Psychopharmacology

, Volume 220, Issue 3, pp 465–479

Mutual independence of 5-HT2 and α1 noradrenergic receptors in mediating deficits in sensorimotor gating

  • Sarah K. Baisley
  • Katherine L. Fallace
  • Abha K. Rajbhandari
  • Vaishali P. Bakshi
Original Investigation

Abstract

Rationale

Prepulse inhibition (PPI), a preattentional information-filtering mechanism, is disrupted by serotonin (5-HT) or norepinephrine (NE) agonists to model deficits seen in schizophrenia, but whether this effect occurs through interactions between these systems is not known.

Objectives

These studies investigated whether PPI/activity changes induced by agonists of one system were dependent on neurotransmission within the other.

Methods

Male Sprague–Dawley rats received the 5-HT2 receptor agonist DOI (1-[2,5-dimethoxy-4-iodophenyl]-2-aminopropane) (0, 0.3 mg/kg), with or without antagonists for α1 (prazosin:0, 0.3, or 1 mg/kg) or β (timolol:0, 3, or 10 mg/kg) receptors or their combination (0 or 0.3 mg/kg prazosin + 3 mg/kg timolol), or the 5-HT2 antagonist ritanserin (0, 2 mg/kg). Separately, the α1-adrenergic receptor agonist cirazoline (0, 0.68 mg/kg) was given with and without ritanserin (0, 0.5, or 2 mg/kg) or the NE antagonists (0 or 0.3 mg/kg prazosin + 3 mg/kg timolol). Finally, combinations of subthreshold doses of DOI (0, 0.01, 0.025 mg/kg) and cirazoline (0, 0.1, 0.25 mg/kg) were tested for their ability to disrupt PPI, and concomitant administration of all three antagonists (0 vs. 0.3 mg/kg prazosin + 3 mg/kg timolol + 2 mg/kg ritanserin) was assessed for its ability to modify PPI. Locomotion was assessed in an additional set of experiments.

Results

Doses/combinations of prazosin and timolol that reversed cirazoline-induced effects did not alter DOI-induced effects, and ritanserin did not affect cirazoline at doses that blocked DOI-mediated effects. Concomitant antagonism of α1 + β + 5-HT2 receptors did not modify PPI, nor did combinations of subthreshold doses of cirazoline and DOI.

Conclusions

5-HT2 receptors and α1 and β NE receptors may act through independent mechanisms to modulate sensorimotor gating and locomotor activity.

