Advertisement

Psychopharmacology

, Volume 217, Issue 1, pp 51–60 | Cite as

Cognitive enhancement following acute losartan in normotensive young adults

  • Rasha Mechaeil
  • Paul Gard
  • Anne Jackson
  • Jennifer Rusted
Original Investigation

Abstract

Rationale

Losartan, an angiotensin II receptor antagonist (AIIA), is an antihypertensive that has previously been suggested to have cognitive-enhancing potential for older adults. The objective indices for such effects are equivocal, however, and if these drugs do offer dual advantages of hypertension control plus cognitive-enhancing potential, there exists a clear need to establish this directly.

Objectives

This work examines the potential of losartan administered as a single dose to healthy young adults to improve cognitive performance alone or to reverse scopolamine-induced cognitive decrements.

Methods

In two placebo-controlled, double-blind studies, participants completed a cognitive test battery once before and once after drug absorption. In experiment 1, participants were randomly allocated to receive placebo, losartan 50 mg or losartan 100 mg. In experiment 2, participants were randomly allocated to one of four treatment groups: placebo/placebo, placebo/scopolamine, losartan/scopolamine and losartan/placebo (50 mg losartan p.o. and 1.2 mg scopolamine hydrochloride p.o.).

Results

Losartan 50 mg improved performance on a task of prospective memory when administered alone and reversed the detrimental effects of scopolamine both in a standard lexical decision paradigm (p < 0.01) and when the task incorporated a prospective memory component (p < 0.008).

Conclusions

The findings highlight a cognitive-enhancing potential for losartan on compromised cognitive systems and emphasise the potential of AIIAs to produce benefits over and above hypertension control.

Keywords

Cognition Ageing Antihypertensive Angiotensin Angiotensin receptor antagonists Losartan Scopolamine 

Notes

Acknowledgements

The first author was funded on a PhD studentship from Biotechnology & Biological Sciences Research Council. Medical cover was provided by the following doctors during their employment with Brighton & Sussex Medical School: Ahmed O, Echlin K, Grice J, Hussein A, Lewis M, Naqvi S, Pepple R, Pressney I, Young A and Yu D.

