, Volume 220, Issue 3, pp 599–610

Effect of lamotrigine and carbamazepine on corticotropin-releasing factor-associated serotonergic transmission in rat dorsal raphe nucleus

  • Shunske Tanahashi
  • Satoshi Yamamura
  • Masanori Nakagawa
  • Eishi Motomura
  • Motohiro Okada
Original Investigation


Corticotropin-releasing factor (CRF) and serotonin are important transmitters of the pathophysiology of mood disorder. To clarify the mechanisms of action of lamotrigine (LTG) and carbamazepine (CBZ), we determined their effects on serotonin release associated with CRF in rat dorsal raphe nucleus (DRN) and median prefrontal cortex (mPFC) using dual-probe microdialysis. Neither perfusion with CRF1 nor CRF2 antagonists into DRN-affected serotonin release in DRN and mPFC. Perfusion of 10 μM CRF into DRN increased serotonin release in both regions, whereas 0.1 μM CRF decreased and had no effect on serotonin release in DRN and mPFC, respectively. Pre-perfusion with CRF1 antagonist into DRN inhibited 0.1 μM CRF-induced serotonin reduction, whereas pre-perfusion with CRF2 antagonist in DRN inhibited 10 μM CRF-induced serotonin elevation, without affecting 0.1 μM CRF-induced serotonin reduction. LTG perfusion concentration dependently decreased serotonin releases in DRN and mPFC. Therapeutic and supratherapeutic concentrations of CBZ increased and decreased serotonin releases in both regions, respectively. Pre-perfusion with sub-therapeutic concentration LTG inhibited CRF1-induced serotonin reduction without affecting CRF2-induced serotonin release, whereas pre-perfusion with therapeutic concentration of LTG inhibited both CRF1- and CRF2-actions. In contrast, both therapeutic and supratherapeutic concentrations of CBZ inhibited CRF2-induced serotonin release without affecting CRF1-induced serotonin reduction. Neither LTG nor CBZ affected the CRF-induced cAMP production in cells over-expressing CRF1 and CRF2 receptors. This study demonstrated that inhibition of CRF2-receptor-mediated serotonergic transmission is a mechanism shared by LTG and CBZ, two clinically related compounds, whereas LTG but not CBZ inhibits CRF1-receptor-mediated serotonergic transmission. Therefore, these mechanisms may contribute to the clinical actions of these agents.


CRF Dorsal raphe nucleus Lamotrigine Carbamazepine Medial prefrontal cortex Microdialysis Serotonin 


  1. Adell A, Celada P, Abellan MT, Artigas F (2002) Origin and functional role of the extracellular serotonin in the midbrain raphe nuclei. Brain Res Brain Res Rev 39:154–180PubMedCrossRefGoogle Scholar
  2. Ahmad S, Fowler LJ, Whitton PS (2004a) Effect of acute and chronic lamotrigine on basal and stimulated extracellular 5-hydroxytryptamine and dopamine in the hippocampus of the freely moving rat. Br J Pharmacol 142:136–142PubMedCrossRefGoogle Scholar
  3. Ahmad S, Fowler LJ, Whitton PS (2004b) Effects of acute and chronic lamotrigine treatment on basal and stimulated extracellular amino acids in the hippocampus of freely moving rats. Brain Res 1029:41–47PubMedCrossRefGoogle Scholar
  4. Ahmad S, Fowler LJ, Whitton PS (2005a) Effects of combined lamotrigine and valproate on basal and stimulated extracellular amino acids and monoamines in the hippocampus of freely moving rats. Naunyn Schmiedebergs Arch Pharmacol 371:1–8PubMedCrossRefGoogle Scholar
  5. Ahmad S, Fowler LJ, Whitton PS (2005b) Lamotrigine, carbamazepine and phenytoin differentially alter extracellular levels of 5-hydroxytryptamine, dopamine and amino acids. Epilepsy Res 63:141–149PubMedCrossRefGoogle Scholar
