention interval. Pharmacol Biochem Behav 85:253–260PubMedCrossRefGoogle Scholar
  68. de Leon J, Diaz FJ (2005) A meta-analysis of worldwide studies demonstrates an association between schizophrenia and tobacco smoking behaviors. Schizophr Res 76:135–157PubMedCrossRefGoogle Scholar
  69. de Lima MN, Laranja DC, Bromberg E, Roesler R, Schröder N (2005) Pre- or post-training administration of the NMDA receptor blocker MK-801 impairs object recognition memory in rats. Behav Brain Res 156:139–143PubMedCrossRefGoogle Scholar
  70. Depatie L, O’Driscoll GA, Holahan AL, Atkinson V, Thavundayil JX, Kin NN, Lal S (2002) Nicotine and behavioral markers of risk for schizophrenia: a double-blind, placebo-controlled, cross-over study. Neuropsychopharmacology 27:1056–1070PubMedCrossRefGoogle Scholar
  71. Dere E, Huston JP, De Souza Silva MA (2007) The pharmacology, neuroanatomy and neurogenetics of one-trial object recognition in rodents. Neurosci Biobehav Rev 31:673–704PubMedCrossRefGoogle Scholar
  72. Devito LM, Balu DT, Kanter BR, Lykken C, Basu AC, Coyle JT, Eichenbaum H (2010) Serine racemase deletion disrupts memory for order and alters cortical dendritic morphology. Genes Brain Behav 10:210–222PubMedGoogle Scholar
  73. Dewachter I, Ris L, Jaworski T, Seymour CM, Kremer A, Borghgraef P, De Vijver H, Godaux E, Van Leuven F (2009) GSK3β, a centre-staged kinase in neuropsychiatric disorders, modulates long term memory by inhibitory phosphorylation at serine-9. Neurobiol Dis 35:193–200Google Scholar
  74. Diaz-Mataix L, Scorza MC, Bortolozzi A, Toth M, Celada P, Artigas F (2005) Involvement of 5-HT1A receptors in prefrontal cortex in the modulation of dopaminergic activity: role in atypical antipsychotic action. J Neurosci 25:10831–10843PubMedCrossRefGoogle Scholar
  75. Dijk SN, Francis PT, Stratmann GC, Bowen DM (1995) NMDA-induced glutamate and aspartate release from rat cortical pyramidal neurones: evidence for modulation by a 5-HT1A antagonist. Br J Pharmacol 115:1169–1174PubMedGoogle Scholar
  76. Dixon L, Haas G, Weiden PJ, Sweeney J, Frances AJ (1991) Drug abuse in schizophrenic patients: clinical correlates and reasons for use. Am J Psychiatry 148:224–230PubMedGoogle Scholar
  77. Doleviczenyi Z, Vizi ES, Gacsalyi I, Pallagi K, Volk B, Harsing LG Jr, Halmos G, Lendvai B, Zelles T (2008) 5-HT6/7 receptor antagonists facilitate dopamine release in the cochlea via a GABAergic disinhibitory mechanism. Neurochem Res 33:2364–2372PubMedCrossRefGoogle Scholar
  78. Doniger GM, Foxe JJ, Murray MM, Higgins BA, Javitt DC (2002) Impaired visual object recognition and dorsal/ventral stream interaction in schizophrenia. Arch Gen Psychiatry 59:1011–1020PubMedCrossRefGoogle Scholar
  79. Duffy L, Cappas E, Lai D, Boucher AA, Karl T (2010) Cognition in transmembrane domain neuregulin 1 mutant mice. Neuroscience 170:800–807PubMedCrossRefGoogle Scholar
  80. Dyer MA, Freudenreich O, Culhane MA, Pachas GN, Deckersbach T, Murphy E, Goff DC, Evins AE (2008) High-dose galantamine augmentation inferior to placebo on attention, inhibitory control and working memory performance in nonsmokers with schizophrenia. Schizophr Res 102:88–95PubMedCrossRefGoogle Scholar
  81. Eacott MJ, Easton A, Zinkivskav A (2005) Recollection in an episodic-like memory task in the rat. Learn Mem 12:221–223PubMedCrossRefGoogle Scholar
  82. Ebstein RP, Novick O, Umansky R, Priel B, Osher Y, Blaine D, Bennett ER, Nemanov L, Katz M, Belmaker RH (1996) Dopamine D4 receptor (D4DR) exon III polymorphism associated with the human personality trait of Novelty Seeking. Nat Genet 12:78–80PubMedCrossRefGoogle Scholar
  83. Ehrlichman RS, Luminais SN, White SL, Rudnick ND, Ma N, Dow HC, Kreibich AS, Abel T, Brodkin ES, Hahn CG, Siegel SJ (2009) Neuregulin 1 transgenic mice display reduced mismatch negativity, contextual fear conditioning and social interactions. Brain Res 1294:116–127PubMedCrossRefGoogle Scholar
  84. Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behav Brain Res 31:47–59PubMedCrossRefGoogle Scholar
  85. Ennaceur A, Neave N, Aggleton JP (1996) Neurotoxic lesions of the perirhinal cortex do not mimic the behavioural effects of fornix transection in the rat. Behav Brain Res 80:9–25PubMedCrossRefGoogle Scholar
  86. Ennaceur A, Neave N, Aggleton JP (1997) Spontaneous object recognition and object location memory in rats: the effects of lesions in the cingulate cortices, the medial prefrontal cortex, the cingulum bundle and the fornix. Exp Brain Res 113:509–519PubMedCrossRefGoogle Scholar
  87. Fagerlund B, Soholm B, Fink-Jensen A, Lublin H, Glenthoj BY (2007) Effects of donepezil adjunctive treatment to ziprasidone on cognitive deficits in schizophrenia: a double-blind, placebo-controlled study. Clin Neuropharmacol 30:3–12PubMedCrossRefGoogle Scholar
  88. Forwood SE, Winters BD, Bussey TJ (2005) Hippocampal lesions that abolish spatial maze performance spare object recognition memory at delays of up to 48 hours. Hippocampus 15:347–355PubMedCrossRefGoogle Scholar
  89. Franberg O, Marcus MM, Ivanov V, Schilstrom B, Shahid M, Svensson TH (2009) Asenapine elevates cortical dopamine, noradrenaline and serotonin release. Evidence for activation of cortical and subcortical dopamine systems by different mechanisms. Psychopharmacology (Berl) 204:251–264CrossRefGoogle Scholar
  90. Freedman R, Leonard S (2001) Genetic linkage to schizophrenia at chromosome 15q14. Am J Med Genet 105:655–657PubMedCrossRefGoogle Scholar
  91. Freedman R, Hall M, Adler LE, Leonard S (1995) Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia. Biol Psychiatry 38:22–33PubMedCrossRefGoogle Scholar
  92. Freedman R, Leonard S, Gault JM, Hopkins J, Cloninger CR, Kaufmann CA, Tsuang MT, Farone SV, Malaspina D, Svrakic DM, Sanders A, Gejman P (2001) Linkage disequilibrium for schizophrenia at the chromosome 15q13–14 locus of the alpha7-nicotinic acetylcholine receptor subunit gene (CHRNA7). Am J Med Genet 105:20–22PubMedCrossRefGoogle Scholar
  93. Freedman R, Olincy A, Buchanan RW, Harris JG, Gold JM, Johnson L, Allensworth D, Guzman-Bonilla A, Clement B, Ball MP, Kutnick J, Pender V, Martin LF, Stevens KE, Wagner BD, Zerbe GO, Soti F, Kem WR (2008) Initial phase 2 trial of a nicotinic agonist in schizophrenia. Am J Psychiatry 165:1040–1047PubMedCrossRefGoogle Scholar
  94. Freudenreich O, Herz L, Deckersbach T, Evins AE, Henderson DC, Cather C, Goff DC (2005) Added donepezil for stable schizophrenia: a double-blind, placebo-controlled trial. Psychopharmacology (Berl) 181:358–363CrossRefGoogle Scholar
  95. Friedman JI, Adler DN, Howanitz E, Harvey PD, Brenner G, Temporini H, White L, Parrella M, Davis KL (2002) A double blind placebo controlled trial of donepezil adjunctive treatment to risperidone for the cognitive impairment of schizophrenia. Biol Psychiatry 51:349–357PubMedCrossRefGoogle Scholar
  96. Friston KJ, Liddle PF, Frith CD, Hirsch SR, Frackowiak RS (1992) The left medial temporal region and schizophrenia. A PET study. Brain 115(Pt 2):367–382PubMedCrossRefGoogle Scholar
  97. Gaffan D (1974) Recognition impaired and association intact in the memory of monkeys after transection of the fornix. J Comp Physiol Psychol 86:1100–1109PubMedCrossRefGoogle Scholar
