, Volume 219, Issue 4, pp 1055–1063 | Cite as

Dissociation of corticotropin-releasing factor receptor subtype involvement in sensitivity to locomotor effects of methamphetamine and cocaine

  • William J. Giardino
  • Gregory P. Mark
  • Mary P. Stenzel-Poore
  • Andrey E. Ryabinin
Original Investigation



Enhanced sensitivity to the euphoric and locomotor-activating effects of psychostimulants may influence an individual's predisposition to drug abuse and addiction. While drug-induced behaviors are mediated by the actions of several neurotransmitter systems, past research revealed that the corticotropin-releasing factor (CRF) system is important in driving the acute locomotor response to psychostimulants.


We previously reported that genetic deletion of the CRF type-2 receptor (CRF-R2), but not the CRF type-1 receptor (CRF-R1) dampened the acute locomotor stimulant response to methamphetamine (1 mg/kg). These results contrasted with previous studies implicating CRF-R1 in the locomotor effects of psychostimulants. Since the majority of previous studies focused on cocaine, rather than methamphetamine, we set out to test the hypothesis that these drugs differentially engage CRF-R1 and CRF-R2.


We expanded our earlier findings by first replicating our previous experiments at a higher dose of methamphetamine (2 mg/kg), and by assessing the effects of the CRF-R1-selective antagonist CP-376,395 (10 mg/kg) on methamphetamine-induced locomotor activity. Next, we used both genetic and pharmacological tools to examine the specific components of the CRF system underlying the acute locomotor response to cocaine (5–10 mg/kg).


While genetic deletion of CRF-R2 dampened the locomotor response to methamphetamine (but not cocaine), genetic deletion and pharmacological blockade of CRF-R1 dampened the locomotor response to cocaine (but not methamphetamine).


These findings highlight the differential involvement of CRF receptors in acute sensitivity to two different stimulant drugs of abuse, providing an intriguing basis for the development of more targeted therapeutics for psychostimulant addiction.


Corticotropin Urocortin CRF Methamphetamine Cocaine Psychostimulant Behavior Locomotor activity Stress Addiction 