References

  1. Albiston AL, Morton CJ, Ng HL, Pham V, Yeatman HR, Holly R, Ye S, Fernando RN, De Bundel D, Ascher DB, Mendelsohn FAO, Parker MW, Chai SY (2008) Identification and characterization of a new cognitive enhancer based on inhibition of insulin-regulated aminopeptidase. FASEB J 22:4209–4217PubMedCrossRefGoogle Scholar
  2. Barker A, Jones R, Prior J, Wesnes K (1998) Scopolamine-induced cognitive impairment as a predictor of cognitive decline in healthy elderly volunteers: a 6-year follow-up. Int J Geriatr Psychiatry 13(4):244–247PubMedCrossRefGoogle Scholar
  3. Barnes NM, Champaneria S, Costall B, Kelly ME, Murphy DA, Naylor RJ (1990) Cognitive enhancing actions of dup 753 detected in a mouse habituation paradigm. Neuroreport 1(3–4):239–242PubMedCrossRefGoogle Scholar
  4. Beatty WW, Butters N, Janowsky DS (1986) Patterns of memory failure after scopolamine treatment: implications for cholinergic hypotheses of dementia. Behav Neural Biol 45(2):196–211PubMedCrossRefGoogle Scholar
  5. Bond A, Lader M (1974) The use of analogue scales in rating subjective feelings. Br J Psychol 47:211–218CrossRefGoogle Scholar
  6. Bonini JS, Bevilaqua LR, Zinn CG, Kerr DS, Medina JH, Izquierdo I, et al (2006) Angiotensin ii disrupts inhibitory avoidance memory retrieval. Horm Behav 50(2):308–313PubMedCrossRefGoogle Scholar
  7. Brandimonte MA, Ferrante D, Feresin C, Delbello R (2001) Dissociating prospective memory from vigilance processes. Psychologica 22:97–113Google Scholar
  8. Braszko JJ (2002) At(2) but not at(1) receptor antagonism abolishes angiotensin ii increase of the acquisition of conditioned avoidance responses in rats. Behav Brain Res 131(1–2):79–86PubMedCrossRefGoogle Scholar
  9. Braszko JJ, Kulakowska A, Winnicka MM (2003) Effects of angiotensin ii and its receptor antagonists on motor activity and anxiety in rats. J Physiol Pharmacol 54(2):271–281PubMedGoogle Scholar
  10. Braszko JJ, Kupryszewski G, Witczuk B, Wisniewski K (1988) Angiotensin-II-(3–8)-hexapeptide affects motor-activity, performance of passive-avoidance and a conditioned avoidance-response in rats. Neuroscience 27:777–783PubMedCrossRefGoogle Scholar
  11. Broks P, Preston GC, Traub M, Poppleton P, Ward C, Stahl SM (1988) Modelling dementia: effects of scopolamine on memory and attention. Neuropsychologia 26(5):685–700PubMedCrossRefGoogle Scholar
  12. Broocks A, Little JT, Martin A, Minichiello MD, Dubbert B, Mack C et al (1998) The influence of ondansetron and m-chlorophenylpiperazine on scopolamine-induced cognitive, behavioral, and physiological responses in young healthy controls. Biol Psychiatry 43(6):408–416PubMedCrossRefGoogle Scholar
  13. Caine ED, Weingartner H, Ludlow CL, Cudahy EA, Wehry S (1981) Qualitative analysis of scopolamine-induced amnesia. Psychopharmacology (Berl) 74(1):74–80CrossRefGoogle Scholar
  14. Curran HV, Schifano F, Lader M (1991) Models of memory dysfunction? A comparison of the effects of scopolamine and lorazepam on memory, psychomotor performance and mood. Psychopharmacology (Berl) 103(1):83–90CrossRefGoogle Scholar
  15. Dahlof B, Devereux RB, Kjeldsen SE, Julius S, Beevers G, de Faire U et al (2002) Cardiovascular morbidity and mortality in the losartan intervention for endpoint reduction in hypertension study (life): A randomised trial against atenolol. Lancet 359(9311): 995–1003PubMedCrossRefGoogle Scholar
  16. Ebert U, Siepmann M, Oertel R, Wesnes KA, Kirch W (1998) Pharmacokinetics and pharmacodynamics of scopolamine after subcutaneous administration. J Clin Pharmacol 38(8):720–726PubMedGoogle Scholar