  98. Gardiner JM (1988) Recognition failures and free-recall failures: implications for the relation between recall and recognition. Mem Cognit 16:446–451PubMedCrossRefGoogle Scholar
  99. Goff DC, Herz L, Posever T, Shih V, Tsai G, Henderson DC, Freudenreich O, Evins AE, Yovel I, Zhang H, Schoenfeld D (2005) A six-month, placebo-controlled trial of D-cycloserine co-administered with conventional antipsychotics in schizophrenia patients. Psychopharmacology (Berl) 179:144–150CrossRefGoogle Scholar
  100. Goldman-Rakic PS (1994) Working memory dysfunction in schizophrenia. J Neuropsychiatry Clin Neurosci 6:348–357PubMedGoogle Scholar
  101. Grayson B, Idris NF, Neill JC (2007) Atypical antipsychotics attenuate a sub-chronic PCP-induced cognitive deficit in the novel object recognition task in the rat. Behav Brain Res 184:31–38PubMedCrossRefGoogle Scholar
  102. Green MF (2006) Cognitive impairment and functional outcome in schizophrenia and bipolar disorder. J Clin Psychiatr 67:e12CrossRefGoogle Scholar
  103. Greene R (2001) Circuit analysis of NMDAR hypofunction in the hippocampus, in vitro, and psychosis of schizophrenia. Hippocampus 11:569–577PubMedCrossRefGoogle Scholar
  104. Grunze HC, Rainnie DG, Hasselmo ME, Barkai E, Hearn EF, McCarley RW, Greene RW (1996) NMDA-dependent modulation of CA1 local circuit inhibition. J Neurosci 16:2034–2043PubMedGoogle Scholar
  105. Guo Y, Zhang H, Chen X, Cai W, Cheng J, Yang Y, Jin G, Zhen X (2009) Evaluation of the antipsychotic effect of bi-acetylated l-stepholidine (l-SPD-A), a novel dopamine and serotonin receptor dual ligand. Schizophr Res 115:41–49PubMedCrossRefGoogle Scholar
  106. Hannesson DK, Vacca G, Howland JG, Phillips AG (2004) Medial prefrontal cortex is involved in spatial temporal order memory but not spatial recognition memory in tests relying on spontaneous exploration in rats. Behav Brain Res 153:273–285PubMedCrossRefGoogle Scholar
  107. Harris JG, Kongs S, Allensworth D, Martin L, Tregellas J, Sullivan B, Zerbe G, Freedman R (2004) Effects of nicotine on cognitive deficits in schizophrenia. Neuropsychopharmacology 29:1378–1385PubMedCrossRefGoogle Scholar
  108. Harrison PJ, Weinberger DR (2005) Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatr 10:40–68, image 5CrossRefGoogle Scholar
  109. Harvey PD, Moriarty PJ, Friedman JI, White L, Parrella M, Mohs RC, Davis KL (2000) Differential preservation of cognitive functions in geriatric patients with lifelong chronic schizophrenia: less impairment in reading compared with other skill areas. Biol Psychiatry 47:962–968PubMedCrossRefGoogle Scholar
  110. Hashimoto K, Fujita Y, Shimizu E, Iyo M (2005) Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of clozapine, but not haloperidol. Eur J Pharmacol 519:114–117PubMedCrossRefGoogle Scholar
  111. Hashimoto K, Ishima T, Fujita Y, Matsuo M, Kobashi T, Takahagi M, Tsukada H, Iyo M (2008) Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of the novel selective alpha7 nicotinic receptor agonist SSR180711. Biol Psychiatry 63:92–97PubMedCrossRefGoogle Scholar
  112. Hauser TA, Kucinski A, Jordan KG, Gatto GJ, Wersinger SR, Hesse RA, Stachowiak EK, Stachowiak MK, Papke RL, Lippiello PM, Bencherif M (2009) TC-5619: an alpha7 neuronal nicotinic receptor-selective agonist that demonstrates efficacy in animal models of the positive and negative symptoms and cognitive dysfunction of schizophrenia. Biochem Pharmacol 78:803–812PubMedCrossRefGoogle Scholar
  113. Haydar SN, Yun H, Andrae PM, Mattes J, Zhang J, Kramer A, Smith DL, Huselton C, Graf R, Aschmies S, Schechter LE, Comery TA, Robichaud AJ (2010) 5-Cyclic amine-3-arylsulfonylindazoles as novel 5-HT6 receptor antagonists. J Med Chem 53:2521–2527PubMedCrossRefGoogle Scholar
  114. Heckers S, Rauch SL, Goff D, Savage CR, Schacter DL, Fischman AJ, Alpert NM (1998) Impaired recruitment of the hippocampus during conscious recollection in schizophrenia. Nat Neurosci 1:318–323PubMedCrossRefGoogle Scholar
  115. Heckers S, Curran T, Goff D, Rauch SL, Fischman AJ, Alpert NM, Schacter DL (2000) Abnormalities in the thalamus and prefrontal cortex during episodic object recognition in schizophrenia. Biol Psychiatry 48:651–657PubMedCrossRefGoogle Scholar
  116. Herring NR, Schaefer TL, Gudelsky GA, Vorhees CV, Williams MT (2008) Effect of +−methamphetamine on path integration learning, novel object recognition, and neurotoxicity in rats. Psychopharmacology (Berl) 199:637–650CrossRefGoogle Scholar
  117. Hersi AI, Richard JW, Gaudreau P, Quirion R (1995) Local modulation of hippocampal acetylcholine release by dopamine D1 receptors: a combined receptor autoradiography and in vivo dialysis study. J Neurosci 15:7150–7157PubMedGoogle Scholar
  118. Higuera-Matas A, Botreau F, Miguens M, Del Olmo N, Borcel E, Perez-Alvarez L, Garcia-Lecumberri C, Ambrosio E (2009) Chronic periadolescent cannabinoid treatment enhances adult hippocampal PSA-NCAM expression in male Wistar rats but only has marginal effects on anxiety, learning and memory. Pharmacol Biochem Behav 93:482–490PubMedCrossRefGoogle Scholar
  119. Hirst WD, Stean TO, Rogers DC, Sunter D, Pugh P, Moss SF, Bromidge SM, Riley G, Smith DR, Bartlett S, Heidbreder CA, Atkins AR, Lacroix LP, Dawson LA, Foley AG, Regan CM, Upton N (2006) SB-399885 is a potent, selective 5-HT6 receptor antagonist with cognitive enhancing properties in aged rat water maze and novel object recognition models. Eur J Pharmacol 553:109–119PubMedCrossRefGoogle Scholar
  120. Hirst WD, Andree TH, Aschmies S, Childers WE, Comery TA, Dawson LA, Day M, Feingold IB, Grauer SM, Harrison BL, Hughes ZA, Kao J, Kelly MG, van der Lee H, Rosenzweig-Lipson S, Saab AL, Smith DL, Sullivan K, Rizzo SJ, Tio C, Zhang MY, Schechter LE (2008) Correlating efficacy in rodent cognition models with in vivo 5-hydroxytryptamine1a receptor occupancy by a novel antagonist, (R)-N-(2-methyl-(4-indolyl-1-piperazinyl)ethyl)-N-(2-pyridinyl)-cyclohexan e carboxamide (WAY-101405). J Pharmacol Exp Ther 325:134–145PubMedCrossRefGoogle Scholar
  121. Hong LE, Schroeder M, Ross TJ, Buchholz B, Salmeron BJ, Wonodi I, Thaker GK, Stein EA (2011) Nicotine enhances but does not normalize visual sustained attention and the associated brain network in schizophrenia. Schizophr Bull 37:416–425PubMedCrossRefGoogle Scholar
  122. Hori SE, Powell KJ, Robertson GS (2007) Darbepoetin alfa (Aranesp) improves recognition memory in adult rats that have sustained bilateral ventral hippocampal lesions as neonates or young adults. Neuroscience 144:1–7PubMedCrossRefGoogle Scholar
  123. Hu JH, Ma YH, Jiang J, Yang N, Duan SH, Jiang ZH, Mei ZT, Fei J, Guo LH (2004) Cognitive impairment in mice over-expressing gamma-aminobutyric acid transporter 1 (GAT1). Neuroreport 15:9–12PubMedCrossRefGoogle Scholar
  124. Huang M, Li Z, Dai J, Shahid M, Wong EH, Meltzer HY (2008) Asenapine increases dopamine, norepinephrine, and acetylcholine efflux in the rat medial prefrontal cortex and hippocampus. Neuropsychopharmacology 33:2934–2945PubMedCrossRefGoogle Scholar