  1. Boutrel B (2008) A neuropeptide-centric view of psychostimulant addiction. Br J Pharmacol 154:343–357PubMedCrossRefGoogle Scholar
  2. Cador M, Cole BJ, Koob GF, Stinus L, Le Moal M (1993a) Central administration of corticotropin releasing factor induces long-term sensitization to D-amphetamine. Brain Res 606:181–186PubMedCrossRefGoogle Scholar
  3. Cador M, Dulluc J, Mormede P (1993b) Modulation of the locomotor response to amphetamine by corticosterone. Neuroscience 56:981–988PubMedCrossRefGoogle Scholar
  4. Chen YL, Obach RS, Braselton J, Corman ML, Forman J, Freeman J, Gallaschun RJ, Mansbach R, Schmidt AW, Sprouse JS, Tingley Iii FD, Winston E, Schulz DW (2008) 2-aryloxy-4-alkylaminopyridines: discovery of novel corticotropin-releasing factor 1 antagonists. J Med Chem 51:1385–1392PubMedCrossRefGoogle Scholar
  5. Cole BJ, Cador M, Stinus L, Rivier C, Rivier J, Vale W, Le Moal M, Koob GF (1990) Critical role of the hypothalamic pituitary adrenal axis in amphetamine-induced sensitization of behavior. Life Sci 47:1715–1720PubMedCrossRefGoogle Scholar
  6. Coste SC, Kesterson RA, Heldwein KA, Stevens SL, Heard AD, Hollis JH, Murray SE, Hill JK, Pantely GA, Hohimer AR, Hatton DC, Phillips TJ, Finn DA, Low MJ, Rittenberg MB, Stenzel P, Stenzel-Poore MP (2000) Abnormal adaptations to stress and impaired cardiovascular function in mice lacking corticotropin-releasing hormone receptor-2. Nat Genet 24:403–409PubMedCrossRefGoogle Scholar
  7. Deroche V, Piazza PV, Maccari S, Le Moal M, Simon H (1992) Repeated corticosterone administration sensitizes the locomotor response to amphetamine. Brain Res 584:309–313PubMedCrossRefGoogle Scholar
  8. DeVries AC, Taymans SE, Sundstrom JM, Pert A (1998) Conditioned release of corticosterone by contextual stimuli associated with cocaine is mediated by corticotropin-releasing factor. Brain Res 786:39–46PubMedCrossRefGoogle Scholar
  9. Erb S, Brown ZJ (2006) A role for corticotropin-releasing factor in the long-term expression of behavioral sensitization to cocaine. Behav Brain Res 172:360–364PubMedCrossRefGoogle Scholar
  10. Erb S, Salmaso N, Rodaros D, Stewart J (2001) A role for the CRF-containing pathway from central nucleus of the amygdala to bed nucleus of the stria terminalis in the stress-induced reinstatement of cocaine seeking in rats. Psychopharmacology (Berl) 158:360–365CrossRefGoogle Scholar
  11. Erb S, Funk D, Le AD (2003) Prior, repeated exposure to cocaine potentiates locomotor responsivity to central injections of corticotropin-releasing factor (CRF) in rats. Psychopharmacology (Berl) 170:383–389CrossRefGoogle Scholar
  12. Fleckenstein AE, Volz TJ, Riddle EL, Gibb JW, Hanson GR (2007) New insights into the mechanism of action of amphetamines. Annu Rev Pharmacol Toxicol 47:681–698PubMedCrossRefGoogle Scholar
  13. Forsling ML, Fallon JK, Shah D, Tilbrook GS, Cowan DA, Kicman AT, Hutt AJ (2002) The effect of 3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’) and its metabolites on neurohypophysial hormone release from the isolated rat hypothalamus. Br J Pharmacol 135:649–656PubMedCrossRefGoogle Scholar
  14. Giardino WJ, Pastor R, Anacker AM, Spangler E, Cote DM, Li J, Stenzel-Poore MP, Phillips TJ, Ryabinin AE (2011) Dissection of corticotropin-releasing factor system involvement in locomotor sensitivity to methamphetamine. Genes Brain Behav 10:78–89PubMedCrossRefGoogle Scholar
  15. Graf EN, Hoks MA, Baumgardner J, Sierra J, Vranjkovic O, Bohr C, Baker DA, Mantsch JR (2011) Adrenal activity during repeated long-access cocaine self-administration is required for later CRF-induced and CRF-dependent stressor-induced reinstatement in rats. Neuropsychopharmacology 36:1444–1454PubMedCrossRefGoogle Scholar