  6. Alexander SP, Mathie A, Peters JA (2009) Guide to Receptors and Channels (GRAC), 4th edn. Br J Pharmacol 158(Suppl 1):S1–254Google Scholar
  7. Amann B, Born C, Crespo JM, Pomarol-Clotet E, McKenna P (2011) Lamotrigine: when and where does it act in affective disorders? A systematic review. J Psychopharmacol (in press)Google Scholar
  8. Arborelius L, Owens MJ, Plotsky PM, Nemeroff CB (1999) The role of corticotropin-releasing factor in depression and anxiety disorders. J Endocrinol 160:1–12PubMedCrossRefGoogle Scholar
  9. Bale TL (2005) Sensitivity to stress: dysregulation of CRF pathways and disease development. Horm Behav 48:1–10PubMedCrossRefGoogle Scholar
  10. Behan DP, Grigoriadis DE, Lovenberg T, Chalmers D, Heinrichs S, Liaw C et al (1996) Neurobiology of corticotropin releasing factor (CRF) receptors and CRF-binding protein: implications for the treatment of CNS disorders. Mol Psychiatry 1:265–277PubMedGoogle Scholar
  11. Binneman B, Feltner D, Kolluri S, Shi Y, Qiu R, Stiger T (2008) A 6-week randomized, placebo-controlled trial of CP-316,311 (a selective CRH1 antagonist) in the treatment of major depression. Am J Psychiatry 165:617–620PubMedCrossRefGoogle Scholar
  12. Chen R, Lewis KA, Perrin MH, Vale WW (1993) Expression cloning of a human corticotropin-releasing-factor receptor. Proc Natl Acad Sci U S A 90:8967–8971PubMedCrossRefGoogle Scholar
  13. Chen C, Dagnino R Jr, De Souza EB, Grigoriadis DE, Huang CQ, Kim KI et al (1996) Design and synthesis of a series of non-peptide high-affinity human corticotropin-releasing factor1 receptor antagonists. J Med Chem 39:4358–4360PubMedCrossRefGoogle Scholar
  14. Dautzenberg FM, Py-Lang G, Higelin J, Fischer C, Wright MB, Huber G (2001) Different binding modes of amphibian and human corticotropin-releasing factor type 1 and type 2 receptors: evidence for evolutionary differences. J Pharmacol Exp Ther 296:113–120PubMedGoogle Scholar
  15. Drizin I, Gregg RJ, Scanio MJ, Shi L, Gross MF, Atkinson RN et al (2008) Discovery of potent furan piperazine sodium channel blockers for treatment of neuropathic pain. Bioorg Med Chem 16:6379–6386PubMedCrossRefGoogle Scholar
  16. El-Mallakh RS, Salem MR, Chopra A, Mickus GJ, Penagaluri P, Movva R (2010) A blinded, randomized comparison of immediate-release and extended-release carbamazepine capsules in manic and depressed bipolar subjects. Ann Clin Psychiatry 22:3–8PubMedGoogle Scholar
  17. Geddes JR, Calabrese JR, Goodwin GM (2009) Lamotrigine for treatment of bipolar depression: independent meta-analysis and meta-regression of individual patient data from five randomised trials. Br J Psychiatry 194:4–9PubMedCrossRefGoogle Scholar
  18. Gold PW, Wong ML, Chrousos GP, Licinio J (1996) Stress system abnormalities in melancholic and atypical depression: molecular, pathophysiological, and therapeutic implications. Mol Psychiatry 1:257–264PubMedGoogle Scholar
  19. Hauger RL, Risbrough V, Oakley RH, Olivares-Reyes JA, Dautzenberg FM (2009) Role of CRF receptor signaling in stress vulnerability, anxiety, and depression. Ann N Y Acad Sci 1179:120–143PubMedCrossRefGoogle Scholar
  20. Holsboer F, Ising M (2008) Central CRH system in depression and anxiety—evidence from clinical studies with CRH1 receptor antagonists. Eur J Pharmacol 583:350–357PubMedCrossRefGoogle Scholar
  21. Imai H, Steindler DA, Kitai ST (1986) The organization of divergent axonal projections from the midbrain raphe nuclei in the rat. J Comp Neurol 243:363–380PubMedCrossRefGoogle Scholar