  125. Hultman CM, Sparen P, Takei N, Murray RM, Cnattingius S (1999) Prenatal and perinatal risk factors for schizophrenia, affective psychosis, and reactive psychosis of early onset: case–control study. BMJ 318:421–426PubMedCrossRefGoogle Scholar
  126. Ibi D, Nagai T, Koike H, Kitahara Y, Mizoguchi H, Niwa M, Jaaro-Peled H, Nitta A, Yoneda Y, Nabeshima T, Sawa A, Yamada K (2010) Combined effect of neonatal immune activation and mutant DISC1 on phenotypic changes in adulthood. Behav Brain Res 206:32–37PubMedCrossRefGoogle Scholar
  127. Ichikawa J, Li Z, Dai J, Meltzer HY (2002) Atypical antipsychotic drugs, quetiapine, iloperidone, and melperone, preferentially increase dopamine and acetylcholine release in rat medial prefrontal cortex: role of 5-HT1A receptor agonism. Brain Res 956:349–357PubMedCrossRefGoogle Scholar
  128. Ito HT, Smith SE, Hsiao E, Patterson PH (2010) Maternal immune activation alters nonspatial information processing in the hippocampus of the adult offspring. Brain Behav Immun 24:930–941PubMedCrossRefGoogle Scholar
  129. Jackson ME, Homayoun H, Moghaddam B (2004) NMDA receptor hypofunction produces concomitant firing rate potentiation and burst activity reduction in the prefrontal cortex. Proc Natl Acad Sci USA 101:8467–8472PubMedCrossRefGoogle Scholar
  130. Javitt DC (2009) Sensory processing in schizophrenia: neither simple nor intact. Schizophr Bull 35:1059–1064PubMedCrossRefGoogle Scholar
  131. Jenkins TA, Harte MK, Stenson G, Reynolds GP (2009) Neonatal lipopolysaccharide induces pathological changes in parvalbumin immunoreactivity in the hippocampus of the rat. Behav Brain Res 205:355–359PubMedCrossRefGoogle Scholar
  132. Johnson DJ, Forbes IT, Watson SP, Garzya V, Stevenson GI, Walker GR, Mudhar HS, Flynn ST, Wyman PA, Smith PW, Murkitt GS, Lucas AJ, Mookherjee CR, Watson JM, Gartlon JE, Bradford AM, Brown F (2010) The discovery of a series of N-substituted 3-(4-piperidinyl)-1,3-benzoxazolinones and oxindoles as highly brain penetrant, selective muscarinic M1 agonists. Bioorg Med Chem Lett 20:5434–5438PubMedCrossRefGoogle Scholar
  133. Jones DN, Higgins GA (1995) Effect of scopolamine on visual attention in rats. Psychopharmacology (Berl) 120:142–149CrossRefGoogle Scholar
  134. Jones CA, Brown AM, Auer DP, Fone KC (2010) The mGluR2/3 agonist LY379268 reverses post-weaning social isolation-induced recognition memory deficits in the rat. Psychopharmacology (Berl) 214:269–283CrossRefGoogle Scholar
  135. Kalechstein AD, Newton TF, Green M (2003) Methamphetamine dependence is associated with neurocognitive impairment in the initial phases of abstinence. J Neuropsychiatry Clin Neurosci 15:215–220PubMedCrossRefGoogle Scholar
  136. Kamei H, Nagai T, Nakano H, Togan Y, Takayanagi M, Takahashi K, Kobayashi K, Yoshida S, Maeda K, Takuma K, Nabeshima T, Yamada K (2006) Repeated methamphetamine treatment impairs recognition memory through a failure of novelty-induced ERK1/2 activation in the prefrontal cortex of mice. Biol Psychiatry 59:75–84PubMedCrossRefGoogle Scholar
  137. Kapur S, Remington G (2001) Dopamine D(2) receptors and their role in atypical antipsychotic action: still necessary and may even be sufficient. Biol Psychiatry 50:873–883PubMedCrossRefGoogle Scholar
  138. Karasawa J, Hashimoto K, Chaki S (2008) D-Serine and a glycine transporter inhibitor improve MK-801-induced cognitive deficits in a novel object recognition test in rats. Behav Brain Res 186:78–83PubMedCrossRefGoogle Scholar
  139. Keefe RS, Bilder RM, Davis SM, Harvey PD, Palmer BW, Gold JM, Meltzer HY, Green MF, Capuano G, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO, Davis CE, Hsiao JK, Lieberman JA (2007) Neurocognitive effects of antipsychotic medications in patients with chronic schizophrenia in the CATIE Trial. Arch Gen Psychiatry 64:633–647PubMedCrossRefGoogle Scholar
  140. Keefe RS, Malhotra AK, Meltzer HY, Kane JM, Buchanan RW, Murthy A, Sovel M, Li C, Goldman R (2008) Efficacy and safety of donepezil in patients with schizophrenia or schizoaffective disorder: significant placebo/practice effects in a 12-week, randomized, double-blind, placebo-controlled trial. Neuropsychopharmacology 33:1217–1228PubMedCrossRefGoogle Scholar
  141. Kendall I, Slotten HA, Codony X, Burgueno J, Pauwels PJ, Vela JM, Fone KC (2011) E-6801, a 5-HT6 receptor agonist, improves recognition memory by combined modulation of cholinergic and glutamatergic neurotransmission in the rat. Psychopharmacology (Berl) 213:413–430CrossRefGoogle Scholar
  142. King MV, Sleight AJ, Woolley ML, Topham IA, Marsden CA, Fone KC (2004) 5-HT6 receptor antagonists reverse delay-dependent deficits in novel object discrimination by enhancing consolidation--an effect sensitive to NMDA receptor antagonism. Neuropharmacology 47:195–204Google Scholar
  143. King MV, Spicer CH, Sleight AJ, Marsden CA, Fone KC (2009) Impact of regional 5-HT depletion on the cognitive enhancing effects of a typical 5-ht(6) receptor antagonist, Ro 04–6790, in the Novel Object Discrimination task. Psychopharmacology (Berl) 202:111–123CrossRefGoogle Scholar
  144. Krivoy A, Weizman A, Laor L, Hellinger N, Zemishlany Z, Fischel T (2008) Addition of memantine to antipsychotic treatment in schizophrenia inpatients with residual symptoms: a preliminary study. Eur Neuropsychopharmacol 18:117–121PubMedCrossRefGoogle Scholar
  145. Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, Heninger GR, Bowers MB, Charney DS (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 51:199–214PubMedCrossRefGoogle Scholar
  146. Krystal JH, D’Souza DC, Madonick S, Petrakis IL (1999) Toward a rational pharmacotherapy of comorbid substance abuse in schizophrenic patients. Schizophr Res 35(Suppl):S35–S49PubMedCrossRefGoogle Scholar
  147. Kunitachi S, Fujita Y, Ishima T, Kohno M, Horio M, Tanibuchi Y, Shirayama Y, Iyo M, Hashimoto K (2009) Phencyclidine-induced cognitive deficits in mice are ameliorated by subsequent subchronic administration of donepezil: role of sigma-1 receptors. Brain Res 1279:189–196PubMedCrossRefGoogle Scholar
  148. Lahti AC, Koffel B, LaPorte D, Tamminga CA (1995) Subanesthetic doses of ketamine stimulate psychosis in schizophrenia. Neuropsychopharmacology 13:9–19PubMedCrossRefGoogle Scholar
  149. Lane HY, Huang CL, Wu PL, Liu YC, Chang YC, Lin PY, Chen PW, Tsai G (2006) Glycine transporter I inhibitor, N-methylglycine (sarcosine), added to clozapine for the treatment of schizophrenia. Biol Psychiatry 60:645–649PubMedCrossRefGoogle Scholar
  150. Lane HY, Lin CH, Huang YJ, Liao CH, Chang YC, Tsai GE (2010) A randomized, double-blind, placebo-controlled comparison study of sarcosine (N-methylglycine) and D-serine add-on treatment for schizophrenia. Int J Neuropsychopharmacol 13:451–460PubMedCrossRefGoogle Scholar
  151. Lee SW, Lee JG, Lee BJ, Kim YH (2007) A 12-week, double-blind, placebo-controlled trial of galantamine adjunctive treatment to conventional antipsychotics for the cognitive impairments in chronic schizophrenia. Int Clin Psychopharmacol 22:63–68PubMedCrossRefGoogle Scholar
  152. Leonard S, Gault J, Moore T, Hopkins J, Robinson M, Olincy A, Adler LE, Cloninger CR, Kaufmann CA, Tsuang MT, Faraone SV, Malaspina D, Svrakic DM, Freedman R (1998) Further investigation of a chromosome 15 locus in schizophrenia: analysis of affected sibpairs from the NIMH Genetics Initiative. Am J Med Genet 81:308–312PubMedCrossRefGoogle Scholar