  16. Hahn J, Hopf FW, Bonci A (2009) Chronic cocaine enhances corticotropin-releasing factor-dependent potentiation of excitatory transmission in ventral tegmental area dopamine neurons. J Neurosci 29:6535–6544PubMedCrossRefGoogle Scholar
  17. Han DD, Gu HH (2006) Comparison of the monoamine transporters from human and mouse in their sensitivities to psychostimulant drugs. BMC Pharmacol 6:6PubMedCrossRefGoogle Scholar
  18. Jamieson PM, Li C, Kukura C, Vaughan J, Vale W (2006) Urocortin 3 modulates the neuroendocrine stress response and is regulated in rat amygdala and hypothalamus by stress and glucocorticoids. Endocrinology 147:4578–4588PubMedCrossRefGoogle Scholar
  19. Jard S, Gaillard RC, Guillon G, Marie J, Schoenenberg P, Muller AF, Manning M, Sawyer WH (1986) Vasopressin antagonists allow demonstration of a novel type of vasopressin receptor in the rat adenohypophysis. Mol Pharmacol 30:171–177PubMedGoogle Scholar
  20. Kamens HM, Burkhart-Kasch S, McKinnon CS, Li N, Reed C, Phillips TJ (2005) Sensitivity to psychostimulants in mice bred for high and low stimulation to methamphetamine. Genes Brain Behav 4:110–125PubMedGoogle Scholar
  21. Koob GF (2008) A role for brain stress systems in addiction. Neuron 59:11–34PubMedCrossRefGoogle Scholar
  22. Kozicz T, Tilburg-Ouwens D, Faludi G, Palkovits M, Roubos E (2008) Gender-related urocortin 1 and brain-derived neurotrophic factor expression in the adult human midbrain of suicide victims with major depression. Neuroscience 152:1015–1023PubMedCrossRefGoogle Scholar
  23. Krishnan B, Centeno M, Pollandt S, Fu Y, Genzer K, Liu J, Gallagher JP, Shinnick-Gallagher P (2010) Dopamine receptor mechanisms mediate corticotropin-releasing factor-induced long-term potentiation in the rat amygdala following cocaine withdrawal. Eur J Neurosci 31:1027–1042PubMedCrossRefGoogle Scholar
  24. Kuperman Y, Issler O, Regev L, Musseri I, Navon I, Neufeld-Cohen A, Gil S, Chen A (2010) Perifornical urocortin-3 mediates the link between stress-induced anxiety and energy homeostasis. Proc Natl Acad Sci U S A 107:8393–8398PubMedCrossRefGoogle Scholar
  25. Liu J, Yu B, Orozco-Cabal L, Grigoriadis DE, Rivier J, Vale WW, Shinnick-Gallagher P, Gallagher JP (2005) Chronic cocaine administration switches corticotropin-releasing factor2 receptor-mediated depression to facilitation of glutamatergic transmission in the lateral septum. J Neurosci 25:577–583PubMedCrossRefGoogle Scholar
  26. Lu L, Liu Z, Huang M, Zhang Z (2003) Dopamine-dependent responses to cocaine depend on corticotropin-releasing factor receptor subtypes. J Neurochem 84:1378–1386PubMedCrossRefGoogle Scholar
  27. Marinelli M, Rouge-Pont F, De Jesus-Oliveira C, Le Moal M, Piazza PV (1997) Acute blockade of corticosterone secretion decreases the psychomotor stimulant effects of cocaine. Neuropsychopharmacology 16:156–161PubMedCrossRefGoogle Scholar
  28. Myers B, Greenwood-Van Meerveld B (2010) Elevated corticosterone in the amygdala leads to persistent increases in anxiety-like behavior and pain sensitivity. Behav Brain Res 214:465–469PubMedCrossRefGoogle Scholar
  29. Neufeld-Cohen A, Evans AK, Getselter D, Spyroglou A, Hill A, Gil S, Tsoory M, Beuschlein F, Lowry CA, Vale W, Chen A (2010a) Urocortin-1 and −2 double-deficient mice show robust anxiolytic phenotype and modified serotonergic activity in anxiety circuits. Mol Psychiatry 15(426–41):339CrossRefGoogle Scholar
  30. Neufeld-Cohen A, Tsoory MM, Evans AK, Getselter D, Gil S, Lowry CA, Vale WW, Chen A (2010b) A triple urocortin knockout mouse model reveals an essential role for urocortins in stress recovery. Proc Natl Acad Sci U S A 107:19020–19025PubMedCrossRefGoogle Scholar