  22. Ji G, Neugebauer V (2007) Differential effects of CRF1 and CRF2 receptor antagonists on pain-related sensitization of neurons in the central nucleus of the amygdala. J Neurophysiol 97:3893–3904PubMedCrossRefGoogle Scholar
  23. Ji G, Neugebauer V (2008) Pro- and anti-nociceptive effects of corticotropin-releasing factor (CRF) in central amygdala neurons are mediated through different receptors. J Neurophysiol 99:1201–1212PubMedCrossRefGoogle Scholar
  24. Kang HJ, Adams DH, Simen A, Simen BB, Rajkowska G, Stockmeier CA et al (2007) Gene expression profiling in postmortem prefrontal cortex of major depressive disorder. J Neurosci 27:13329–13340PubMedCrossRefGoogle Scholar
  25. Kawata Y, Okada M, Murakami T, Kamata A, Zhu G, Kaneko S (2001) Pharmacological discrimination between effects of carbamazepine on hippocampal basal, Ca(2+)- and K(+)-evoked serotonin release. Br J Pharmacol 133:557–567PubMedCrossRefGoogle Scholar
  26. Ketter TA, Wang PW, Nowakowska C, Marsh WK (2004) New medication treatment options for bipolar disorders. Acta Psychiatr Scand Suppl:18–33Google Scholar
  27. Kirby LG, Rice KC, Valentino RJ (2000) Effects of corticotropin-releasing factor on neuronal activity in the serotonergic dorsal raphe nucleus. Neuropsychopharmacology 22:148–162PubMedCrossRefGoogle Scholar
  28. Kishimoto T, Radulovic J, Radulovic M, Lin CR, Schrick C, Hooshmand F et al (2000) Deletion of crhr2 reveals an anxiolytic role for corticotropin-releasing hormone receptor-2. Nat Genet 24:415–419PubMedCrossRefGoogle Scholar
  29. Land BB, Bruchas MR, Lemos JC, Xu M, Melief EJ, Chavkin C (2008) The dysphoric component of stress is encoded by activation of the dynorphin kappa-opioid system. J Neurosci 28:407–414PubMedCrossRefGoogle Scholar
  30. Lawrence AJ, Krstew EV, Dautzenberg FM, Ruhmann A (2002) The highly selective CRF(2) receptor antagonist K41498 binds to presynaptic CRF(2) receptors in rat brain. Br J Pharmacol 136:896–904PubMedCrossRefGoogle Scholar
  31. Le Quellec A, Dupin S, Genissel P, Saivin S, Marchand B, Houin G (1995) Microdialysis probes calibration: gradient and tissue dependent changes in no net flux and reverse dialysis methods. J Pharmacol Toxicol Methods 33:11–16PubMedCrossRefGoogle Scholar
  32. Marrosu F, Fratta W, Carcangiu P, Giagheddu M, Gessa GL (1988) Localized epileptiform activity induced by murine CRF in rats. Epilepsia 29:369–373PubMedCrossRefGoogle Scholar
  33. Marson AG, Al-Kharusi AM, Alwaidh M, Appleton R, Baker GA, Chadwick DW et al (2007a) The SANAD study of effectiveness of carbamazepine, gabapentin, lamotrigine, oxcarbazepine, or topiramate for treatment of partial epilepsy: an unblinded randomised controlled trial. Lancet 369:1000–1015PubMedCrossRefGoogle Scholar
  34. Marson AG, Al-Kharusi AM, Alwaidh M, Appleton R, Baker GA, Chadwick DW et al (2007b) The SANAD study of effectiveness of valproate, lamotrigine, or topiramate for generalised and unclassifiable epilepsy: an unblinded randomised controlled trial. Lancet 369:1016–1026PubMedCrossRefGoogle Scholar
  35. Masuda Y, Utsui Y, Shiraishi Y, Karasawa T, Yoshida K, Shimizu M (1979) Relationships between plasma concentrations of diphenylhydantoin, phenobarbital, carbamazepine, and 3-sulfamoylmethyl-1,2-benzisoxazole (AD-810), a new anticonvulsant agent, and their anticonvulsant or neurotoxic effects in experimental animals. Epilepsia 20:623–633PubMedCrossRefGoogle Scholar
  36. Mattson R (2002) Antiepileptic drug monotherapy in adults. In: Levy RH MR, Meldrum BS, Perucca E (ed) Antiepileptic drugs, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 72–95Google Scholar
