Advertisement

Psychopharmacology

, Volume 217, Issue 2, pp 199–210 | Cite as

Dissociation between duration of action in the forced swim test in mice and nicotinic acetylcholine receptor occupancy with sazetidine, varenicline, and 5-I-A85380

  • Barbara J. CaldaroneEmail author
  • Daguang Wang
  • Neil E. Paterson
  • Michael Manzano
  • Allison Fedolak
  • Katie Cavino
  • Mei Kwan
  • Taleen Hanania
  • Sheela K. Chellappan
  • Alan P. Kozikowski
  • Berend Olivier
  • Marina R. Picciotto
  • Afshin Ghavami
Original Investigation

Abstract

Rationale

Nicotinic acetylcholine receptor (nAChR) agonists, partial agonists, and antagonists have antidepressant-like effects in rodents and reduce symptoms of depression in humans.

Objectives

The study determined whether the antidepressant-like effect of the nAChR β2* partial agonist sazetidine-A (sazetidine) in the forced swim test was due to activation or desensitization of β2* nAChRs. The study also determined if sazetidine’s behavioral responses in the forced swim test corresponded to β2* nAChRs receptor occupancy and drug bioavailability.

Results

Acute antidepressant-like effects in the forced swim test were seen with sazetidine and the full β2* agonist 5-I-A8350 (BALB/cJ mice) and the less selective β2* partial agonist varenicline in C57BL/6J but not BALB/cJ mice. The role of β2* nAChRs was confirmed by results showing: (1) reversal of sazetidine’s antidepressant-like effects in the forced swim test by nAChR antagonists mecamylamine and dihydro-β-erythroidine; (2) absence of sazetidine’s effect in mice lacking the β2 subunit of the nAChR; and (3) a high correspondence between behaviorally active doses of sazetidine and β2* receptor occupancy. β2* receptor occupancy following acute sazetidine, varenicline, and 5-I-A8350 lasted beyond the duration of action in the forced swim test. Sazetidine’s long lasting receptor occupancy did not diminish behavioral efficacy in the forced swim test following repeated dosing.

Conclusions

Results demonstrate that activation of a small population of β2* nAChRs (10–40%) is sufficient to elicit sazetidine’s antidepressant-like actions without producing tolerance and suggest that ligands that activate β2* nAChRs would be promising targets for the development of a new class of antidepressant.

Keywords

Nicotinic receptor Antidepressant Sazetidine-A AMOP-H-OH Varenicline 5-I-A85380 Receptor occupancy Forced swim 

Notes

Acknowledgements

Portions of this work were supported by MH085193 to APK. MRP was supported by MH077681.

Conflicts of interest

There is no actual or potential conflict of interest in relation to this article.