  17. Elias MF, Wolf PA, D'Agostino RB, Cobb J, White LR (1993) Untreated blood pressure level is inversely related to cognitive functioning: the Framingham study. Am J Epidemiol 138(6):353–364PubMedGoogle Scholar
  18. Ellis J, Kvavilashvili L (2000) Prospective memory in 2000: Past, present and future directions. Applied Cognitive Psychology 14:S1–S9CrossRefGoogle Scholar
  19. Ellis JR, Ellis KA, Bartholomeusz CF, Harrison BJ, Wesnes KA, Erskine FF et al (2006) Muscarinic and nicotinic receptors synergistically modulate working memory and attention in humans. Int J Neuropsychopharmacol 9(2):175–189PubMedCrossRefGoogle Scholar
  20. Flicker C, Serby M, Ferris SH (1990) Scopolamine effects on memory, language, visuospatial praxis and psychomotor speed. Psychopharmacology (Berl) 100(2):243–250CrossRefGoogle Scholar
  21. Fogari R, Mugellini A, Zoppi A, Derosa G, Pasotti C, Fogari E et al (2003) Influence of losartan and atenolol on memory function in very elderly hypertensive patients. J Hum Hypertens 17(11):781–785PubMedCrossRefGoogle Scholar
  22. Fogari R, Mugellini A, Zoppi A, Marasi G, Pasotti C, Poletti L et al (2004) Effects of valsartan compared with enalapril on blood pressure and cognitive function in elderly patients with essential hypertension. Eur J Clin Pharmacol 59(12):863–868PubMedCrossRefGoogle Scholar
  23. Fogari R, Mugellini A, Zoppi A, Lazzari P, Destro M, Rinaldi A et al (2006) Effect of telmisartan/hydrochlorothiazide vs lisinopril/hydrochlorothiazide combination on ambulatory blood pressure and cognitive function in elderly hypertensive patients. J Hum Hypertens 20(3):177–185PubMedCrossRefGoogle Scholar
  24. Gard PR (2002) The role of angiotensin II in cognition and behaviour. Eur J Pharmacol 438:1–14PubMedCrossRefGoogle Scholar
  25. Gard PR (2008) Cognitive-enhancing effects of angiotensin IV. BMC Neurosci 9(Suppl 2):S15PubMedCrossRefGoogle Scholar
  26. Gard P (2010) Non-adherence to antihypertensive medication and impaired cognition: which comes first? Int J Pharm Pract 8(5):252–259CrossRefGoogle Scholar
  27. Ghoneim MM, Mewaldt SP, Thatcher JW (1975) The effect of diazepam and fentanyl on mental, psychomotor and electroencephalographic functions and their rate of recovery. Psychopharmacologia 44(1):61–66PubMedCrossRefGoogle Scholar
  28. Hanon F, Berrou J, Negre-Pages L, Goch JH, Nadhazi Z, Petrella R, Sedefdjian A et al (2008) Effects of hypertension therapy based on eprosartan on systolic arterial blood pressure and cognitive function: primary results of the observational study on cognitive function and systolic blood pressure reduction open-label study. J Hypertens 26(8):1642–1650PubMedCrossRefGoogle Scholar
  29. Henry JD, MacLeod MS, Phillips LH, Crawford JR (2004) A meta-analytic review of prospective memory and aging. Psychol Aging 19(1):27–39PubMedCrossRefGoogle Scholar
  30. Jönsson L, Gerth W, Fastbom J (2002) The potential economic consequences of cognitive improvement with losartan. Blood Press 11(1):46–52PubMedCrossRefGoogle Scholar
  31. Julius S, Kjeldsen SE, Weber M, Brunner HR, Ekman S, Hansson L, et al (2004). Outcomes in hypertensive patients at high cardiovascular risk treated with regimens based on valsartan or amlodipine: The value randomised trial. Lancet 363:2022–2031PubMedCrossRefGoogle Scholar
  32. Kerr DS, Bevilaqua LR, Bonini JS, Rossato JI, Kohler CA, Medina JH et al (2005) Angiotensin ii blocks memory consolidation through an at2 receptor-dependent mechanism. Psychopharmacology (Berl) 179(3):529–535CrossRefGoogle Scholar
  33. Kliegel M, Jäger T, Phillips L (2008) Adult age differences in event-based prospective memory: A meta-analysis on the role of focal versus nonfocal cues. Psychology and Aging 23(1):203–208PubMedCrossRefGoogle Scholar