  153. Levin ED, Rezvani AH (2006) Nicotinic-antipsychotic drug interactions and cognitive function. EXS 98:185–205PubMedGoogle Scholar
  154. Levin ED, Rose JE (1995) Acute and chronic nicotinic interactions with dopamine systems and working memory performance. Ann N Y Acad Sci 757:245–252PubMedCrossRefGoogle Scholar
  155. Levin ED, Simon BB (1998) Nicotinic acetylcholine involvement in cognitive function in animals. Psychopharmacology (Berl) 138:217–230CrossRefGoogle Scholar
  156. Levin ED, Wilson W, Rose JE, McEvoy J (1996) Nicotine–haloperidol interactions and cognitive performance in schizophrenics. Neuropsychopharmacology 15:429–436PubMedCrossRefGoogle Scholar
  157. Levine S, Berkenbosch F, Suchecki D, Tilders FJ (1994) Pituitary–adrenal and interleukin-6 responses to recombinant interleukin-1 in neonatal rats. Psychoneuroendocrinology 19:143–153PubMedCrossRefGoogle Scholar
  158. Lewis DA, Hashimoto T, Volk DW (2005) Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 6:312–324PubMedCrossRefGoogle Scholar
  159. Li Z, Snigdha S, Roseman AS, Dai J, Meltzer HY (2008) Effect of muscarinic receptor agonists xanomeline and sabcomeline on acetylcholine and dopamine efflux in the rat brain; comparison with effects of 4-[3-(4-butylpiperidin-1-yl)-propyl]-7-fluoro-4H-benzo[1,4]oxazin-3-one (AC260584) and N-desmethylclozapine. Eur J Pharmacol 596:89–97PubMedCrossRefGoogle Scholar
  160. Lieben CK, Blokland A, Sik A, Sung E, van Nieuwenhuizen P, Schreiber R (2005) The selective 5-HT6 receptor antagonist Ro4368554 restores memory performance in cholinergic and serotonergic models of memory deficiency in the rat. Neuropsychopharmacology 30:2169–2179PubMedCrossRefGoogle Scholar
  161. Lieberman JA, Papadakis K, Csernansky J, Litman R, Volavka J, Jia XD, Gage A (2009) A randomized, placebo-controlled study of memantine as adjunctive treatment in patients with schizophrenia. Neuropsychopharmacology 34:1322–1329PubMedCrossRefGoogle Scholar
  162. Lipska BK, Jaskiw GE, Weinberger DR (1993) Postpubertal emergence of hyperresponsiveness to stress and to amphetamine after neonatal excitotoxic hippocampal damage: a potential animal model of schizophrenia. Neuropsychopharmacology 9:67–75PubMedGoogle Scholar
  163. Lipska BK, Aultman JM, Verma A, Weinberger DR, Moghaddam B (2002) Neonatal damage of the ventral hippocampus impairs working memory in the rat. Neuropsychopharmacology 27:47–54PubMedCrossRefGoogle Scholar
  164. Liu F, Grauer S, Kelley C, Navarra R, Graf R, Zhang G, Atkinson PJ, Popiolek M, Wantuch C, Khawaja X, Smith D, Olsen M, Kouranova E, Lai M, Pruthi F, Pulicicchio C, Day M, Gilbert A, Pausch MH, Brandon NJ, Beyer CE, Comery TA, Logue S, Rosenzweig-Lipson S, Marquis KL (2008) ADX47273 [S-(4-fluoro-phenyl)-{3-[3-(4-fluoro-phenyl)-[1,2,4]-oxadiazol-5-yl]-piperidin-1-yl}-methanone]: a novel metabotropic glutamate receptor 5-selective positive allosteric modulator with preclinical antipsychotic-like and procognitive activities. J Pharmacol Exp Ther 327:827–839PubMedCrossRefGoogle Scholar
  165. Long LE, Chesworth R, Arnold JC, Karl T (2010) A follow-up study: acute behavioural effects of Delta(9)-THC in female heterozygous neuregulin 1 transmembrane domain mutant mice. Psychopharmacology (Berl) 211:277–289CrossRefGoogle Scholar
  166. Lung FW, Shu BC, Kao WT, Chen CN, Ku YC, Tzeng DS (2009) Association of DRD4 uVNTR and TP53 codon 72 polymorphisms with schizophrenia: a case–control study. BMC Med Genet 10:147PubMedCrossRefGoogle Scholar
  167. MacEwan GW, Ehmann TS, Khanbhai I, Wrixon C (2001) Donepezil in schizophrenia—is it helpful? An experimental design case study. Acta Psychiatr Scand 104:469–472PubMedCrossRefGoogle Scholar
  168. Macor JE, Gurley D, Lanthorn T, Loch J, Mack RA, Mullen G, Tran O, Wright N, Gordon JC (2001) The 5-HT3 antagonist tropisetron (ICS 205–930) is a potent and selective alpha7 nicotinic receptor partial agonist. Bioorg Med Chem Lett 11:319–321PubMedCrossRefGoogle Scholar
  169. Maia L, de Mendonca A (2002) Does caffeine intake protect from Alzheimer’s disease? Eur J Neurol 9:377–382PubMedCrossRefGoogle Scholar
  170. Malaspina D, Harkavy-Friedman J, Corcoran C, Mujica-Parodi L, Printz D, Gorman JM, Van Heertum R (2004) Resting neural activity distinguishes subgroups of schizophrenia patients. Biol Psychiatry 56:931–937PubMedCrossRefGoogle Scholar
  171. Manns JR, Stark CE, Squire LR (2000) The visual paired-comparison task as a measure of declarative memory. Proc Natl Acad Sci USA 97:12375–12379PubMedCrossRefGoogle Scholar
  172. Marcos B, Gil-Bea FJ, Hirst WD, Garcia-Alloza M, Ramirez MJ (2006) Lack of localization of 5-HT6 receptors on cholinergic neurons: implication of multiple neurotransmitter systems in 5-HT6 receptor-mediated acetylcholine release. Eur J Neurosci 24:1299–1306PubMedCrossRefGoogle Scholar
  173. Marutle A, Zhang X, Court J, Piggott M, Johnson M, Perry R, Perry E, Nordberg A (2001) Laminar distribution of nicotinic receptor subtypes in cortical regions in schizophrenia. J Chem Neuroanat 22:115–126PubMedCrossRefGoogle Scholar
  174. Massey PV, Bhabra G, Cho K, Brown MW, Bashir ZI (2001) Activation of muscarinic receptors induces protein synthesis-dependent long-lasting depression in the perirhinal cortex. Eur J Neurosci 14:145–152PubMedCrossRefGoogle Scholar
  175. Mattay VS, Goldberg TE, Fera F, Hariri AR, Tessitore A, Egan MF, Kolachana B, Callicott JH, Weinberger DR (2003) Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. Proc Natl Acad Sci USA 100:6186–6191PubMedCrossRefGoogle Scholar
  176. McCreary AC, Glennon JC, Ashby CR Jr, Meltzer HY, Li Z, Reinders JH, Hesselink MB, Long SK, Herremans AH, van Stuivenberg H, Feenstra RW, Kruse CG (2007) SLV313 (1-(2,3-dihydro-benzo[1,4]dioxin-5-yl)-4- [5-(4-fluoro-phenyl)-pyridin-3-ylmethyl]-piperazine monohydrochloride): a novel dopamine D2 receptor antagonist and 5-HT1A receptor agonist potential antipsychotic drug. Neuropsychopharmacology 32:78–94PubMedCrossRefGoogle Scholar
  177. McKee RD, Squire LR (1993) On the development of declarative memory. J Exp Psychol Learn Mem Cogn 19:397–404PubMedCrossRefGoogle Scholar
  178. McKibben CE, Jenkins TA, Adams HN, Harte MK, Reynolds GP (2010) Effect of pretreatment with risperidone on phencyclidine-induced disruptions in object recognition memory and prefrontal cortex parvalbumin immunoreactivity in the rat. Behav Brain Res 208:132–136PubMedCrossRefGoogle Scholar
  179. McLean SL, Woolley ML, Thomas D, Neill JC (2009) Role of 5-HT receptor mechanisms in sub-chronic PCP-induced reversal learning deficits in the rat. Psychopharmacology (Berl) 206:403–414CrossRefGoogle Scholar
  180. McLean SL, Grayson B, Idris NF, Lesage AS, Pemberton DJ, Mackie C, Neill JC (2011) Activation of alpha7 nicotinic receptors improves phencyclidine-induced deficits in cognitive tasks in rats: implications for therapy of cognitive dysfunction in schizophrenia. Eur Neuropsychopharmacol 21:333–343PubMedCrossRefGoogle Scholar