Keywords

Startle Schizophrenia Noradrenergic Serotonergic Locomotion Stereotypy 

References

  1. Aghajanian GK (1980) Mescaline and LSD facilitate the activation of locus coeruleus neurons by peripheral stimuli. Brain Res 186:492–498PubMedCrossRefGoogle Scholar
  2. Aloyo VJ, Walker RF (1988) Alpha-adrenergic control of serotonin release from rat pineal glands. Neuroendocrinology 48:61–66PubMedCrossRefGoogle Scholar
  3. Alsene KM, Carasso BS, Connors EE, Bakshi VP (2006) Disruption of prepulse inhibition after stimulation of central but not peripheral alpha-1 adrenergic receptors. Neuropsychopharmacology 31:2150–2161PubMedGoogle Scholar
  4. Alsene KM, Fallace K, Bakshi VP (2010) Ventral striatal noradrenergic mechanisms contribute to sensorimotor gating deficits induced by amphetamine. Neuropsychopharmacology 35:2346–2356PubMedCrossRefGoogle Scholar
  5. Alsene KM, Rajbhandari AK, Ramaker MJ, Bakshi VP (2011) Discrete forebrain neuronal networks supporting noradrenergic regulation of sensorimotor gating. Neuropsychopharmacology 36:1003–1014PubMedCrossRefGoogle Scholar
  6. Amargos-Bosch M, Adell A, Bortolozzi A, Artigas F (2003) Stimulation of alpha1-adrenoceptors in the rat medial prefrontal cortex increases the local in vivo 5-hydroxytryptamine release: reversal by antipsychotic drugs. J Neurochem 87:831–842PubMedCrossRefGoogle Scholar
  7. Andrade R, Barnes NM, Baxter G, Bockaert J, Branchek T, Cohen ML, Dumuis A, Eglen RM, Gothert M, Hamblin M, Hamon M, Hartig PR, Hen R, Herrick-Davis K, Hills R, Hoyer D, Humphrey PPA, Latté KP, Maroteaux L, Martin GR, Middlemiss DN, Mylecharane E, Peroutka SJ, Saxena PR, Sleight A, Villalon CM, Yocca F (2010) 5-Hydroxytryptamine receptors, introductory chapter., pp IUPHAR database (IUPHAR-DB)Google Scholar
  8. Auclair A, Drouin C, Cotecchia S, Glowinski J, Tassin JP (2004) 5-HT2A and alpha1b-adrenergic receptors entirely mediate dopamine release, locomotor response and behavioural sensitization to opiates and psychostimulants. Eur J Neurosci 20:3073–3084PubMedCrossRefGoogle Scholar
  9. Baraban JM, Aghajanian GK (1980) Suppression of firing activity of 5-HT neurons in the dorsal raphe by alpha-adrenoceptor antagonists. Neuropharmacology 19:355–363PubMedCrossRefGoogle Scholar
  10. Berendsen HH, Kester RC, Peeters BW, Broekkamp CL (1996) Modulation of 5-HT receptor subtype-mediated behaviours by corticosterone. Eur J Pharmacol 308:103–111PubMedCrossRefGoogle Scholar
  11. Blier P (2001) Crosstalk between the norepinephrine and serotonin systems and its role in the antidepressant response. J Psychiatry Neurosci 26(Suppl):S3–S10PubMedGoogle Scholar
  12. Blier P, Briley M (2011) The noradrenergic symptom cluster: clinical expression and neuropharmacology. Neuropsychiatr Dis Treat 7:15–20PubMedGoogle Scholar
  13. Braff DL (2010) Prepulse inhibition of the startle reflex: a window on the brain in schizophrenia. Curr Top Behav Neurosci 4:349–371PubMedCrossRefGoogle Scholar
  14. Braff DL, Geyer MA, Swerdlow NR (2001) Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology (Berl) 156:234–258CrossRefGoogle Scholar
  15. Braff DL, Greenwood TA, Swerdlow NR, Light GA, Schork NJ (2008) Advances in endophenotyping schizophrenia. World Psychiatry 7:11–18PubMedGoogle Scholar
  16. Brea J, Castro M, Loza MI, Masaguer CF, Ravina E, Dezi C, Pastor M, Sanz F, Cabrero-Castel A, Galan-Rodriguez B, Fernandez-Espejo E, Maldonado R, Robledo P (2006) QF2004B, a potential antipsychotic butyrophenone derivative with similar pharmacological properties to clozapine. Neuropharmacology 51:251–262PubMedCrossRefGoogle Scholar
