Cognitive enhancement following acute losartan in normotensive young adults
- 380 Downloads
- 9 Citations
Abstract
Rationale
Losartan, an angiotensin II receptor antagonist (AIIA), is an antihypertensive that has previously been suggested to have cognitive-enhancing potential for older adults. The objective indices for such effects are equivocal, however, and if these drugs do offer dual advantages of hypertension control plus cognitive-enhancing potential, there exists a clear need to establish this directly.
Objectives
This work examines the potential of losartan administered as a single dose to healthy young adults to improve cognitive performance alone or to reverse scopolamine-induced cognitive decrements.
Methods
In two placebo-controlled, double-blind studies, participants completed a cognitive test battery once before and once after drug absorption. In experiment 1, participants were randomly allocated to receive placebo, losartan 50 mg or losartan 100 mg. In experiment 2, participants were randomly allocated to one of four treatment groups: placebo/placebo, placebo/scopolamine, losartan/scopolamine and losartan/placebo (50 mg losartan p.o. and 1.2 mg scopolamine hydrochloride p.o.).
Results
Losartan 50 mg improved performance on a task of prospective memory when administered alone and reversed the detrimental effects of scopolamine both in a standard lexical decision paradigm (p < 0.01) and when the task incorporated a prospective memory component (p < 0.008).
Conclusions
The findings highlight a cognitive-enhancing potential for losartan on compromised cognitive systems and emphasise the potential of AIIAs to produce benefits over and above hypertension control.
Keywords
Cognition Ageing Antihypertensive Angiotensin Angiotensin receptor antagonists Losartan ScopolamineNotes
Acknowledgements
The first author was funded on a PhD studentship from Biotechnology & Biological Sciences Research Council. Medical cover was provided by the following doctors during their employment with Brighton & Sussex Medical School: Ahmed O, Echlin K, Grice J, Hussein A, Lewis M, Naqvi S, Pepple R, Pressney I, Young A and Yu D.
References
- Albiston AL, Morton CJ, Ng HL, Pham V, Yeatman HR, Holly R, Ye S, Fernando RN, De Bundel D, Ascher DB, Mendelsohn FAO, Parker MW, Chai SY (2008) Identification and characterization of a new cognitive enhancer based on inhibition of insulin-regulated aminopeptidase. FASEB J 22:4209–4217PubMedCrossRefGoogle Scholar
- Barker A, Jones R, Prior J, Wesnes K (1998) Scopolamine-induced cognitive impairment as a predictor of cognitive decline in healthy elderly volunteers: a 6-year follow-up. Int J Geriatr Psychiatry 13(4):244–247PubMedCrossRefGoogle Scholar
- Barnes NM, Champaneria S, Costall B, Kelly ME, Murphy DA, Naylor RJ (1990) Cognitive enhancing actions of dup 753 detected in a mouse habituation paradigm. Neuroreport 1(3–4):239–242PubMedCrossRefGoogle Scholar
- Beatty WW, Butters N, Janowsky DS (1986) Patterns of memory failure after scopolamine treatment: implications for cholinergic hypotheses of dementia. Behav Neural Biol 45(2):196–211PubMedCrossRefGoogle Scholar
- Bond A, Lader M (1974) The use of analogue scales in rating subjective feelings. Br J Psychol 47:211–218CrossRefGoogle Scholar
- Bonini JS, Bevilaqua LR, Zinn CG, Kerr DS, Medina JH, Izquierdo I, et al (2006) Angiotensin ii disrupts inhibitory avoidance memory retrieval. Horm Behav 50(2):308–313PubMedCrossRefGoogle Scholar
- Brandimonte MA, Ferrante D, Feresin C, Delbello R (2001) Dissociating prospective memory from vigilance processes. Psychologica 22:97–113Google Scholar
- Braszko JJ (2002) At(2) but not at(1) receptor antagonism abolishes angiotensin ii increase of the acquisition of conditioned avoidance responses in rats. Behav Brain Res 131(1–2):79–86PubMedCrossRefGoogle Scholar
- Braszko JJ, Kulakowska A, Winnicka MM (2003) Effects of angiotensin ii and its receptor antagonists on motor activity and anxiety in rats. J Physiol Pharmacol 54(2):271–281PubMedGoogle Scholar