  181. Messier C (1997) Object recognition in mice: improvement of memory by glucose. Neurobiol Learn Mem 67:172–175PubMedCrossRefGoogle Scholar
  182. Meyer U, Feldon J (2010) Epidemiology-driven neurodevelopmental animal models of schizophrenia. Prog Neurobiol 90:285–326PubMedCrossRefGoogle Scholar
  183. Millan MJ, Mannoury la Cour C, Novi F, Maggio R, Audinot V, Newman-Tancredi A, Cussac D, Pasteau V, Boutin JA, Dubuffet T, Lavielle G (2008) S33138 [N-[4-[2-[(3aS,9bR)-8-cyano-1,3a,4,9b-tetrahydro[1]-benzopyrano[3,4-c]pyrr ol-2(3H)-yl)-ethyl]phenylacetamide], a preferential dopamine D3 versus D2 receptor antagonist and potential antipsychotic agent: I. Receptor-binding profile and functional actions at G-protein-coupled receptors. J Pharmacol Exp Ther 324:587–599PubMedCrossRefGoogle Scholar
  184. Millan MJ, Buccafusco JJ, Loiseau F, Watson DJ, Decamp E, Fone KC, Thomasson-Perret N, Hill M, Mocaer E, Schneider JS (2010) The dopamine D(3) receptor antagonist, S33138, counters cognitive impairment in a range of rodent and primate procedures. Int J Neuropsychopharmacol 13:1035–1051PubMedCrossRefGoogle Scholar
  185. Minzenberg MJ, Poole JH, Benton C, Vinogradov S (2004) Association of anticholinergic load with impairment of complex attention and memory in schizophrenia. Am J Psychiatry 161:116–124PubMedCrossRefGoogle Scholar
  186. Mishkin M, Delacour J (1975) An analysis of short-term visual memory in the monkey. J Exp Psychol Anim Behav Process 1:326–334PubMedCrossRefGoogle Scholar
  187. Mitchell JB, Laiacona J (1998) The medial frontal cortex and temporal memory: tests using spontaneous exploratory behaviour in the rat. Behav Brain Res 97:107–113PubMedCrossRefGoogle Scholar
  188. Mitchell ES, Neumaier JF (2005) 5-HT6 receptors: a novel target for cognitive enhancement. Pharmacol Ther 108:320–333PubMedCrossRefGoogle Scholar
  189. Moghaddam B, Adams BW (1998) Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science 281:1349–1352PubMedCrossRefGoogle Scholar
  190. Moore TH, Zammit S, Lingford-Hughes A, Barnes TR, Jones PB, Burke M, Lewis G (2007) Cannabis use and risk of psychotic or affective mental health outcomes: a systematic review. Lancet 370:319–328PubMedCrossRefGoogle Scholar
  191. Morales P, Simola N, Bustamante D, Lisboa F, Fiedler J, Gebicke-Haerter PJ, Morelli M, Tasker RA, Herrera-Marschitz M (2010) Nicotinamide prevents the long-term effects of perinatal asphyxia on apoptosis, non-spatial working memory and anxiety in rats. Exp Brain Res 202:1–14PubMedCrossRefGoogle Scholar
  192. Mumby DG, Pinel JP, Wood ER (1990) Nonrecurring-items nonmatching-to-sample in rats: a new paradigm for testing non-spatial working memory. Psychobiology 18:321–326Google Scholar
  193. Myers CS, Robles O, Kakoyannis AN, Sherr JD, Avila MT, Blaxton TA, Thaker GK (2004) Nicotine improves delayed recognition in schizophrenic patients. Psychopharmacology (Berl) 174:334–340CrossRefGoogle Scholar
  194. Nagai T, Takuma K, Dohniwa M, Ibi D, Mizoguchi H, Kamei H, Nabeshima T, Yamada K (2007) Repeated methamphetamine treatment impairs spatial working memory in rats: reversal by clozapine but not haloperidol. Psychopharmacology (Berl) 194:21–32CrossRefGoogle Scholar
  195. Nagai T, Murai R, Matsui K, Kamei H, Noda Y, Furukawa H, Nabeshima T (2009) Aripiprazole ameliorates phencyclidine-induced impairment of recognition memory through dopamine D1 and serotonin 5-HT1A receptors. Psychopharmacology (Berl) 202:315–328CrossRefGoogle Scholar
  196. Nemanic S, Alvarado MC, Bachevalier J (2004) The hippocampal/parahippocampal regions and recognition memory: insights from visual paired comparison versus object-delayed nonmatching in monkeys. J Neurosci 24:2013–2026PubMedCrossRefGoogle Scholar
  197. Nilsson M, Hansson S, Carlsson A, Carlsson ML (2007) Differential effects of the N-methyl-d-aspartate receptor antagonist MK-801 on different stages of object recognition memory in mice. Neuroscience 149:123–130PubMedCrossRefGoogle Scholar
  198. Niwa M, Matsumoto Y, Mouri A, Ozaki N, Nabeshima T (2011) Vulnerability in early life to changes in the rearing environment plays a crucial role in the aetiopathology of psychiatric disorders. Int J Neuropsychopharmacol 14:459–477PubMedCrossRefGoogle Scholar
  199. Noda Y, Mouri A, Ando Y, Waki Y, Yamada SN, Yoshimi A, Yamada K, Ozaki N, Wang D, Nabeshima T (2010) Galantamine ameliorates the impairment of recognition memory in mice repeatedly treated with methamphetamine: involvement of allosteric potentiation of nicotinic acetylcholine receptors and dopaminergic-ERK1/2 systems. Int J Neuropsychopharmacol 13:1343–1354PubMedCrossRefGoogle Scholar
  200. Olincy A, Harris JG, Johnson LL, Pender V, Kongs S, Allensworth D, Ellis J, Zerbe GO, Leonard S, Stevens KE, Stevens JO, Martin L, Adler LE, Soti F, Kem WR, Freedman R (2006) Proof-of-concept trial of an alpha7 nicotinic agonist in schizophrenia. Arch Gen Psychiatry 63:630–638PubMedCrossRefGoogle Scholar
  201. O’Tuathaigh CM, O’Sullivan GJ, Kinsella A, Harvey RP, Tighe O, Croke DT, Waddington JL (2006) Sexually dimorphic changes in the exploratory and habituation profiles of heterozygous neuregulin-1 knockout mice. Neuroreport 17:79–83PubMedCrossRefGoogle Scholar
  202. O’Tuathaigh CM, Hryniewiecka M, Behan A, Tighe O, Coughlan C, Desbonnet L, Cannon M, Karayiorgou M, Gogos JA, Cotter DR, Waddington JL (2010) Chronic adolescent exposure to Delta-9-tetrahydrocannabinol in COMT mutant mice: impact on psychosis-related and other phenotypes. Neuropsychopharmacology 35:2262–2273PubMedCrossRefGoogle Scholar
  203. Overman WH, Bachevalier J, Sewell F, Drew J (1993) A comparison of children’s performance on two recognition memory tasks: delayed nonmatch-to-sample versus visual paired-comparison. Dev Psychobiol 26:345–357PubMedCrossRefGoogle Scholar
  204. Owens DG, Johnstone EC (2006) Precursors and prodromata of schizophrenia: findings from the Edinburgh High Risk Study and their literature context. Psychol Med 36:1501–1514Google Scholar
  205. Ozawa K, Hashimoto K, Kishimoto T, Shimizu E, Ishikura H, Iyo M (2006) Immune activation during pregnancy in mice leads to dopaminergic hyperfunction and cognitive impairment in the offspring: a neurodevelopmental animal model of schizophrenia. Biol Psychiatry 59:546–554PubMedCrossRefGoogle Scholar
  206. Papaleo F, Crawley JN, Song J, Lipska BK, Pickel J, Weinberger DR, Chen J (2008) Genetic dissection of the role of catechol-O-methyltransferase in cognition and stress reactivity in mice. J Neurosci 28:8709–8723PubMedCrossRefGoogle Scholar
  207. Pascalis O, Hunkin NM, Holdstock JS, Isaac CL, Mayes AR (2004) Visual paired comparison performance is impaired in a patient with selective hippocampal lesions and relatively intact item recognition. Neuropsychologia 42:1293–1300PubMedCrossRefGoogle Scholar
  208. Patil ST, Zhang L, Martenyi F, Lowe SL, Jackson KA, Andreev BV, Avedisova AS, Bardenstein LM, Gurovich IY, Morozova MA, Mosolov SN, Neznanov NG, Reznik AM, Smulevich AB, Tochilov VA, Johnson BG, Monn JA, Schoepp DD (2007) Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized phase 2 clinical trial. Nat Med 13:1102–1107PubMedCrossRefGoogle Scholar