  17. Briody S, Boules M, Oliveros A, Fauq I, Richelson E (2010) Chronic NT69L potently prevents drug-induced disruption of prepulse inhibition without causing tolerance. Behav Brain Res 207:118–124PubMedCrossRefGoogle Scholar
  18. Bylund DB, Bond RA, Eikenburg DC, Hieble JP, Hills R, Minneman KP, Parra S (2009) Adrenoceptors, introductory chapterGoogle Scholar
  19. Carasso BS, Bakshi VP, Geyer MA (1998) Disruption in prepulse inhibition after alpha-1 adrenoceptor stimulation in rats. Neuropharmacology 37:401–404PubMedCrossRefGoogle Scholar
  20. Castagne V, Moser PC, Porsolt RD (2009) Preclinical behavioral models for predicting antipsychotic activity. Adv Pharmacol 57:381–418PubMedCrossRefGoogle Scholar
  21. Chaouloff F, Baudrie V, Coupry I (1994) Effects of chlorisondamine and restraint on cortical [3H]ketanserin binding, 5-HT2A receptor-mediated head shakes, and behaviours in models of anxiety. Neuropharmacology 33:449–456PubMedCrossRefGoogle Scholar
  22. Cryan JF, O'Leary OF, Jin SH, Friedland JC, Ouyang M, Hirsch BR, Page ME, Dalvi A, Thomas SA, Lucki I (2004) Norepinephrine-deficient mice lack responses to antidepressant drugs, including selective serotonin reuptake inhibitors. Proc Natl Acad Sci USA 101:8186–8191PubMedCrossRefGoogle Scholar
  23. Darmani NA, Martin BR, Pandey U, Glennon RA (1991) Inhibition of 5-HT2 receptor-mediated head-twitch response by cocaine via indirect stimulation of adrenergic alpha 2 and serotonergic 5-HT1A receptors. Pharmacol Biochem Behav 38:353–357PubMedCrossRefGoogle Scholar
  24. Davis M, Gendelman DS, Tischler MD, Gendelman PM (1982) A primary acoustic startle circuit: lesion and stimulation studies. J Neurosci 2:791–805PubMedGoogle Scholar
  25. Done CJ, Sharp T (1992) Evidence that 5-HT2 receptor activation decreases noradrenaline release in rat hippocampus in vivo. Br J Pharmacol 107:240–245PubMedGoogle Scholar
  26. Dursun SM, Handley SL (1996) Similarities in the pharmacology of spontaneous and DOI-induced head-shakes suggest 5HT2A receptors are active under physiological conditions. Psychopharmacology (Berl) 128:198–205CrossRefGoogle Scholar
  27. Ellenbroek BA (2004) Pre-attentive processing and schizophrenia: animal studies. Psychopharmacology (Berl) 174:65–74CrossRefGoogle Scholar
  28. Farid M, Martinez ZA, Geyer MA, Swerdlow NR (2000) Regulation of sensorimotor gating of the startle reflex by serotonin 2A receptors. Ontogeny and strain differences. Neuropsychopharmacology 23:623–632PubMedCrossRefGoogle Scholar
  29. Feifel D, Melendez G, Shilling PD (2003) A systemically administered neurotensin agonist blocks disruption of prepulse inhibition produced by a serotonin-2A agonist. Neuropsychopharmacology 28:651–653PubMedCrossRefGoogle Scholar
  30. Fendt M, Li L, Yeomans JS (2001) Brain stem circuits mediating prepulse inhibition of the startle reflex. Psychopharmacology (Berl) 156:216–224CrossRefGoogle Scholar
  31. Fone KC, Bennett GW, Marsden CA (1987) Involvement of catecholaminergic neurones and alpha-adrenoceptors in the wet-dog shake and forepaw licking behaviour produced by the intrathecal injection of an analogue of thyrotrophin-releasing hormone (CG 3509). Neuropharmacology 26:1147–1155PubMedCrossRefGoogle Scholar
  32. Fowler SC, Pinkston JW, Vorontsova E (2007) Clozapine and prazosin slow the rhythm of head movements during focused stereotypy induced by d-amphetamine in rats. Psychopharmacology (Berl) 192:219–230CrossRefGoogle Scholar
  33. Geyer MA (1996) Serotonergic functions in arousal and motor activity. Behav Brain Res 73:31–35PubMedCrossRefGoogle Scholar