  31. Orozco-Cabal L, Liu J, Pollandt S, Schmidt K, Shinnick-Gallagher P, Gallagher JP (2008) Dopamine and corticotropin-releasing factor synergistically alter basolateral amygdala-to-medial prefrontal cortex synaptic transmission: functional switch after chronic cocaine administration. J Neurosci 28:529–542PubMedCrossRefGoogle Scholar
  32. Phillips TJ, Dickinson S, Burkhart-Kasch S (1994) Behavioral sensitization to drug stimulant effects in C57BL/6J and DBA/2J inbred mice. Behav Neurosci 108:789–803PubMedCrossRefGoogle Scholar
  33. Piazza PV, Marinelli M, Jodogne C, Deroche V, Rouge-Pont F, Maccari S, Le Moal M, Simon H (1994) Inhibition of corticosterone synthesis by metyrapone decreases cocaine-induced locomotion and relapse of cocaine self-administration. Brain Res 658:259–264PubMedCrossRefGoogle Scholar
  34. Przegalinski E, Filip M, Frankowska M, Zaniewska M, Papla I (2005) Effects of CP 154,526, a CRF1 receptor antagonist, on behavioral responses to cocaine in rats. Neuropeptides 39:525–533PubMedCrossRefGoogle Scholar
  35. Rivet JM, Stinus L, LeMoal M, Mormede P (1989) Behavioral sensitization to amphetamine is dependent on corticosteroid receptor activation. Brain Res 498:149–153PubMedCrossRefGoogle Scholar
  36. Sarnyai Z (1998) Neurobiology of stress and cocaine addiction. Studies on corticotropin-releasing factor in rats, monkeys, and humans. Ann N Y Acad Sci 851:371–387PubMedCrossRefGoogle Scholar
  37. Sarnyai Z, Hohn J, Szabo G, Penke B (1992) Critical role of endogenous corticotropin-releasing factor (CRF) in the mediation of the behavioral action of cocaine in rats. Life Sci 51:2019–2024PubMedCrossRefGoogle Scholar
  38. Scholl JL, Vuong SM, Forster GL (2010) Chronic amphetamine treatment enhances corticotropin-releasing factor-induced serotonin release in the amygdala. Eur J Pharmacol 644:80–87PubMedCrossRefGoogle Scholar
  39. Shalev U, Erb S, Shaham Y (2010) Role of CRF and other neuropeptides in stress-induced reinstatement of drug-seeking. Brain Res 16:15–28CrossRefGoogle Scholar
  40. Spangler E, Cote DM, Anacker AM, Mark GP, Ryabinin AE (2009) Differential sensitivity of the perioculomotor urocortin-containing neurons to ethanol, psychostimulants and stress in mice and rats. Neuroscience 160:115–125PubMedCrossRefGoogle Scholar
  41. Timpl P, Spanagel R, Sillaber I, Kresse A, Reul JM, Stalla GK, Blanquet V, Steckler T, Holsboer F, Wurst W (1998) Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1. Nat Genet 19:162–166PubMedCrossRefGoogle Scholar
  42. Ungless MA, Singh V, Crowder TL, Yaka R, Ron D, Bonci A (2003) Corticotropin-releasing factor requires CRF binding protein to potentiate NMDA receptors via CRF receptor 2 in dopamine neurons. Neuron 39:401–407PubMedCrossRefGoogle Scholar
  43. Vuong SM, Oliver HA, Scholl JL, Oliver KM, Forster GL (2010) Increased anxiety-like behavior of rats during amphetamine withdrawal is reversed by CRF2 receptor antagonism. Behav Brain Res 208:278–281PubMedCrossRefGoogle Scholar
  44. Wang B, You ZB, Rice KC, Wise RA (2007) Stress-induced relapse to cocaine seeking: roles for the CRF(2) receptor and CRF-binding protein in the ventral tegmental area of the rat. Psychopharmacology (Berl) 193:283–294CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • William J. Giardino
    • 1
  • Gregory P. Mark
    • 1
  • Mary P. Stenzel-Poore
    • 2
  • Andrey E. Ryabinin
    • 1
  1. 1.Department of Behavioral Neuroscience and Methamphetamine Abuse Research CenterOregon Health & Science UniversityPortlandUSA
  2. 2.Department of Molecular Microbiology and ImmunologyOregon Health & Science UniversityPortlandUSA

Personalised recommendations