  209. Pelletier M, Achim AM, Montoya A, Lal S, Lepage M (2005) Cognitive and clinical moderators of recognition memory in schizophrenia: a meta-analysis. Schizophr Res 74:233–252PubMedCrossRefGoogle Scholar
  210. Pereira LO, Strapasson AC, Nabinger PM, Achaval M, Netto CA (2008) Early enriched housing results in partial recovery of memory deficits in female, but not in male, rats after neonatal hypoxia–ischemia. Brain Res 1218:257–266PubMedCrossRefGoogle Scholar
  211. Pichat P, Bergis OE, Terranova JP, Urani A, Duarte C, Santucci V, Gueudet C, Voltz C, Steinberg R, Stemmelin J, Oury-Donat F, Avenet P, Griebel G, Scatton B (2007) SSR180711, a novel selective alpha7 nicotinic receptor partial agonist: (II) efficacy in experimental models predictive of activity against cognitive symptoms of schizophrenia. Neuropsychopharmacology 32:17–34PubMedCrossRefGoogle Scholar
  212. Pietá Dias C, Martins de Lima MN, Presti-Torres J, Dornelles A, Garcia VA, Siciliani Scalco F, Rewsaat Guimarães M, Constantino L, Budni P, Dal-Pizzol F, Schröder N (2007) Memantine reduces oxidative damage and enhances long-term recognition memory in aged rats. Neuroscience 146:1719–1725PubMedCrossRefGoogle Scholar
  213. Pitsikas N, Rigamonti AE, Cella SG, Muller EE (2003) The 5-HT 1A receptor antagonist WAY 100635 improves rats performance in different models of amnesia evaluated by the object recognition task. Brain Res 983:215–222PubMedCrossRefGoogle Scholar
  214. Prast H, Philippu A (2001) Nitric oxide as modulator of neuronal function. Prog Neurobiol 64:51–68PubMedCrossRefGoogle Scholar
  215. Puma C, Bizot JC (1998) Intraseptal infusions of a low dose of AP5, a NMDA receptor antagonist, improves memory in an object recognition task in rats. Neurosci Lett 248:183–186PubMedCrossRefGoogle Scholar
  216. Quinn HR, Matsumoto I, Callaghan PD, Long LE, Arnold JC, Gunasekaran N, Thompson MR, Dawson B, Mallet PE, Kashem MA, Matsuda-Matsumoto H, Iwazaki T, McGregor IS (2008) Adolescent rats find repeated Delta(9)-THC less aversive than adult rats but display greater residual cognitive deficits and changes in hippocampal protein expression following exposure. Neuropsychopharmacology 33:1113–1126PubMedCrossRefGoogle Scholar
  217. Radcliffe KA, Dani JA (1998) Nicotinic stimulation produces multiple forms of increased glutamatergic synaptic transmission. J Neurosci 18:7075–7083PubMedGoogle Scholar
  218. Radyushkin K, El-Kordi A, Boretius S, Castaneda S, Ronnenberg A, Reim K, Bickeböller H, Frahm J, Brose N, Ehrenreich H (2010) Complexin2 null mutation requires a ‘second hit’ for induction of phenotypic changes relevant to schizophrenia. Genes Brain Behav 9:592–602Google Scholar
  219. Raedler TJ, Bymaster FP, Tandon R, Copolov D, Dean B (2007) Towards a muscarinic hypothesis of schizophrenia. Mol Psychiatr 12:232–246Google Scholar
  220. Rammsayer TH (2001) Effects of pharmacologically induced changes in NMDA-receptor activity on long-term memory in humans. Learn Mem 8:20–25PubMedCrossRefGoogle Scholar
  221. Rasmusson DD (2000) The role of acetylcholine in cortical synaptic plasticity. Behav Brain Res 115:205–218PubMedCrossRefGoogle Scholar
  222. Reichel CM, Schwendt M, McGinty JF, Foster Olive M, See RE (2011) Loss of object recognition memory produced by extended access to methamphetamine self-administration is reversed by positive allosteric modulation of metabotropic glutamate receptor 5. Neuropsychopharmacology 36:782–792PubMedCrossRefGoogle Scholar
  223. Riedel W, Hogervorst E, Leboux R, Verhey F, van Praag H, Jolles J (1995) Caffeine attenuates scopolamine-induced memory impairment in humans. Psychopharmacology (Berl) 122:158–168CrossRefGoogle Scholar
  224. Riemer C, Borroni E, Levet-Trafit B, Martin JR, Poli S, Porter RH, Bos M (2003) Influence of the 5-HT6 receptor on acetylcholine release in the cortex: pharmacological characterization of 4-(2-bromo-6-pyrrolidin-1-ylpyridine-4-sulfonyl)phenylamine, a potent and selective 5-HT6 receptor antagonist. J Med Chem 46:1273–1276PubMedCrossRefGoogle Scholar
  225. Riley BP, Makoff A, Mogudi-Carter M, Jenkins T, Williamson R, Collier D, Murray R (2000) Haplotype transmission disequilibrium and evidence for linkage of the CHRNA7 gene region to schizophrenia in Southern African Bantu families. Am J Med Genet 96:196–201PubMedCrossRefGoogle Scholar
  226. Risch SC, McGurk S, Horner MD, Nahas Z, Owens SD, Molloy M, Gilliard C, Christie S, Markowitz JS, DeVane CL, Mintzer J, George MS (2001) A double-blind placebo-controlled case study of the use of donepezil to improve cognition in a schizoaffective disorder patient: functional MRI correlates. Neurocase 7:105–110PubMedCrossRefGoogle Scholar
  227. Ritchie K, Carriere I, de Mendonca A, Portet F, Dartigues JF, Rouaud O, Barberger-Gateau P, Ancelin ML (2007) The neuroprotective effects of caffeine: a prospective population study (the Three City Study). Neurology 69:536–545PubMedCrossRefGoogle Scholar
  228. Robbins TW (2005) Synthesizing schizophrenia: a bottom-up, symptomatic approach. Schizophr Bull 31:854–864PubMedCrossRefGoogle Scholar
  229. Rollema H, Lu Y, Schmidt AW, Zorn SH (1997) Clozapine increases dopamine release in prefrontal cortex by 5-HT1A receptor activation. Eur J Pharmacol 338:R3–R5PubMedCrossRefGoogle Scholar
  230. Roncarati R, Scali C, Comery TA, Grauer SM, Aschmi S, Bothmann H, Jow B, Kowal D, Gianfriddo M, Kelley C, Zanelli U, Ghiron C, Haydar S, Dunlop J, Terstappen GC (2009) Procognitive and neuroprotective activity of a novel alpha7 nicotinic acetylcholine receptor agonist for treatment of neurodegenerative and cognitive disorders. J Pharmacol Exp Ther 329:459–468PubMedCrossRefGoogle Scholar
  231. Rothblat LA, Hayes LL (1987) Short-term object recognition memory in the rat: nonmatching with trial-unique junk stimuli. Behav Neurosci 101:587–590PubMedCrossRefGoogle Scholar
  232. Sambeth A, Riedel WJ, Smits LT, Blokland A (2007) Cholinergic drugs affect novel object recognition in rats: relation with hippocampal EEG? Eur J Pharmacol 572:151–159PubMedCrossRefGoogle Scholar
  233. Sams-Dodd F, Lipska BK, Weinberger DR (1997) Neonatal lesions of the rat ventral hippocampus result in hyperlocomotion and deficits in social behaviour in adulthood. Psychopharmacology (Berl) 132:303–310CrossRefGoogle Scholar
  234. Sarter M, Bruno JP (1997) Trans-synaptic stimulation of cortical acetylcholine and enhancement of attentional functions: a rational approach for the development of cognition enhancers. Behav Brain Res 83:7–14PubMedCrossRefGoogle Scholar
  235. Schiapparelli L, Simon AM, Del Rio J, Frechilla D (2006) Opposing effects of AMPA and 5-HT1A receptor blockade on passive avoidance and object recognition performance: correlation with AMPA receptor subunit expression in rat hippocampus. Neuropharmacology 50:897–907PubMedCrossRefGoogle Scholar
  236. Schneider M, Koch M (2003) Chronic pubertal, but not adult chronic cannabinoid treatment impairs sensorimotor gating, recognition memory, and the performance in a progressive ratio task in adult rats. Neuropsychopharmacology 28:1760–1769PubMedCrossRefGoogle Scholar