  37. McLean MJ, Macdonald RL (1986) Carbamazepine and 10,11-epoxycarbamazepine produce use- and voltage-dependent limitation of rapidly firing action potentials of mouse central neurons in cell culture. J Pharmacol Exp Ther 238:727–738PubMedGoogle Scholar
  38. Mirza NR, Bright JL, Stanhope KJ, Wyatt A, Harrington NR (2005) Lamotrigine has an anxiolytic-like profile in the rat conditioned emotional response test of anxiety: a potential role for sodium channels? Psychopharmacology (Berl) 180:159–168CrossRefGoogle Scholar
  39. Morris RG, Black AB, Harris AL, Batty AB, Sallustio BC (1998) Lamotrigine and therapeutic drug monitoring: retrospective survey following the introduction of a routine service. Br J Clin Pharmacol 46:547–551PubMedCrossRefGoogle Scholar
  40. Muller MB, Wurst W (2004) Getting closer to affective disorders: the role of CRH receptor systems. Trends Mol Med 10:409–415PubMedCrossRefGoogle Scholar
  41. Murakami T, Okada M, Kawata Y, Zhu G, Kamata A, Kaneko S (2001) Determination of effects of antiepileptic drugs on SNAREs-mediated hippocampal monoamine release using in vivo microdialysis. Br J Pharmacol 134:507–520PubMedCrossRefGoogle Scholar
  42. Okada M, Hirano T, Mizuno K, Chiba T, Kawata Y, Kiryu K et al (1997) Biphasic effects of carbamazepine on the dopaminergic system in rat striatum and hippocampus. Epilepsy Res 28:143–153PubMedCrossRefGoogle Scholar
  43. Okada M, Hirano T, Mizuno K, Kawata Y, Wada K, Murakami T et al (1998a) Effects of carbamazepine on hippocampal serotonergic system. Epilepsy Res 31:187–198PubMedCrossRefGoogle Scholar
  44. Okada M, Wada K, Kiryu K, Kawata Y, Mizuno K, Kondo T et al (1998b) Effects of Ca2+ channel antagonists on striatal dopamine and DOPA release, studied by in vivo microdialysis. Br J Pharmacol 123:805–814PubMedCrossRefGoogle Scholar
  45. Okada M, Kawata Y, Murakami T, Wada K, Mizuno K, Kondo T et al (1999) Differential effects of adenosine receptor subtypes on release and reuptake of hippocampal serotonin. Eur J Neurosci 11:1–9PubMedCrossRefGoogle Scholar
  46. Paxinos G, Watson C (1998) The rat brain. In Stereotoxic coordinates, 4th edn. AcademicGoogle Scholar
  47. Price ML, Lucki I (2001) Regulation of serotonin release in the lateral septum and striatum by corticotropin-releasing factor. J Neurosci 21:2833–2841Google Scholar
  48. Price ML, Curtis AL, Kirby LG, Valentino RJ, Lucki I (1998) Effects of corticotropin-releasing factor on brain serotonergic activity. Neuropsychopharmacology 18:492–502PubMedCrossRefGoogle Scholar
  49. Southam E, Kirkby D, Higgins GA, Hagan RM (1998) Lamotrigine inhibits monoamine uptake in vitro and modulates 5-hydroxytryptamine uptake in rats. Eur J Pharmacol 358:19–24PubMedCrossRefGoogle Scholar
  50. Southam E, Pereira R, Stratton SC, Sargent R, Ford AJ, Butterfield LJ et al (2005) Effect of lamotrigine on the activities of monoamine oxidases A and B in vitro and on monoamine disposition in vivo. Eur J Pharmacol 519:237–245PubMedCrossRefGoogle Scholar
  51. Tringali G, Aubry JM, Navarra P, Pozzoli G (2006) Lamotrigine inhibits basal and Na +−stimulated, but not Ca2 + −stimulated, release of corticotropin-releasing hormone from the rat hypothalamus. Psychopharmacology (Berl) 188:386–392CrossRefGoogle Scholar
  52. Valdez GR, Inoue K, Koob GF, Rivier J, Vale W, Zorrilla EP (2002) Human urocortin II: mild locomotor suppressive and delayed anxiolytic-like effects of a novel corticotropin-releasing factor related peptide. Brain Res 943:142–150PubMedCrossRefGoogle Scholar