  34. Kliegel M, Martin M, McDaniel M, Einstein G (2004) Importance effects on performance in event-based prospective memory tasks. Memory 12(5):553–561.PubMedCrossRefGoogle Scholar
  35. Koller G, Satzger W, Adam M, Wagner M, Kathmann N, Soyka M et al (2003) Effects of scopolamine on matching to sample paradigm and related tests in human subjects. Neuropsychobiology 48(2):87–94PubMedCrossRefGoogle Scholar
  36. Kopelman MD, Corn TH (1988) Cholinergic 'blockade' as a model for cholinergic depletion. A comparison of the memory deficits with those of Alzheimer-type dementia and the alcoholic Korsakoff syndrome. Brain 111(Pt 5):1079–1110PubMedCrossRefGoogle Scholar
  37. Kulakowska A, Karwowska W, Wisniewski K, Braszko JJ (1996) Losartan influences behavioural effects of angiotensin ii in rats. Pharmacol Res 34(3–4):109–115PubMedCrossRefGoogle Scholar
  38. Lo MW, Goldberg MR, McCrea JB, Lu H, Furtek CI, Bjornsson TD (1995) Pharmacokinetics of losartan, an angiotensin II receptor antagonist, and its active metabolite exp3174 in humans. Clin Pharmacol Ther 58(6):641–649PubMedCrossRefGoogle Scholar
  39. Madden DJ, Blumenthal JA (1998) Interaction of hypertension and age in visual selective attention performance. Health Psychol 17(1):76–83PubMedCrossRefGoogle Scholar
  40. McMurray JJ, Ostergren J, Swedberg K, Granger CB, Held P, Michelson EL et al (2003) Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function taking angiotensin-converting-enzyme inhibitors: The charm-added trial. Lancet 362:767–771CrossRefGoogle Scholar
  41. Mazzolai L, Maillard M, Rossat J, Nussberger J, Brunner H, Burnier M (1999) Angiotensin II receptor blockade in normotensive subjects: a direct comparison of three at AT1 receptor antagonists. Hypertension 33(3):850–855PubMedGoogle Scholar
  42. Mogi M, Li JM, Tsukuda K, Iwanami J, Min LJ, Sakata A, et al (2008) Telmisartan prevented cognitive decline partly due to ppar-gamma activation. Biochem Biophys Res Commun 375(3):446–449PubMedCrossRefGoogle Scholar
  43. Nelson HE (1982) National Adult Reading Test (NART): test manual. NFER-Nelson, WindsorGoogle Scholar
  44. Nicholson AN, Roberts DP, Stone BM, Turner C (2001) Antihypertensive therapy in critical occupations: studies with an angiotensin II antagonist. Aviat Space Environ Med 72(12):1096–1101PubMedGoogle Scholar
  45. Nuotto E (1983) Psychomotor, physiological and cognitive effects of scopolamine and ephedrine in healthy man. Eur J Clin Pharmacol 24(5):603–609PubMedCrossRefGoogle Scholar
  46. Ohtawa M, Takayama F, Saitoh K, Yoshinaga T, Nakashima M (1993) Pharmacokinetics and biochemical efficacy after single and multiple oral administration of losartan, an orally active nonpeptide angiotensin II receptor antagonist, in humans. Br J Clin Pharmacol 35(3):290–297PubMedGoogle Scholar
  47. Pompéia S, Rusted JM, Curran HV (2001) Verbal fluency facilitated by the cholinergic blocker, scopolamine. Hum Psychopharmacol 17:51–59CrossRefGoogle Scholar
  48. Putcha L, Cintron NM, Tsui J, Vanderploeg JM, Kramer WG (1989) Pharmacokinetics and oral bioavailability of scopolamine in normal subjects. Pharm Res 6(6):481–485PubMedCrossRefGoogle Scholar
  49. Rey A (1941) L'examen psychologique dans les cas d'encephalopathie traumatique. Archives de Psychologie 28(112):112–164Google Scholar
  50. Rusted JM (1988) Dissociative effects of scopolamine on working memory in healthy young volunteers. Psychopharmacology (Berl) 96(4):487–492CrossRefGoogle Scholar
  51. Rusted JM, Warburton DM (1988) The effects of scopolamine on working memory in healthy young volunteers. Psychopharmacology (Berl) 96(2):145–152CrossRefGoogle Scholar