  34. Geyer MA (2008) Developing translational animal models for symptoms of schizophrenia or bipolar mania. Neurotox Res 14:71–78PubMedCrossRefGoogle Scholar
  35. Geyer MA, Swerdlow NR, Mansbach RS, Braff DL (1990) Startle response models of sensorimotor gating and habituation deficits in schizophrenia. Brain Res Bull 25:485–498PubMedCrossRefGoogle Scholar
  36. Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR (2001) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology (Berl) 156:117–154CrossRefGoogle Scholar
  37. Gobbi G, Cassano T, Radja F, Morgese MG, Cuomo V, Santarelli L, Hen R, Blier P (2007) Neurokinin 1 receptor antagonism requires norepinephrine to increase serotonin function. Eur Neuropsychopharmacol 17:328–338PubMedCrossRefGoogle Scholar
  38. Gresack JE, Risbrough VB (2010) Corticotropin-releasing factor and noradrenergic signalling exert reciprocal control over startle reactivity. Int J Neuropsychopharmacol: 1–16Google Scholar
  39. Haddjeri N, Blier P, de Montigny C (1995) Noradrenergic modulation of central serotonergic neurotransmission: acute and long-term actions of mirtazapine. Int Clin Psychopharmacol 10(Suppl 4):11–17PubMedCrossRefGoogle Scholar
  40. Haddjeri N, de Montigny C, Blier P (1997) Modulation of the firing activity of noradrenergic neurones in the rat locus coeruleus by the 5-hydroxtryptamine system. Br J Pharmacol 120:865–875PubMedCrossRefGoogle Scholar
  41. Harkin A, Morris K, Kelly JP, O'Donnell JM, Leonard BE (2001) Modulation of MK-801-induced behaviour by noradrenergic agents in mice. Psychopharmacology (Berl) 154:177–188CrossRefGoogle Scholar
  42. Heal DJ, Philpot J, O'Shaughnessy KM, Davies CL (1986) The influence of central noradrenergic function on 5-HT2-mediated head-twitch responses in mice: possible implications for the actions of antidepressant drugs. Psychopharmacology (Berl) 89:414–420CrossRefGoogle Scholar
  43. Hillegaart V, Estival A, Ahlenius S (1996) Evidence for specific involvement of 5-HT1A and 5-HT2A/C receptors in the expression of patterns of spontaneous motor activity of the rat. Eur J Pharmacol 295:155–161PubMedCrossRefGoogle Scholar
  44. Hoffman HS, Ison JR (1980) Reflex modification in the domain of startle: I. Some empirical findings and their implications for how the nervous system processes sensory input. Psychol Rev 87:175–189PubMedCrossRefGoogle Scholar
  45. Hoyer D, Martin GR (1996) Classification and nomenclature of 5-HT receptors: a comment on current issues. Behav Brain Res 73:263–268PubMedCrossRefGoogle Scholar
  46. Imai H, Steindler DA, Kitai ST (1986) The organization of divergent axonal projections from the midbrain raphe nuclei in the rat. J Comp Neurol 243:363–380PubMedCrossRefGoogle Scholar
  47. Ison JR, Hoffman HS (1983) Reflex modification in the domain of startle: II. The anomalous history of a robust and ubiquitous phenomenon. Psychol Bull 94:3–17PubMedCrossRefGoogle Scholar
  48. Kim MA, Lee HS, Lee BY, Waterhouse BD (2004) Reciprocal connections between subdivisions of the dorsal raphe and the nuclear core of the locus coeruleus in the rat. Brain Res 1026:56–67PubMedCrossRefGoogle Scholar
  49. Kohnomi S, Suemaru K, Kawasaki H, Araki H (2008) Effect of aripiprazole on 5-HT2 receptor-mediated wet-dog shake responses and disruption of prepulse inhibition in rats. J Pharmacol Sci 106:645–650PubMedCrossRefGoogle Scholar
  50. Kouhata S, Kagaya A, Nakae S, Nakata Y, Yamawaki S (2001) Effect of acute lipopolysaccharide administration on (+/−)-1-(2,5-dimethoxy-4-iodophenyl)-2 aminopropane-induced wet dog shake behavior in rats: comparison with body weight change and locomotor activity. Prog Neuropsychopharmacol Biol Psychiatry 25:395–407PubMedCrossRefGoogle Scholar