References

  1. Andreasen JT, Redrobe JP (2009a) Antidepressant-like effects of nicotine and mecamylamine in the mouse forced swim and tail suspension tests: role of strain, test and sex. Behav Pharmacol 20:286–295PubMedCrossRefGoogle Scholar
  2. Andreasen JT, Redrobe JP (2009b) Nicotine, but not mecamylamine, enhances antidepressant-like effects of citalopram and reboxetine in the mouse forced swim and tail suspension tests. Behav Brain Res 197:150–156PubMedCrossRefGoogle Scholar
  3. Andreasen JT, Olsen GM, Wiborg O, Redrobe JP (2008) Antidepressant-like effects of nicotinic acetylcholine receptor antagonists, but not agonists, in the mouse forced swim and mouse tail suspension tests. J Psychopharmacol 23:797–804PubMedCrossRefGoogle Scholar
  4. Andreasen JT, Nielsen EO, Christensen JK, Olsen GM, Peters D, Mirza NR, Redrobe JP (2010) Subtype-selective nicotinic acetylcholine receptor agonists enhance the responsiveness to citalopram and reboxetine in the mouse forced swim test. J Psychopharmacol (in press)Google Scholar
  5. Brunzell DH, Mineur YS, Neve RL, Picciotto MR (2009) Nucleus accumbens CREB activity is necessary for nicotine conditioned place preference. Neuropsychopharmacology 34:1993–2001PubMedCrossRefGoogle Scholar
  6. Buckley MJ, Surowy C, Meyer M, Curzon P (2004) Mechanism of action of A-85380 in an animal model of depression. Prog Neuropsychopharmacol Biol Psychiatry 28:723–730PubMedCrossRefGoogle Scholar
  7. Caldarone BJ, Harrist A, Cleary MA, Beech RD, King SL, Picciotto MR (2004) High-affinity nicotinic acetylcholine receptors are required for antidepressant effects of amitriptyline on behavior and hippocampal cell proliferation. Biol Psychiatry 56:657–664PubMedCrossRefGoogle Scholar
  8. Carlezon WA Jr, Duman RS, Nestler EJ (2005) The many faces of CREB. Trends Neurosci 28:436–445PubMedCrossRefGoogle Scholar
  9. Cucchiaro G, Xiao Y, Gonzalez-Sulser A, Kellar KJ (2008) Analgesic effects of sazetidine-A, a new nicotinic cholinergic drug. Anesthesiology 109:512–519PubMedCrossRefGoogle Scholar
  10. Djuric VJ, Dunn E, Overstreet DH, Dragomir A, Steiner M (1999) Antidepressant effect of ingested nicotine in female rats of Flinders resistant and sensitive lines. Physiol Behav 67:533–537PubMedCrossRefGoogle Scholar
  11. Drevets WC, Furey ML (2010) Replication of scopolamine’s antidepressant efficacy in major depressive disorder: a randomized, placebo-controlled clinical trial. Biol Psychiatry 67:432–438PubMedCrossRefGoogle Scholar
  12. Dulawa SC, Hen R (2005) Recent advances in animal models of chronic antidepressant effects: the novelty-induced hypophagia test. Neurosci Biobehav Rev 29:771–783PubMedCrossRefGoogle Scholar
  13. Ferguson SM, Brodkin JD, Lloyd GK, Menzaghi F (2000) Antidepressant-like effects of the subtype-selective nicotinic acetylcholine receptor agonist, SIB-1508Y, in the learned helplessness rat model of depression. Psychopharmacology (Berl) 152:295–303CrossRefGoogle Scholar
  14. Furey ML, Drevets WC (2006) Antidepressant efficacy of the antimuscarinic drug scopolamine: a randomized, placebo-controlled clinical trial. Arch Gen Psychiatry 63:1121–1129PubMedCrossRefGoogle Scholar
  15. Gatto GJ, Bohme GA, Caldwell WS, Letchworth SR, Traina VM, Obinu MC, Laville M, Reibaud M, Pradier L, Dunbar G, Bencherif M (2004) TC-1734: an orally active neuronal nicotinic acetylcholine receptor modulator with antidepressant, neuroprotective and long-lasting cognitive effects. CNS Drug Rev 10:147–166PubMedCrossRefGoogle Scholar
  16. George TP, Sacco KA, Vessicchio JC, Weinberger AH, Shytle RD (2008) Nicotinic antagonist augmentation of selective serotonin reuptake inhibitor-refractory major depressive disorder: a preliminary study. J Clin Psychopharmacol 28:340–344PubMedCrossRefGoogle Scholar
  17. Harvey SC, Maddox FN, Luetje CW (1996) Multiple determinants of dihydro-beta-erythroidine sensitivity on rat neuronal nicotinic receptor alpha subunits. J Neurochem 67:1953–1959PubMedCrossRefGoogle Scholar
  18. Janowsky DS, El-Yousef MK, Davis JM, Sekerke HJ (1972) A cholinergic-adrenergic hypothesis of mania and depression. Lancet 2:632–635PubMedCrossRefGoogle Scholar