- Braszko JJ, Kupryszewski G, Witczuk B, Wisniewski K (1988) Angiotensin-II-(3–8)-hexapeptide affects motor-activity, performance of passive-avoidance and a conditioned avoidance-response in rats. Neuroscience 27:777–783PubMedCrossRefGoogle Scholar
- Broks P, Preston GC, Traub M, Poppleton P, Ward C, Stahl SM (1988) Modelling dementia: effects of scopolamine on memory and attention. Neuropsychologia 26(5):685–700PubMedCrossRefGoogle Scholar
- Broocks A, Little JT, Martin A, Minichiello MD, Dubbert B, Mack C et al (1998) The influence of ondansetron and m-chlorophenylpiperazine on scopolamine-induced cognitive, behavioral, and physiological responses in young healthy controls. Biol Psychiatry 43(6):408–416PubMedCrossRefGoogle Scholar
- Caine ED, Weingartner H, Ludlow CL, Cudahy EA, Wehry S (1981) Qualitative analysis of scopolamine-induced amnesia. Psychopharmacology (Berl) 74(1):74–80CrossRefGoogle Scholar
- Curran HV, Schifano F, Lader M (1991) Models of memory dysfunction? A comparison of the effects of scopolamine and lorazepam on memory, psychomotor performance and mood. Psychopharmacology (Berl) 103(1):83–90CrossRefGoogle Scholar
- Dahlof B, Devereux RB, Kjeldsen SE, Julius S, Beevers G, de Faire U et al (2002) Cardiovascular morbidity and mortality in the losartan intervention for endpoint reduction in hypertension study (life): A randomised trial against atenolol. Lancet 359(9311): 995–1003PubMedCrossRefGoogle Scholar
- Ebert U, Siepmann M, Oertel R, Wesnes KA, Kirch W (1998) Pharmacokinetics and pharmacodynamics of scopolamine after subcutaneous administration. J Clin Pharmacol 38(8):720–726PubMedGoogle Scholar
- Elias MF, Wolf PA, D'Agostino RB, Cobb J, White LR (1993) Untreated blood pressure level is inversely related to cognitive functioning: the Framingham study. Am J Epidemiol 138(6):353–364PubMedGoogle Scholar
- Ellis J, Kvavilashvili L (2000) Prospective memory in 2000: Past, present and future directions. Applied Cognitive Psychology 14:S1–S9CrossRefGoogle Scholar
- Ellis JR, Ellis KA, Bartholomeusz CF, Harrison BJ, Wesnes KA, Erskine FF et al (2006) Muscarinic and nicotinic receptors synergistically modulate working memory and attention in humans. Int J Neuropsychopharmacol 9(2):175–189PubMedCrossRefGoogle Scholar
- Flicker C, Serby M, Ferris SH (1990) Scopolamine effects on memory, language, visuospatial praxis and psychomotor speed. Psychopharmacology (Berl) 100(2):243–250CrossRefGoogle Scholar
- Fogari R, Mugellini A, Zoppi A, Derosa G, Pasotti C, Fogari E et al (2003) Influence of losartan and atenolol on memory function in very elderly hypertensive patients. J Hum Hypertens 17(11):781–785PubMedCrossRefGoogle Scholar
- Fogari R, Mugellini A, Zoppi A, Marasi G, Pasotti C, Poletti L et al (2004) Effects of valsartan compared with enalapril on blood pressure and cognitive function in elderly patients with essential hypertension. Eur J Clin Pharmacol 59(12):863–868PubMedCrossRefGoogle Scholar
- Fogari R, Mugellini A, Zoppi A, Lazzari P, Destro M, Rinaldi A et al (2006) Effect of telmisartan/hydrochlorothiazide vs lisinopril/hydrochlorothiazide combination on ambulatory blood pressure and cognitive function in elderly hypertensive patients. J Hum Hypertens 20(3):177–185PubMedCrossRefGoogle Scholar
- Gard PR (2002) The role of angiotensin II in cognition and behaviour. Eur J Pharmacol 438:1–14PubMedCrossRefGoogle Scholar
- Gard PR (2008) Cognitive-enhancing effects of angiotensin IV. BMC Neurosci 9(Suppl 2):S15PubMedCrossRefGoogle Scholar
- Gard P (2010) Non-adherence to antihypertensive medication and impaired cognition: which comes first? Int J Pharm Pract 8(5):252–259CrossRefGoogle Scholar
- Ghoneim MM, Mewaldt SP, Thatcher JW (1975) The effect of diazepam and fentanyl on mental, psychomotor and electroencephalographic functions and their rate of recovery. Psychopharmacologia 44(1):61–66PubMedCrossRefGoogle Scholar