  51. Krebs-Thomson K, Paulus MP, Geyer MA (1998) Effects of hallucinogens on locomotor and investigatory activity and patterns: influence of 5-HT2A and 5-HT2C receptors. Neuropsychopharmacology 18:339–351PubMedCrossRefGoogle Scholar
  52. Kugaya A, Kagaya A, Uchitomi Y, Yokota N, Yamawaki S (1996) Effect of interferon-alpha on DOI-induced wet-dog shakes in rats. J Neural Transm 103:947–955PubMedCrossRefGoogle Scholar
  53. Kumari V, Soni W, Sharma T (1999) Normalization of information processing deficits in schizophrenia with clozapine. Am J Psychiatry 156:1046–1051PubMedGoogle Scholar
  54. Kumari V, Soni W, Sharma T (2002) Prepulse inhibition of the startle response in risperidone-treated patients: comparison with typical antipsychotics. Schizophr Res 55:139–146PubMedCrossRefGoogle Scholar
  55. Kumari V, Antonova E, Geyer MA, Ffytche D, Williams SC, Sharma T (2007) A fMRI investigation of startle gating deficits in schizophrenia patients treated with typical or atypical antipsychotics. Int J Neuropsychopharmacol 10:463–477PubMedCrossRefGoogle Scholar
  56. Leumann L, Feldon J, Vollenweider FX, Ludewig K (2002) Effects of typical and atypical antipsychotics on prepulse inhibition and latent inhibition in chronic schizophrenia. Biol Psychiatry 52:729–739PubMedCrossRefGoogle Scholar
  57. Ma J, Ye N, Cohen BM (2006) Expression of noradrenergic alpha1, serotoninergic 5HT2a and dopaminergic D2 receptors on neurons activated by typical and atypical antipsychotic drugs. Prog Neuropsychopharmacol Biol Psychiatry 30:647–657PubMedCrossRefGoogle Scholar
  58. Maier W, Mossner R, Quednow BB, Wagner M, Hurlemann R (2008) From genes to psychoses and back: the role of the 5HT2alpha-receptor and prepulse inhibition in schizophrenia. Eur Arch Psychiatry Clin Neurosci 258(Suppl 5):40–43PubMedCrossRefGoogle Scholar
  59. Marek GJ (2009) Activation of adenosine(1) (A(1)) receptors suppresses head shakes induced by a serotonergic hallucinogen in rats. Neuropharmacology 56:1082–1087PubMedCrossRefGoogle Scholar
  60. Millan MJ, Schreiber R, Dekeyne A, Rivet JM, Bervoets K, Mavridis M, Sebban C, Maurel-Remy S, Newman-Tancredi A, Spedding M, Muller O, Lavielle G, Brocco M (1998) S 16924 ((R)-2-[1-[2-(2,3-dihydro-benzo[1,4] dioxin-5-yloxy)-ethyl]-pyrrolidin-3yl]-1-(4-fluoro-phenyl)-ethanone), a novel, potential antipsychotic with marked serotonin (5-HT)1A agonist properties: II. Functional profile in comparison to clozapine and haloperidol. J Pharmacol Exp Ther 286:1356–1373PubMedGoogle Scholar
  61. Mittman SM, Geyer MA (1991) Dissociation of multiple effects of acute LSD on exploratory behavior in rats by ritanserin and propranolol. Psychopharmacology (Berl) 105:69–76CrossRefGoogle Scholar
  62. O'Leary OF, Bechtholt AJ, Crowley JJ, Hill TE, Page ME, Lucki I (2007a) Depletion of serotonin and catecholamines block the acute behavioral response to different classes of antidepressant drugs in the mouse tail suspension test. Psychopharmacology (Berl) 192:357–371CrossRefGoogle Scholar
  63. O'Leary OF, Bechtholt AJ, Crowley JJ, Valentino RJ, Lucki I (2007b) The role of noradrenergic tone in the dorsal raphe nucleus of the mouse in the acute behavioral effects of antidepressant drugs. Eur Neuropsychopharmacol 17:215–226PubMedCrossRefGoogle Scholar
  64. Peyron C, Luppi PH, Fort P, Rampon C, Jouvet M (1996) Lower brainstem catecholamine afferents to the rat dorsal raphe nucleus. J Comp Neurol 364:402–413PubMedCrossRefGoogle Scholar