  237. Schreiber R, Vivian J, Hedley L, Szczepanski K, Secchi RL, Zuzow M, van Laarhoven S, Moreau JL, Martin JR, Sik A, Blokland A (2007) Effects of the novel 5-HT(6) receptor antagonist RO4368554 in rat models for cognition and sensorimotor gating. Eur Neuropsychopharmacol 17:277–288PubMedCrossRefGoogle Scholar
  238. Schroder N, O’Dell SJ, Marshall JF (2003) Neurotoxic methamphetamine regimen severely impairs recognition memory in rats. Synapse 49:89–96PubMedCrossRefGoogle Scholar
  239. Schubert MH, Young KA, Hicks PB (2006) Galantamine improves cognition in schizophrenic patients stabilized on risperidone. Biol Psychiatry 60:530–533PubMedCrossRefGoogle Scholar
  240. Scott JC, Woods SP, Matt GE, Meyer RA, Heaton RK, Atkinson JH, Grant I (2007) Neurocognitive effects of methamphetamine: a critical review and meta-analysis. Neuropsychol Rev 17:275–297PubMedCrossRefGoogle Scholar
  241. Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 20:11–21PubMedCrossRefGoogle Scholar
  242. Seeman P, Lee T (1975) Antipsychotic drugs: direct correlation between clinical potency and presynaptic action on dopamine neurons. Science 188:1217–1219PubMedCrossRefGoogle Scholar
  243. Seeman P, Guan HC, Van Tol HH (1993) Dopamine D4 receptors elevated in schizophrenia. Nature 365:441–445PubMedCrossRefGoogle Scholar
  244. Seidman LJ, Lanca M, Kremen WS, Faraone SV, Tsuang MT (2003) Organizational and visual memory deficits in schizophrenia and bipolar psychoses using the Rey–Osterrieth complex figure: effects of duration of illness. J Clin Exp Neuropsychol 25:949–964PubMedCrossRefGoogle Scholar
  245. Shiina A, Shirayama Y, Niitsu T, Hashimoto T, Yoshida T, Hasegawa T, Haraguchi T, Kanahara N, Shiraishi T, Fujisaki M, Fukami G, Nakazato M, Iyo M, Hashimoto K (2010) A randomised, double-blind, placebo-controlled trial of tropisetron in patients with schizophrenia. Ann Gen Psychiatr 9:27CrossRefGoogle Scholar
  246. Shirayama Y, Yamamoto A, Nishimura T, Katayama S, Kawahara R (2007) Subsequent exposure to the choline uptake enhancer MKC-231 antagonizes phencyclidine-induced behavioral deficits and reduction in septal cholinergic neurons in rats. Eur Neuropsychopharmacol 17:616–626PubMedCrossRefGoogle Scholar
  247. Shirazi-Southall S, Rodriguez DE, Nomikos GG (2002) Effects of typical and atypical antipsychotics and receptor selective compounds on acetylcholine efflux in the hippocampus of the rat. Neuropsychopharmacology 26:583–594PubMedCrossRefGoogle Scholar
  248. Simola N, Bustamante D, Pinna A, Pontis S, Morales P, Morelli M, Herrera-Marschitz M (2008) Acute perinatal asphyxia impairs non-spatial memory and alters motor coordination in adult male rats. Exp Brain Res 185:595–601PubMedCrossRefGoogle Scholar
  249. Singer P, Boison D, Möhler H, Feldon J, Yee BK (2007) Enhanced recognition memory following glycine transporter 1 deletion in forebrain neurons. Behav Neurosci 121:815–825PubMedCrossRefGoogle Scholar
  250. Singer JM, Wilson MW, Johnson PD, Graham SR, Cooke LW, Roof RL, Boxer PA, Gold LH, Meltzer LT, Janssen A, Roush N, Campbell JE, Su TZ, Hurst SI, Stoner CL, Schwarz JB (2009) Synthesis and SAR of tolylamine 5-HT6 antagonists. Bioorg Med Chem Lett 19:2409–2412PubMedCrossRefGoogle Scholar
  251. Smith RC, Warner-Cohen J, Matute M, Butler E, Kelly E, Vaidhyanathaswamy S, Khan A (2006) Effects of nicotine nasal spray on cognitive function in schizophrenia. Neuropsychopharmacology 31:637–643PubMedCrossRefGoogle Scholar
  252. Smith RC, Lindenmayer JP, Davis JM, Cornwell J, Noth K, Gupta S, Sershen H, Lajtha A (2009a) Cognitive and antismoking effects of varenicline in patients with schizophrenia or schizoaffective disorder. Schizophr Res 110:149–155PubMedCrossRefGoogle Scholar
  253. Smith SM, Uslaner JM, Yao L, Mullins CM, Surles NO, Huszar SL, McNaughton CH, Pascarella DM, Kandebo M, Hinchliffe RM, Sparey T, Brandon NJ, Jones B, Venkatraman S, Young MB, Sachs N, Jacobson MA, Hutson PH (2009b) The behavioral and neurochemical effects of a novel D-amino acid oxidase inhibitor compound 8 [4H-thieno [3,2-b]pyrrole-5-carboxylic acid] and D-serine. J Pharmacol Exp Ther 328:921–930PubMedCrossRefGoogle Scholar
  254. Snigdha S, Idris N, Grayson B, Shahid M, Neill JC (2010) Asenapine improves phencyclidine-induced object recognition deficits in the rat: evidence for engagement of a dopamine D(1) receptor mechanism. Psychopharmacology (Berl) 214:843–853CrossRefGoogle Scholar
  255. Sood P, Idris NF, Cole S, Grayson B, Neill JC, Young AM (2010) PD168077, a D4 receptor agonist, reverses object recognition deficits in rats: potential role for D4 receptor mechanisms in improving cognitive dysfunction in schizophrenia. J Psychopharmacol 25:792–800PubMedCrossRefGoogle Scholar
  256. Steckler T, Sahgal A (1995) The role of serotonergic–cholinergic interactions in the mediation of cognitive behaviour. Behav Brain Res 67:165–199PubMedCrossRefGoogle Scholar
  257. Stober G, Saar K, Ruschendorf F, Meyer J, Nurnberg G, Jatzke S, Franzek E, Reis A, Lesch KP, Wienker TF, Beckmann H (2000) Splitting schizophrenia: periodic catatonia-susceptibility locus on chromosome 15q15. Am J Hum Genet 67:1201–1207PubMedGoogle Scholar
  258. Sullivan EV, Mathalon DH, Ha CN, Zipursky RB, Pfefferbaum A (1992) The contribution of constructional accuracy and organizational strategy to nonverbal recall in schizophrenia and chronic alcoholism. Biol Psychiatry 32:312–333PubMedCrossRefGoogle Scholar
  259. Sullivan PF, Kendler KS, Neale MC (2003) Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 60:1187–1192PubMedCrossRefGoogle Scholar
  260. Sydserff S, Sutton EJ, Song D, Quirk MC, Maciag C, Li C, Jonak G, Gurley D, Gordon JC, Christian EP, Doherty JJ, Hudzik T, Johnson E, Mrzljak L, Piser T, Smagin GN, Wang Y, Widzowski D, Smith JS (2009) Selective alpha7 nicotinic receptor activation by AZD0328 enhances cortical dopamine release and improves learning and attentional processes. Biochem Pharmacol 78:880–888PubMedCrossRefGoogle Scholar
  261. Taylor SB, Markham JA, Taylor AR, Kanaskie BZ, Koenig JI (2011) Sex-specific neuroendocrine and behavioral phenotypes in hypomorphic Type II Neuregulin 1 rats. Behav Brain Res 224:223–232PubMedCrossRefGoogle Scholar
  262. Tordera RM, Totterdell S, Wojcik SM, Brose N, Elizalde N, Lasheras B, Del Rio J (2007) Enhanced anxiety, depressive-like behaviour and impaired recognition memory in mice with reduced expression of the vesicular glutamate transporter 1 (VGLUT1). Eur J Neurosci 25:281–290Google Scholar
  263. Tretter V, Revilla-Sanchez R, Houston C, Terunuma M, Havekes R, Florian C, Jurd R, Vithlani M, Michels G, Couve A, Sieghart W, Brandon N, Abel T, Smart TG, Moss SJ (2009) Deficits in spatial memory correlate with modified {gamma}-aminobutyric acid type A receptor tyrosine phosphorylation in the hippocampus. Proc Natl Acad Sci USA 106:20039–20044PubMedGoogle Scholar
  264. Tsai G, Yang P, Chung LC, Lange N, Coyle JT (1998) D-serine added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry 44:1081–1089PubMedCrossRefGoogle Scholar
  265. Tugal O, Yazici KM, Anil Yagcioglu AE, Gogus A (2004) A double-blind, placebo controlled, cross-over trial of adjunctive donepezil for cognitive impairment in schizophrenia. Int J Neuropsychopharmacol 7:117–123PubMedCrossRefGoogle Scholar