- Hanon F, Berrou J, Negre-Pages L, Goch JH, Nadhazi Z, Petrella R, Sedefdjian A et al (2008) Effects of hypertension therapy based on eprosartan on systolic arterial blood pressure and cognitive function: primary results of the observational study on cognitive function and systolic blood pressure reduction open-label study. J Hypertens 26(8):1642–1650PubMedCrossRefGoogle Scholar
- Henry JD, MacLeod MS, Phillips LH, Crawford JR (2004) A meta-analytic review of prospective memory and aging. Psychol Aging 19(1):27–39PubMedCrossRefGoogle Scholar
- Jönsson L, Gerth W, Fastbom J (2002) The potential economic consequences of cognitive improvement with losartan. Blood Press 11(1):46–52PubMedCrossRefGoogle Scholar
- Julius S, Kjeldsen SE, Weber M, Brunner HR, Ekman S, Hansson L, et al (2004). Outcomes in hypertensive patients at high cardiovascular risk treated with regimens based on valsartan or amlodipine: The value randomised trial. Lancet 363:2022–2031PubMedCrossRefGoogle Scholar
- Kerr DS, Bevilaqua LR, Bonini JS, Rossato JI, Kohler CA, Medina JH et al (2005) Angiotensin ii blocks memory consolidation through an at2 receptor-dependent mechanism. Psychopharmacology (Berl) 179(3):529–535CrossRefGoogle Scholar
- Kliegel M, Jäger T, Phillips L (2008) Adult age differences in event-based prospective memory: A meta-analysis on the role of focal versus nonfocal cues. Psychology and Aging 23(1):203–208PubMedCrossRefGoogle Scholar
- Kliegel M, Martin M, McDaniel M, Einstein G (2004) Importance effects on performance in event-based prospective memory tasks. Memory 12(5):553–561.PubMedCrossRefGoogle Scholar
- Koller G, Satzger W, Adam M, Wagner M, Kathmann N, Soyka M et al (2003) Effects of scopolamine on matching to sample paradigm and related tests in human subjects. Neuropsychobiology 48(2):87–94PubMedCrossRefGoogle Scholar
- Kopelman MD, Corn TH (1988) Cholinergic 'blockade' as a model for cholinergic depletion. A comparison of the memory deficits with those of Alzheimer-type dementia and the alcoholic Korsakoff syndrome. Brain 111(Pt 5):1079–1110PubMedCrossRefGoogle Scholar
- Kulakowska A, Karwowska W, Wisniewski K, Braszko JJ (1996) Losartan influences behavioural effects of angiotensin ii in rats. Pharmacol Res 34(3–4):109–115PubMedCrossRefGoogle Scholar
- Lo MW, Goldberg MR, McCrea JB, Lu H, Furtek CI, Bjornsson TD (1995) Pharmacokinetics of losartan, an angiotensin II receptor antagonist, and its active metabolite exp3174 in humans. Clin Pharmacol Ther 58(6):641–649PubMedCrossRefGoogle Scholar
- Madden DJ, Blumenthal JA (1998) Interaction of hypertension and age in visual selective attention performance. Health Psychol 17(1):76–83PubMedCrossRefGoogle Scholar
- McMurray JJ, Ostergren J, Swedberg K, Granger CB, Held P, Michelson EL et al (2003) Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function taking angiotensin-converting-enzyme inhibitors: The charm-added trial. Lancet 362:767–771CrossRefGoogle Scholar
- Mazzolai L, Maillard M, Rossat J, Nussberger J, Brunner H, Burnier M (1999) Angiotensin II receptor blockade in normotensive subjects: a direct comparison of three at AT1 receptor antagonists. Hypertension 33(3):850–855PubMedGoogle Scholar
- Mogi M, Li JM, Tsukuda K, Iwanami J, Min LJ, Sakata A, et al (2008) Telmisartan prevented cognitive decline partly due to ppar-gamma activation. Biochem Biophys Res Commun 375(3):446–449PubMedCrossRefGoogle Scholar
- Nelson HE (1982) National Adult Reading Test (NART): test manual. NFER-Nelson, WindsorGoogle Scholar
- Nicholson AN, Roberts DP, Stone BM, Turner C (2001) Antihypertensive therapy in critical occupations: studies with an angiotensin II antagonist. Aviat Space Environ Med 72(12):1096–1101PubMedGoogle Scholar
- Nuotto E (1983) Psychomotor, physiological and cognitive effects of scopolamine and ephedrine in healthy man. Eur J Clin Pharmacol 24(5):603–609PubMedCrossRefGoogle Scholar
- Ohtawa M, Takayama F, Saitoh K, Yoshinaga T, Nakashima M (1993) Pharmacokinetics and biochemical efficacy after single and multiple oral administration of losartan, an orally active nonpeptide angiotensin II receptor antagonist, in humans. Br J Clin Pharmacol 35(3):290–297PubMedGoogle Scholar