  65. Pranzatelli MR (1990) Evidence for involvement of 5-HT2 and 5-HT1C receptors in the behavioral effects of the 5-HT agonist 1-(2,5-dimethoxy-4-iodophenyl aminopropane)-2 (DOI). Neurosci Lett 115:74–80PubMedCrossRefGoogle Scholar
  66. Pupo AS, Minneman KP (2001) Adrenergic pharmacology: focus on the central nervous system. CNS Spectr 6:656–662PubMedGoogle Scholar
  67. Rasmussen K, Aghajanian GK (1986) Effect of hallucinogens on spontaneous and sensory-evoked locus coeruleus unit activity in the rat: reversal by selective 5-HT2 antagonists. Brain Res 385:395–400PubMedCrossRefGoogle Scholar
  68. Sallinen J, Höglund I, Engström M, Lehtimäki J, Virtanen R, Sirviö J, Wurster S, Savola JM, Haapalinna A (2007) Pharmacological characterization and CNS effects of a novel highly selective alpha2C-adrenoceptor antagonist JP-1302. Br J Pharmacol 150:391–402PubMedCrossRefGoogle Scholar
  69. Salomon L, Lanteri C, Glowinski J, Tassin JP (2006) Behavioral sensitization to amphetamine results from an uncoupling between noradrenergic and serotonergic neurons. Proc Natl Acad Sci USA 103:7476–7481PubMedCrossRefGoogle Scholar
  70. Schreiber R, Brocco M, Audinot V, Gobert A, Veiga S, Millan MJ (1995) (1-(2,5-Dimethoxy-4 iodophenyl)-2-aminopropane)-induced head-twitches in the rat are mediated by 5-hydroxytryptamine (5-HT) 2A receptors: modulation by novel 5-HT2A/2C antagonists, D1 antagonists and 5-HT1A agonists. J Pharmacol Exp Ther 273:101–112PubMedGoogle Scholar
  71. Segal M (1979) Serotonergic innervation of the locus coeruleus from the dorsal raphe and its action on responses to noxious stimuli. J Physiol 286:401–415PubMedGoogle Scholar
  72. Shilling PD, Feifel D (2002) SR146131, a cholecystokinin-A receptor agonist, antagonizes prepulse inhibition deficits produced by dizocilpine and DOI. Psychopharmacology (Berl) 164:285–293CrossRefGoogle Scholar
  73. Shilling PD, Melendez G, Priebe K, Richelson E, Feifel D (2004) Neurotensin agonists block the prepulse inhibition deficits produced by a 5-HT2A and an alpha1 agonist. Psychopharmacology (Berl) 175:353–359CrossRefGoogle Scholar
  74. Sim LJ, Joseph SA (1993) Dorsal raphe nucleus efferents: termination in peptidergic fields. Peptides 14:75–83PubMedCrossRefGoogle Scholar
  75. Sipes TA, Geyer MA (1994) Multiple serotonin receptor subtypes modulate prepulse inhibition of the startle response in rats. Neuropharmacology 33:441–448PubMedCrossRefGoogle Scholar
  76. Sipes TE, Geyer MA (1995) DOI disruption of prepulse inhibition of startle in the rat is mediated by 5-HT(2A) and not by 5-HT(2C) receptors. Behav Pharmacol 6:839–842PubMedCrossRefGoogle Scholar
  77. Sipes TE, Geyer MA (1997) DOI disrupts prepulse inhibition of startle in rats via 5-HT2A receptors in the ventral pallidum. Brain Res 761:97–104PubMedCrossRefGoogle Scholar
  78. Starke K (2001) Presynaptic autoreceptors in the third decade: focus on alpha2-adrenoceptors. J Neurochem 78:685–693PubMedCrossRefGoogle Scholar
  79. Stone EA, Lin Y, Ahsan R, Quartermain D (2004) Gross mapping of alpha1-adrenoceptors that regulate behavioral activation in the mouse brain. Behav Brain Res 152:167–175PubMedCrossRefGoogle Scholar
  80. Stone EA, Lin Y, Sarfraz Y, Quartermain D (2009) Marked behavioral activation from inhibitory stimulation of locus coeruleus alpha1-adrenoceptors by a full agonist. Brain Res 1291:21–31PubMedCrossRefGoogle Scholar
  81. Stone EA, Lin Y, Sarfraz Y, Quartermain D (2011) The role of the central noradrenergic system in behavioral inhibition. Brain Res Rev 67:193–208PubMedCrossRefGoogle Scholar