  19. Ke L, Eisenhour CM, Bencherif M, Lukas RJ (1998) Effects of chronic nicotine treatment on expression of diverse nicotinic acetylcholine receptor subtypes. I. Dose- and time-dependent effects of nicotine treatment. J Pharmacol Exp Ther 286:825–840PubMedGoogle Scholar
  20. Kenny PJ, File SE, Neal MJ (2000) Evidence for a complex influence of nicotinic acetylcholine receptors on hippocampal serotonin release. J Neurochem 75:2409–2414PubMedCrossRefGoogle Scholar
  21. Kozikowski AP, Eaton JB, Bajjuri KM, Chellappan SK, Chen Y, Karadi S, He R, Caldarone B, Manzano M, Yuen PW, Lukas RJ (2009) Chemistry and pharmacology of nicotinic ligands based on 6-[5-(azetidin-2-ylmethoxy)pyridin-3-yl]hex-5-yn-1-ol (AMOP-H-OH) for possible use in depression. ChemMedChem 4:1279–1291PubMedCrossRefGoogle Scholar
  22. Kroes RA, Burgdorf J, Otto NJ, Panksepp J, Moskal JR (2007) Social defeat, a paradigm of depression in rats that elicits 22-kHz vocalizations, preferentially activates the cholinergic signaling pathway in the periaqueductal gray. Behav Brain Res 182:290–300PubMedCrossRefGoogle Scholar
  23. Kudryavtseva NN, Bakshtanovskaya IV, Koryakina LA (1991) Social model of depression in mice of C57BL/6J strain. Pharmacol Biochem Behav 38:315–320PubMedCrossRefGoogle Scholar
  24. Langlois X, Te Riele P, Wintmolders C, Leysen JE, Jurzak M (2001) Use of the beta-imager for rapid ex vivo autoradiography exemplified with central nervous system penetrating neurokinin 3 antagonists. J Pharmacol Exp Ther 299:712–717PubMedGoogle Scholar
  25. Levin ED, Rezvani AH, Xiao Y, Slade S, Cauley M, Wells C, Hampton D, Petro A, Rose JE, Brown ML, Paige MA, McDowell BE, Kellar KJ (2010) Sazetidine-A, a selective alpha4beta2 nicotinic receptor desensitizing agent and partial agonist, reduces nicotine self-administration in rats. J Pharmacol Exp Ther 332:933–939PubMedCrossRefGoogle Scholar
  26. Lippiello PM, Beaver JS, Gatto GJ, James JW, Jordan KG, Traina VM, Xie J, Bencherif M (2008) TC-5214 (S-(+)-mecamylamine): a neuronal nicotinic receptor modulator with antidepressant activity. CNS Neurosci Ther 14:266–277PubMedCrossRefGoogle Scholar
  27. Mihalak KB, Carroll FI, Luetje CW (2006) Varenicline is a partial agonist at alpha4beta2 and a full agonist at alpha7 neuronal nicotinic receptors. Mol Pharmacol 70:801–805PubMedCrossRefGoogle Scholar
  28. Mineur YS, Picciotto MR (2010) Nicotine receptors and depression: revisiting and revising the cholinergic hypothesis. Trends Pharmacol Sci 31:580–586PubMedCrossRefGoogle Scholar
  29. Mineur YS, Somenzi O, Picciotto MR (2007) Cytisine, a partial agonist of high-affinity nicotinic acetylcholine receptors, has antidepressant-like properties in male C57BL/6J mice. Neuropharmacology 52:1256–1262PubMedCrossRefGoogle Scholar
  30. National Research Council (2010) Guide for the care and use of laboratory animals, 8th edn. Available at http://www.nap.edu/catalog.php?record_id=12910
  31. Overstreet DH (1986) Selective breeding for increased cholinergic function: development of a new animal model of depression. Biol Psychiatry 21:49–58PubMedCrossRefGoogle Scholar
  32. Paterson NE, Min W, Hackett A, Lowe D, Hanania T, Caldarone B, Ghavami A (2010) The high-affinity nAChR partial agonists varenicline and sazetidine-A exhibit reinforcing properties in rats. Prog Neuropsychopharmacol Biol Psychiatry 34:1455–1464PubMedCrossRefGoogle Scholar
  33. Picciotto MR, Zoli M, Léna C, Bessis A, Lallemand Y, Le Novère N, Vincent P, Merlo-Pich E, Brulet P, Changeux J-P (1995) Abnormal avoidance learning in mice lacking functional high-affinity nicotine receptor in the brain. Nature 374:65–67PubMedCrossRefGoogle Scholar
  34. Picciotto MR, Addy NA, Mineur YS, Brunzell DH (2007) It is not “either/or”: activation and desensitization of nicotinic acetylcholine receptors both contribute to behaviors related to nicotine addiction and mood. Prog Neurobiol 84:329–342PubMedCrossRefGoogle Scholar
  35. Porsolt RD, Bertin A, Jalfre M (1977) Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Thér 229:327–336PubMedGoogle Scholar
  36. Pucilowski O, Overstreet DH, Rezvani AH, Janowsky DS (1993) Chronic mild stress-induced anhedonia: greater effect in a genetic rat model of depression. Physiol Behav 54:1215–1220PubMedCrossRefGoogle Scholar