  266. Tulving E (1985) How many memory systems are there? Am Psychol 40:385–398CrossRefGoogle Scholar
  267. Uslaner JM, Parmentier-Batteur S, Flick RB, Surles NO, Lam JS, McNaughton CH, Jacobson MA, Hutson PH (2009) Dose-dependent effect of CDPPB, the mGluR5 positive allosteric modulator, on recognition memory is associated with GluR1 and CREB phosphorylation in the prefrontal cortex and hippocampus. Neuropharmacology 57:531–538PubMedCrossRefGoogle Scholar
  268. van der Stelt M, Di Marzo V (2003) The endocannabinoid system in the basal ganglia and in the mesolimbic reward system: implications for neurological and psychiatric disorders. Eur J Pharmacol 480:133–150PubMedCrossRefGoogle Scholar
  269. Van Dort CJ, Baghdoyan HA, Lydic R (2009) Adenosine A(1) and A(2A) receptors in mouse prefrontal cortex modulate acetylcholine release and behavioral arousal. J Neurosci 29:871–881PubMedCrossRefGoogle Scholar
  270. Vigano D, Guidali C, Petrosino S, Realini N, Rubino T, Di Marzo V, Parolaro D (2009) Involvement of the endocannabinoid system in phencyclidine-induced cognitive deficits modelling schizophrenia. Int J Neuropsychopharmacol 12:599–614PubMedCrossRefGoogle Scholar
  271. Vijayraghavan S, Wang M, Birnbaum SG, Williams GV, Arnsten AF (2007) Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nat Neurosci 10:376–384PubMedCrossRefGoogle Scholar
  272. Wallace TL, Callahan PM, Tehim A, Bertrand D, Tombaugh G, Wang S, Xie W, Rowe WB, Ong V, Graham E, Terry AV Jr, Rodefer JS, Herbert B, Murray M, Porter R, Santarelli L, Lowe DA (2011) RG3487, a novel nicotinic alpha7 receptor partial agonist, improves cognition and sensorimotor gating in rodents. J Pharmacol Exp Ther 336:242–253PubMedCrossRefGoogle Scholar
  273. Warburton EC, Koder T, Cho K, Massey PV, Duguid G, Barker GR, Aggleton JP, Bashir ZI, Brown MW (2003) Cholinergic neurotransmission is essential for perirhinal cortical plasticity and recognition memory. Neuron 38:987–996PubMedCrossRefGoogle Scholar
  274. Weiser M, Reichenberg A, Grotto I, Yasvitzky R, Rabinowitz J, Lubin G, Nahon D, Knobler HY, Davidson M (2004) Higher rates of cigarette smoking in male adolescents before the onset of schizophrenia: a historical-prospective cohort study. Am J Psychiatry 161:1219–1223PubMedCrossRefGoogle Scholar
  275. West PJ, Marcy VR, Marino MJ, Schaffhauser H (2009) Activation of the 5-HT(6) receptor attenuates long-term potentiation and facilitates GABAergic neurotransmission in rat hippocampus. Neuroscience 164:692–701PubMedCrossRefGoogle Scholar
  276. Winters BD, Bussey TJ (2005a) Glutamate receptors in perirhinal cortex mediate encoding, retrieval, and consolidation of object recognition memory. J Neurosci 25:4243–4251PubMedCrossRefGoogle Scholar
  277. Winters BD, Bussey TJ (2005b) Removal of cholinergic input to perirhinal cortex disrupts object recognition but not spatial working memory in the rat. Eur J Neurosci 21:2263–2270PubMedCrossRefGoogle Scholar
  278. Winters BD, Forwood SE, Cowell RA, Saksida LM, Bussey TJ (2004) Double dissociation between the effects of peri-postrhinal cortex and hippocampal lesions on tests of object recognition and spatial memory: heterogeneity of function within the temporal lobe. J Neurosci 24:5901–5908PubMedCrossRefGoogle Scholar
  279. Winters BD, Saksida LM, Bussey TJ (2006) Paradoxical facilitation of object recognition memory after infusion of scopolamine into perirhinal cortex: implications for cholinergic system function. J Neurosci 26:9520–9529PubMedCrossRefGoogle Scholar
  280. Winters BD, Saksida LM, Bussey TJ (2008) Object recognition memory: neurobiological mechanisms of encoding, consolidation and retrieval. Neurosci Biobehav Rev 32:1055–1070PubMedCrossRefGoogle Scholar
  281. Winters BD, Bartko SJ, Saksida LM, Bussey TJ (2010) Muscimol, AP5, or scopolamine infused into perirhinal cortex impairs two-choice visual discrimination learning in rats. Neurobiol Learn Mem 93:221–228PubMedCrossRefGoogle Scholar
  282. Wishka DG, Walker DP, Yates KM, Reitz SC, Jia S, Myers JK, Olson KL, Jacobsen EJ, Wolfe ML, Groppi VE, Hanchar AJ, Thornburgh BA, Cortes-Burgos LA, Wong EH, Staton BA, Raub TJ, Higdon NR, Wall TM, Hurst RS, Walters RR, Hoffmann WE, Hajos M, Franklin S, Carey G, Gold LH, Cook KK, Sands SB, Zhao SX, Soglia JR, Kalgutkar AS, Arneric SP, Rogers BN (2006) Discovery of N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]furo[2,3-c]pyridine-5-carboxamide, an agonist of the alpha7 nicotinic acetylcholine receptor, for the potential treatment of cognitive deficits in schizophrenia: synthesis and structure–activity relationship. J Med Chem 49:4425–4436PubMedCrossRefGoogle Scholar
  283. Woo TU, Miller JL, Lewis DA (1997) Schizophrenia and the parvalbumin-containing class of cortical local circuit neurons. Am J Psychiatry 154:1013–1015PubMedGoogle Scholar
  284. Woolley M, Marsden C, Sleight A, Fone K (2000) Reversal of a scopolamine-induced deficit in object discrimination by a selective 5-HT6 receptor antagonist, Ro 046790, in rats. Br J Pharmacol: U39-U39.Google Scholar
  285. Woolley ML, Marsden CA, Sleight AJ, Fone KC (2003) Reversal of a cholinergic-induced deficit in a rodent model of recognition memory by the selective 5-HT6 receptor antagonist, Ro 04–6790. Psychopharmacology (Berl) 170:358–367CrossRefGoogle Scholar
  286. Woolley ML, Waters KA, Reavill C, Bull S, Lacroix LP, Martyn AJ, Hutcheson DM, Valerio E, Bate S, Jones DN, Dawson LA (2008) Selective dopamine D4 receptor agonist (A-412997) improves cognitive performance and stimulates motor activity without influencing reward-related behaviour in rat. Behav Pharmacol 19:765–776PubMedCrossRefGoogle Scholar
  287. Yonelinas AP, Aly M, Wang WC, Koen JD (2010) Recollection and familiarity: examining controversial assumptions and new directions. Hippocampus 20:1178–1194PubMedCrossRefGoogle Scholar
  288. Young JW, Powell SB, Risbrough V, Marston HM, Geyer MA (2009) Using the MATRICS to guide development of a preclinical cognitive test battery for research in schizophrenia. Pharmacol Ther 122:150–202PubMedCrossRefGoogle Scholar
  289. Zamberletti E, Vigano D, Guidali C, Rubino T, Parolaro D (2010) Long-lasting recovery of psychotic-like symptoms in isolation-reared rats after chronic but not acute treatment with the cannabinoid antagonist AM251. Int J Neuropsychopharmacol: 1–14.Google Scholar
  290. Zanassi P, Paolillo M, Feliciello A, Avvedimento EV, Gallo V, Schinelli S (2001) cAMP-dependent protein kinase induces cAMP-response element-binding protein phosphorylation via an intracellular calcium release/ERK-dependent pathway in striatal neurons. J Biol Chem 276:11487–11495PubMedCrossRefGoogle Scholar
  291. Zhang Z, Sun J, Reynolds GP (2002) A selective reduction in the relative density of parvalbumin-immunoreactive neurons in the hippocampus in schizophrenia patients. Chin Med J (Engl) 115:819–823Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Experimental PsychologyUniversity of CambridgeCambridgeUK
  2. 2.The MRC and Wellcome Trust Behavioural and Clinical Neuroscience InstituteUniversity of CambridgeCambridgeUK

Personalised recommendations