  82. Swerdlow NR, Geyer MA, Braff DL (2001) Neural circuit regulation of prepulse inhibition of startle in the rat: current knowledge and future challenges. Psychopharmacology (Berl) 156:194–215CrossRefGoogle Scholar
  83. Swerdlow NR, Bongiovanni MJ, Tochen L, Shoemaker JM (2006a) Separable noradrenergic and dopaminergic regulation of prepulse inhibition in rats: implications for predictive validity and Tourette Syndrome. Psychopharmacology (Berl) 186:246–254CrossRefGoogle Scholar
  84. Swerdlow NR, Geyer MA, Shoemaker JM, Light GA, Braff DL, Stevens KE, Sharp R, Breier M, Neary A, Auerbach PP (2006b) Convergence and divergence in the neurochemical regulation of prepulse inhibition of startle and N40 suppression in rats. Neuropsychopharmacology 31:506–515PubMedCrossRefGoogle Scholar
  85. Swerdlow NR, Weber M, Qu Y, Light GA, Braff DL (2008) Realistic expectations of prepulse inhibition in translational models for schizophrenia research. Psychopharmacology (Berl) 199:331–388CrossRefGoogle Scholar
  86. Szabo ST, Blier P (2001) Functional and pharmacological characterization of the modulatory role of serotonin on the firing activity of locus coeruleus norepinephrine neurons. Brain Res 922:9–20PubMedCrossRefGoogle Scholar
  87. van den Buuse M (2010) Modeling the positive symptoms of schizophrenia in genetically modified mice: pharmacology and methodology aspects. Schizophr Bull 36:246–270PubMedCrossRefGoogle Scholar
  88. Vandermaelen CP, Aghajanian GK (1983) Electrophysiological and pharmacological characterization of serotonergic dorsal raphe neurons recorded extracellularly and intracellularly in rat brain slices. Brain Res 289:109–119PubMedCrossRefGoogle Scholar
  89. Vanderschuren LJ, Beemster P, Schoffelmeer AN (2003) On the role of noradrenaline in psychostimulant-induced psychomotor activity and sensitization. Psychopharmacology (Berl) 169:176–185CrossRefGoogle Scholar
  90. Varty GB, Higgins GA (1995) Examination of drug-induced and isolation-induced disruptions of prepulse inhibition as models to screen antipsychotic drugs. Psychopharmacology (Berl) 122:15–26CrossRefGoogle Scholar
  91. Varty GB, Bakshi VP, Geyer MA (1999) M100907, a serotonin 5-HT2A receptor antagonist and putative antipsychotic, blocks dizocilpine-induced prepulse inhibition deficits in Sprague–Dawley and Wistar rats. Neuropsychopharmacology 20:311–321PubMedCrossRefGoogle Scholar
  92. Wadenberg MG, Sills TL, Fletcher PJ, Kapur S (2000) Antipsychoticlike effects of amoxapine, without catalepsy, using the prepulse inhibition of the acoustic startle reflex test in rats. Biol Psychiatry 47:670–676PubMedCrossRefGoogle Scholar
  93. Weidenfeld J, Feldman S, Itzik A, Van de Kar LD, Newman ME (2002) Evidence for a mutual interaction between noradrenergic and serotonergic agonists in stimulation of ACTH and corticosterone secretion in the rat. Brain Res 941:113–117PubMedCrossRefGoogle Scholar
  94. Weiss IC, Feldon J (2001) Environmental animal models for sensorimotor gating deficiencies in schizophrenia: a review. Psychopharmacology (Berl) 156:305–326CrossRefGoogle Scholar
  95. Wing LL, Tapson GS, Geyer MA (1990) 5HT-2 mediation of acute behavioral effects of hallucinogens in rats. Psychopharmacology (Berl) 100:417–425CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Sarah K. Baisley
    • 1
    • 2
  • Katherine L. Fallace
    • 1
  • Abha K. Rajbhandari
    • 1
    • 2
  • Vaishali P. Bakshi
    • 1
    • 2
    • 3
  1. 1.Department of PsychiatryUW-MadisonMadisonUSA
  2. 2.Neuroscience Training ProgramUW-MadisonMadisonUSA
  3. 3.Department of PsychiatryUniversity of Wisconsin School of Medicine and Public HealthMadisonUSA

Personalised recommendations