  52. Safer DJ, Allen RP (1971) The central effects of scopolamine in man. Biol Psychiatry 3(4):347–355PubMedGoogle Scholar
  53. Saxby BK, Harrington F, Wesnes KA, McKeith IG, Ford GA (2008) Candesartan and cognitive decline in older patients with hypertension. Neurology 70:1858–1866PubMedCrossRefGoogle Scholar
  54. Shepherd J, Bill DJ, Dourish CT, Grewal SS, McLenachan A, Stanhope KJ (1996) Effects of the selective angiotensin ii receptor antagonists losartan and pd123177 in animal models of anxiety and memory. Psychopharmacology (Berl) 126(3):206–218CrossRefGoogle Scholar
  55. Skoog I (1997) The relationship between blood pressure and dementia: a review. Biomed Pharmacother 51(9):367–375PubMedCrossRefGoogle Scholar
  56. Srinivasan J, Jayadev S, Kumaran D, Ahamed KF, Suresh B, Ramanathan M (2005) Effect of losartan and enalapril on cognitive deficit caused by goldblatt induced hypertension. Indian J Exp Biol 43(3):241–246PubMedGoogle Scholar
  57. Spielberger CD, Gorsuch RL, Lushene RE (1970) STAI: manual for the state-trait anxiety inventory. Consulting Psychologists Press, Palo Alto, pp 23–49Google Scholar
  58. Tariot PN, Patel SV, Cox C, Henderson RE (1996) Age-related decline in central cholinergic function demonstrated with scopolamine. Psychopharmacology (Berl) 125(1):50–56CrossRefGoogle Scholar
  59. Tedesco MA, Ratti G, Mennella S, Manzo G, Grieco M, Rainone AC et al (1999) Comparison of losartan and hydrochlorothiazide on cognitive function and quality of life in hypertensive patients. Am J Hypertens 12(11):1130–1134PubMedCrossRefGoogle Scholar
  60. Tsukuda K, Mogi M, Li JM, Iwanami J, Min LJ, Sakata A, et al (2007) Amelioration of cognitive impairment in the type-2 diabetic mouse by the angiotensin ii type-1 receptor blocker candesartan. Hypertension 50(6):1099–1105PubMedCrossRefGoogle Scholar
  61. Uttl B (2008) Transparent meta-analysis of prospective memory and aging. PLoS One 3:e1568PubMedCrossRefGoogle Scholar
  62. Vicario A, Martinez CD, Baretto D, Diaz Casale A, Nicolosi L (2005) Hypertension and cognitive decline: impact on executive function. J Clin Hypertens (Greenwich) 7(10):598–604CrossRefGoogle Scholar
  63. Vitiello B, Martin A, Hill J, Mack C, Molchan S, Martinez R et al (1997) Cognitive and behavioral effects of cholinergic, dopaminergic, and serotonergic blockade in humans. Neuropsychopharmacology 16(1):15–24PubMedCrossRefGoogle Scholar
  64. Waldstein SR, Manuck SB, Ryan CM, Muldoon MF (1991) Neuropsychological correlates of hypertension: review and methodologic considerations. Psychol Bull 110(3):451–468PubMedCrossRefGoogle Scholar
  65. Wang J, Ho L, Chen L, Zhao Z, Zhao W, Qian X, et al (2007) Valsartan lowers brain beta-amyloid protein levels and improves spatial learning in a mouse model of alzheimer disease. J Clin Invest 117(11):3393–3402PubMedCrossRefGoogle Scholar
  66. Wesnes K, Revell A (1984) The separate and combined effects of scopolamine and nicotine on human information processing. Psychopharmacology (Berl) 84(1):5–11CrossRefGoogle Scholar
  67. Wesnes KA, Simpson P, Kidd A (1988) An investigation of the range of cognitive impairments induced by scopolamine 0.6 mg s.c. Hum Psychopharmacol 3:27–41CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Rasha Mechaeil
    • 1
  • Paul Gard
    • 2
  • Anne Jackson
    • 2
  • Jennifer Rusted
    • 1
  1. 1.School of PsychologyUniversity of SussexBrightonUK
  2. 2.Department of Pharmacology and Therapeutics, School of Pharmacy and Biomolecular SciencesUniversity of BrightonBrightonUK

Personalised recommendations