, Volume 216, Issue 4, pp 451–473 | Cite as

Comparative pharmacology of antipsychotics possessing combined dopamine D2 and serotonin 5-HT1A receptor properties

  • Adrian Newman-Tancredi
  • Mark S. Kleven



There is increasing interest in antipsychotics intended to manage positive symptoms via D2 receptor blockade and improve negative symptoms and cognitive deficits via 5-HT1A activation. Such a strategy reduces side-effects such as the extrapyramidal syndrome (EPS), weight gain, and autonomic disturbance liability.


This study aims to review pharmacological literature on compounds interacting at both 5-HT1A and D2 receptors (as well as at other receptors), including aripiprazole, perospirone, ziprasidone, bifeprunox, lurasidone and cariprazine, PF-217830, adoprazine, SSR181507, and F15063.


We examine data on in vitro binding and agonism and in vivo tests related to (1) positive symptoms (e.g., psychostimulant-induced hyperactivity or prepulse inhibition deficit), (2) negative symptoms (e.g., phencyclidine-induced social interaction deficits and cortical dopamine release), and (3) cognitive deficits (e.g., phencyclidine or scopolamine-induced memory deficits). EPS liability is assessed by measuring catalepsy and neuroendocrine impact by determining plasma prolactin, glucose, and corticosterone levels.


Compounds possessing “balanced” 5-HT1A receptor agonism and D2 antagonism (or weak partial agonism) and, in some cases, combined with other beneficial properties, such as 5-HT2A receptor antagonism, are efficacious in a broad range of rodent pharmacological models yet have a lower propensity to elicit EPS or metabolic dysfunction.


Recent compounds exhibiting combined 5-HT1A/D2 properties may be effective in treating a broader range of symptoms of schizophrenia and be better tolerated than existing antipsychotics. Nevertheless, further investigations are necessary to evaluate recent compounds, notably in view of their differing levels of 5-HT1A affinity and efficacy, which can markedly influence activity and side-effect profiles.


5-HT1A receptors D2 receptors Antipsychotic Schizophrenia Aripiprazole Bifeprunox Cariprazine Adoprazine SSR-181507 F15063 



The authors acknowledge the contribution of Francis Colpaert (deceased in 2010) to developing the 5-HT1A/D2 antipsychotic concept. The authors have no conflict of interest or financial obligations that relate to the present manuscript.