  37. Rabenstein RL, Caldarone BJ, Picciotto MR (2006) The nicotinic antagonist mecamylamine has antidepressant-like effects in wild-type but not beta2- or alpha7-nicotinic acetylcholine receptor subunit knockout mice. Psychopharm Berl 189:395–401CrossRefGoogle Scholar
  38. Reitstetter R, Lukas RJ, Gruener R (1999) Dependence of nicotinic acetylcholine receptor recovery from desensitization on the duration of agonist exposure. J Pharmacol Exp Ther 289:656–660PubMedGoogle Scholar
  39. Rezvani AH, Slade S, Wells C, Petro A, Lumeng L, Li TK, Xiao Y, Brown ML, Paige MA, McDowell BE, Rose JE, Kellar KJ, Levin ED (2010) Effects of sazetidine-A, a selective alpha4beta2 nicotinic acetylcholine receptor desensitizing agent on alcohol and nicotine self-administration in selectively bred alcohol-preferring (P) rats. Psychopharm Berl 211:161–174CrossRefGoogle Scholar
  40. Rollema H, Guanowsky V, Mineur YS, Shrikhande A, Coe JW, Seymour PA, Picciotto MR (2009) Varenicline has antidepressant-like activity in the forced swim test and augments sertraline’s effect. Eur J Pharmacol 605:114–116PubMedCrossRefGoogle Scholar
  41. Semba J, Mataki C, Yamada S, Nankai M, Toru M (1998) Antidepressant-like effects of chronic nicotine on learned helplessness paradigm in rats. Biol Psychiatry 43:389–391PubMedCrossRefGoogle Scholar
  42. Sharples CG, Kaiser S, Soliakov L, Marks MJ, Collins AC, Washburn M, Wright E, Spencer JA, Gallagher T, Whiteaker P, Wonnacott S (2000) UB-165: a novel nicotinic agonist with subtype selectivity implicates the alpha4beta2* subtype in the modulation of dopamine release from rat striatal synaptosomes. J Neurosci 20:2783–2791PubMedGoogle Scholar
  43. Shytle RD, Silver AA, Lukas RJ, Newman MB, Sheehan DV, Sanberg PR (2002) Nicotinic acetylcholine receptors as targets for antidepressants. Mol Psychiatry 7:525–535PubMedCrossRefGoogle Scholar
  44. Tizabi Y, Overstreet DH, Rezvani AH, Louis VA, Clark E Jr, Janowsky DS, Kling MA (1999) Antidepressant effects of nicotine in an animal model of depression. Psychopharm Berl 142:193–199CrossRefGoogle Scholar
  45. Tizabi Y, Rezvani AH, Russell LT, Tyler KY, Overstreet DH (2000) Depressive characteristics of FSL rats: involvement of central nicotinic receptors. Pharmacol Biochem Behav 66:73–77PubMedCrossRefGoogle Scholar
  46. Turner JR, Castellano LM, Blendy JA (2010) Nicotinic partial agonists, varenicline and sazetidine-a, have differential effects on affective behavior. J Pharmacol Exp Ther 334:665–672PubMedCrossRefGoogle Scholar
  47. Vieyra-Reyes P, Mineur YS, Picciotto MR, Tunez I, Vidaltamayo R, Drucker-Colin R (2008) Antidepressant-like effects of nicotine and transcranial magnetic stimulation in the olfactory bulbectomy rat model of depression. Brain Res Bull 77:13–18PubMedCrossRefGoogle Scholar
  48. Xiao Y, Fan H, Musachio JL, Wei ZL, Chellappan SK, Kozikowski AP, Kellar KJ (2006) Sazetidine-A, a novel ligand that desensitizes alpha4beta2 nicotinic acetylcholine receptors without activating them. Mol Pharmacol 70:1454–1460PubMedCrossRefGoogle Scholar
  49. Zwart R, Carbone AL, Moroni M, Bermudez I, Mogg AJ, Folly EA, Broad LM, Williams AC, Zhang D, Ding C, Heinz BA, Sher E (2008) Sazetidine-A is a potent and selective agonist at native and recombinant alpha 4 beta 2 nicotinic acetylcholine receptors. Mol Pharmacol 73:1838–1843PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Barbara J. Caldarone
    • 1
    Email author
  • Daguang Wang
    • 1
  • Neil E. Paterson
    • 1
  • Michael Manzano
    • 1
  • Allison Fedolak
    • 1
  • Katie Cavino
    • 1
  • Mei Kwan
    • 1
  • Taleen Hanania
    • 1
  • Sheela K. Chellappan
    • 2
  • Alan P. Kozikowski
    • 2
  • Berend Olivier
    • 3
    • 4
  • Marina R. Picciotto
    • 4
  • Afshin Ghavami
    • 1
  1. 1.PsychoGenics, Inc.TarrytownUSA
  2. 2.Department of Medicinal Chemistry and PharmacognosyUniversity of Illinois at ChicagoChicagoUSA
  3. 3.Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, and Rudolf Magnus Institute of NeuroscienceUtrecht UniversityUtrechtThe Netherlands
  4. 4.Department of PsychiatryYale School of MedicineNew HavenUSA

Personalised recommendations