- Pompéia S, Rusted JM, Curran HV (2001) Verbal fluency facilitated by the cholinergic blocker, scopolamine. Hum Psychopharmacol 17:51–59CrossRefGoogle Scholar
- Putcha L, Cintron NM, Tsui J, Vanderploeg JM, Kramer WG (1989) Pharmacokinetics and oral bioavailability of scopolamine in normal subjects. Pharm Res 6(6):481–485PubMedCrossRefGoogle Scholar
- Rey A (1941) L'examen psychologique dans les cas d'encephalopathie traumatique. Archives de Psychologie 28(112):112–164Google Scholar
- Rusted JM (1988) Dissociative effects of scopolamine on working memory in healthy young volunteers. Psychopharmacology (Berl) 96(4):487–492CrossRefGoogle Scholar
- Rusted JM, Warburton DM (1988) The effects of scopolamine on working memory in healthy young volunteers. Psychopharmacology (Berl) 96(2):145–152CrossRefGoogle Scholar
- Safer DJ, Allen RP (1971) The central effects of scopolamine in man. Biol Psychiatry 3(4):347–355PubMedGoogle Scholar
- Saxby BK, Harrington F, Wesnes KA, McKeith IG, Ford GA (2008) Candesartan and cognitive decline in older patients with hypertension. Neurology 70:1858–1866PubMedCrossRefGoogle Scholar
- Shepherd J, Bill DJ, Dourish CT, Grewal SS, McLenachan A, Stanhope KJ (1996) Effects of the selective angiotensin ii receptor antagonists losartan and pd123177 in animal models of anxiety and memory. Psychopharmacology (Berl) 126(3):206–218CrossRefGoogle Scholar
- Skoog I (1997) The relationship between blood pressure and dementia: a review. Biomed Pharmacother 51(9):367–375PubMedCrossRefGoogle Scholar
- Srinivasan J, Jayadev S, Kumaran D, Ahamed KF, Suresh B, Ramanathan M (2005) Effect of losartan and enalapril on cognitive deficit caused by goldblatt induced hypertension. Indian J Exp Biol 43(3):241–246PubMedGoogle Scholar
- Spielberger CD, Gorsuch RL, Lushene RE (1970) STAI: manual for the state-trait anxiety inventory. Consulting Psychologists Press, Palo Alto, pp 23–49Google Scholar
- Tariot PN, Patel SV, Cox C, Henderson RE (1996) Age-related decline in central cholinergic function demonstrated with scopolamine. Psychopharmacology (Berl) 125(1):50–56CrossRefGoogle Scholar
- Tedesco MA, Ratti G, Mennella S, Manzo G, Grieco M, Rainone AC et al (1999) Comparison of losartan and hydrochlorothiazide on cognitive function and quality of life in hypertensive patients. Am J Hypertens 12(11):1130–1134PubMedCrossRefGoogle Scholar
- Tsukuda K, Mogi M, Li JM, Iwanami J, Min LJ, Sakata A, et al (2007) Amelioration of cognitive impairment in the type-2 diabetic mouse by the angiotensin ii type-1 receptor blocker candesartan. Hypertension 50(6):1099–1105PubMedCrossRefGoogle Scholar
- Uttl B (2008) Transparent meta-analysis of prospective memory and aging. PLoS One 3:e1568PubMedCrossRefGoogle Scholar
- Vicario A, Martinez CD, Baretto D, Diaz Casale A, Nicolosi L (2005) Hypertension and cognitive decline: impact on executive function. J Clin Hypertens (Greenwich) 7(10):598–604CrossRefGoogle Scholar
- Vitiello B, Martin A, Hill J, Mack C, Molchan S, Martinez R et al (1997) Cognitive and behavioral effects of cholinergic, dopaminergic, and serotonergic blockade in humans. Neuropsychopharmacology 16(1):15–24PubMedCrossRefGoogle Scholar
- Waldstein SR, Manuck SB, Ryan CM, Muldoon MF (1991) Neuropsychological correlates of hypertension: review and methodologic considerations. Psychol Bull 110(3):451–468PubMedCrossRefGoogle Scholar
- Wang J, Ho L, Chen L, Zhao Z, Zhao W, Qian X, et al (2007) Valsartan lowers brain beta-amyloid protein levels and improves spatial learning in a mouse model of alzheimer disease. J Clin Invest 117(11):3393–3402PubMedCrossRefGoogle Scholar
- Wesnes K, Revell A (1984) The separate and combined effects of scopolamine and nicotine on human information processing. Psychopharmacology (Berl) 84(1):5–11CrossRefGoogle Scholar
- Wesnes KA, Simpson P, Kidd A (1988) An investigation of the range of cognitive impairments induced by scopolamine 0.6 mg s.c. Hum Psychopharmacol 3:27–41CrossRefGoogle Scholar