  53. Valentino RJ, Lucki I, Van Bockstaele E (2010) Corticotropin-releasing factor in the dorsal raphe nucleus: linking stress coping and addiction. Brain Res 1314:29–37PubMedCrossRefGoogle Scholar
  54. Walker MC, Tong X, Perry H, Alavijeh MS, Patsalos PN (2000) Comparison of serum, cerebrospinal fluid and brain extracellular fluid pharmacokinetics of lamotrigine. Br J Pharmacol 130:242–248PubMedCrossRefGoogle Scholar
  55. Xie X, Dale TJ, John VH, Cater HL, Peakman TC, Clare JJ (2001) Electrophysiological and pharmacological properties of the human brain type IIA Na + channel expressed in a stable mammalian cell line. Pflugers Arch 441:425–433PubMedCrossRefGoogle Scholar
  56. Yamamura S, Hamaguchi T, Ohoyama K, Sugiura Y, Suzuki D, Kanehara S et al (2009a) Topiramate and zonisamide prevent paradoxical intoxication induced by carbamazepine and phenytoin. Epilepsy Res 84:172–186PubMedCrossRefGoogle Scholar
  57. Yamamura S, Ohoyama K, Hamaguchi T, Kashimoto K, Nakagawa M, Kanehara S et al (2009b) Effects of quetiapine on monoamine, GABA, and glutamate release in rat prefrontal cortex. Psychopharmacology (Berl) 206:243–258CrossRefGoogle Scholar
  58. Yamamura S, Ohoyama K, Hamaguchi T, Nakagawa M, Suzuki D, Matsumoto T et al (2009c) Effects of zotepine on extracellular levels of monoamine, GABA and glutamate in rat prefrontal cortex. Br J Pharmacol 157:656–665PubMedCrossRefGoogle Scholar
  59. Yamamura S, Ohoyama K, Nagase H, Okada M (2009d) Zonisamide enhances delta receptor-associated neurotransmitter release in striato-pallidal pathway. Neuropharmacology 57:322–331PubMedCrossRefGoogle Scholar
  60. Yamamura S, Saito H, Suzuki N, Kashimoto S, Hamaguchi T, Ohoyama K et al (2009e) Effects of zonisamide on neurotransmitter release associated with inositol triphosphate receptors. Neurosci Lett 454:91–96PubMedCrossRefGoogle Scholar
  61. Yamamura S, Abe M, Nakagawa M, Ochi S, Ueno S, Okada M (2011) Different actions for acute and chronic administration of mirtazapine on serotonergic transmission associated with raphe nuclei and their innervation cortical regions. Neuropharmacology 60:550–560PubMedCrossRefGoogle Scholar
  62. Yatham LN, Kennedy SH, Schaffer A, Parikh SV, Beaulieu S, O’Donovan C et al (2009) Canadian network for mood and anxiety treatments (CANMAT) and international society for bipolar disorders (ISBD) collaborative update of CANMAT guidelines for the management of patients with bipolar disorder: update 2009. Bipolar Disord 11:225–255PubMedCrossRefGoogle Scholar
  63. Yoshida S, Okada M, Zhu G, Kaneko S (2007) Carbamazepine prevents breakdown of neurotransmitter release induced by hyperactivation of ryanodine receptor. Neuropharmacology 52:1538–1546PubMedCrossRefGoogle Scholar
  64. Zhu G, Okada M, Yoshida S, Ueno S, Mori F, Takahara T et al (2008) Rats harboring S284L Chrna4 mutation show attenuation of synaptic and extrasynaptic GABAergic transmission and exhibit the nocturnal frontal lobe epilepsy phenotype. J Neurosci 28:12465–12476PubMedCrossRefGoogle Scholar
  65. Zorrilla EP, Koob GF (2010) Progress in corticotropin-releasing factor-1 antagonist development. Drug Discov Today 15:371–383PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Shunske Tanahashi
    • 1
  • Satoshi Yamamura
    • 1
  • Masanori Nakagawa
    • 1
  • Eishi Motomura
    • 1
  • Motohiro Okada
    • 1
  1. 1.Department of Psychiatry, Division of Neuroscience, Graduate School of Medicine, Brain Science and Animal Model Research Center (BSAM)Mie UniversityTsuJapan

Personalised recommendations