  1. Abbas A, Roth BL (2008) Pimavanserin tartrate: a 5-HT2A inverse agonist with potential for treating various neuropsychiatric disorders. Expert Opin Pharmacother 9:3251–3259PubMedGoogle Scholar
  2. Abbas AI, Hedlund PB, Huang XP, Tran TB, Meltzer HY, Roth BL (2009) Amisulpride is a potent 5-HT7 antagonist: relevance for antidepressant actions in vivo. Psychopharmacol (Berl) 205:119–128Google Scholar
  3. Abdul-Monim Z, Reynolds GP, Neill JC (2003) The atypical antipsychotic ziprasidone, but not haloperidol, improves phencyclidine-induced cognitive deficits in a reversal learning task in the rat. J Psychopharmacol 17:57–65PubMedGoogle Scholar
  4. Abi-Dargham A (2004) Do we still believe in the dopamine hypothesis? New data bring new evidence. Int J Neuropsychopharmacol 7(Suppl 1):S1–S5PubMedGoogle Scholar
  5. Aggernaes B, Glenthoj BY, Ebdrup BH, Rasmussen H, Lublin H, Oranje B (2010) Sensorimotor gating and habituation in antipsychotic-naive, first-episode schizophrenia patients before and after 6 months’ treatment with quetiapine. Int J Neuropsychopharmacol 13(10):1383–1395PubMedGoogle Scholar
  6. Akhondzadeh S, Malek-Hosseini M, Ghoreishi A, Raznahan M, Rezazadeh SA (2008) Effect of ritanserin, a 5HT2A/2 C antagonist, on negative symptoms of schizophrenia: a double-blind randomized placebo-controlled study. Prog Neuropsychopharmacol Biol Psychiatry 32:1879–1883PubMedGoogle Scholar
  7. Akimova E, Lanzenberger R, Kasper S (2009) The serotonin-1A receptor in anxiety disorders. Biol Psychiatry 66:627–635PubMedGoogle Scholar
  8. Albert PR, Francois BL (2010) Modifying 5-HT1A receptor gene expression as a new target for antidepressant therapy. Front Neurosci 4:35PubMedGoogle Scholar
  9. Amargos-Bosch M, Bortolozzi A, Puig MV, Serrats J, Adell A, Celada P, Toth M, Mengod G, Artigas F (2004) Co-expression and in vivo interaction of serotonin1A and serotonin2A receptors in pyramidal neurons of prefrontal cortex. Cereb Cortex 14:281–299PubMedGoogle Scholar
  10. Andreasen NC (2000) Schizophrenia: the fundamental questions. Brain Res Brain Res Rev 31:106–112PubMedGoogle Scholar
  11. Arnt J, Bang-Andersen B, Dias R, Bogesø KP (2008) Strategies or pharmacotherapy of schizophrenia. Drugs Future 33:777–791Google Scholar
  12. Assie MB, Koek W (1996) Effects of 5-HT1A receptor antagonists on hippocampal 5-hydroxytryptamine levels: (S)-WAY100135, but not WAY100635, has partial agonist properties. Eur J Pharmacol 304:15–21PubMedGoogle Scholar
  13. Assie MB, Dominguez H, Consul-Denjean N, Newman-Tancredi A (2006) In vivo occupancy of dopamine D2 receptors by antipsychotic drugs and novel compounds in the mouse striatum and olfactory tubercles. Naunyn-Schmiedeberg’s Arch Pharmacol 373:441–450Google Scholar
  14. Assie MB, Carilla-Durand E, Bardin L, Maraval M, Aliaga M, Malfetes N, Barbara M, Newman-Tancredi A (2008) The antipsychotics clozapine and olanzapine increase plasma glucose and corticosterone levels in rats: comparison with aripiprazole, ziprasidone, bifeprunox and F15063. Eur J Pharmacol 592:160–166PubMedGoogle Scholar
  15. Assié MB, Cosi C, Koek W (1997) 5-HT1A receptor agonist properties of the antipsychotic, nemonapride: comparison with bromerguride and clozapine. Eur J Pharmacol 334:141–147PubMedGoogle Scholar
  16. Assié MB, Ravailhe V, Faucillon V, Newman-Tancredi A (2005) Contrasting contribution of 5-hydroxytryptamine 1A receptor activation to neurochemical profile of novel antipsychotics: frontocortical dopamine and hippocampal serotonin release in rat brain. J Pharmacol Exp Ther 315:265–272PubMedGoogle Scholar
  17. Assié MB, Mnie-Filali O, Ravailhe V, Benas C, Marien M, Betry C, Zimmer L, Haddjeri N, Newman-Tancredi A (2009) F15063, a potential antipsychotic with dopamine D2/D3 receptor antagonist, 5-HT1A receptor agonist and dopamine D4 receptor partial agonist properties: influence on neuronal firing and neurotransmitter release. Eur J Pharmacol 607:74–83PubMedGoogle Scholar
  18. Auclair A, Newman-Tancredi A, Depoortere R (2006a) Comparative analysis of typical, atypical, and novel antipsychotics with preferential D2/D3 and 5-HT1A affinity in rodent models of cognitive flexibility and sensory gating: II The reversal learning task and PPI of the startle reflex. 25th Congress of International NeuroPsychopharmacology. Int J Neuropsychopharm, Chicago, pp P01.167Google Scholar
  19. Auclair AL, Kleven MS, Besnard J, Depoortere R, Newman-Tancredi A (2006b) Actions of novel antipsychotic agents on apomorphine-induced PPI disruption: influence of combined serotonin 5-HT1A receptor activation and dopamine D2 receptor blockade. Neuropsychopharmacology 31:1900–1909PubMedGoogle Scholar
  20. Auclair AL, Galinier A, Besnard J, Newman-Tancredi A, Depoortere R (2007) Putative antipsychotics with pronounced agonism at serotonin 5-HT1A and partial agonist activity at dopamine D2 receptors disrupt basal PPI of the startle reflex in rats. Psychopharmacol Berl 193:45–54Google Scholar
  21. Auclair AL, Galinier A, Besnard J, Newman-Tancredi ARD (2008) Effects of antipsychotics on working memory and attentional performance in Delayed non-matching to position test and in 5 choice serial reaction time task. Society for Neuroscience 38th Annual Meeting, Washington D.C., pp 155.10Google Scholar
  22. Auclair AL, Kleven MS, Barret-Grevoz C, Barreto M, Newman-Tancredi A, Depoortere R (2009) Differences among conventional, atypical and novel putative D2/5-HT1A antipsychotics on catalepsy-associated behaviour in cynomolgus monkeys. Behav Brain Res 203:288–295PubMedGoogle Scholar
  23. Auclair AL, Cathala A, Sarrazin F, Depoortere R, Piazza PV, Newman-Tancredi A, Spampinato U (2010) The central serotonin(2B) receptor: a new pharmacological target to modulate the mesoaccumbens dopaminergic pathway activity. J Neurochem 114(5):1323–1332PubMedGoogle Scholar
  24. Bantick RA, Deakin JF, Grasby PM (2001) The 5-HT1A receptor in schizophrenia: a promising target for novel atypical neuroleptics? J Psychopharmacol 15:37–46PubMedGoogle Scholar
  25. Bantick RA, Montgomery AJ, Bench CJ, Choudhry T, Malek N, McKenna PJ, Quested DJ, Deakin JF, Grasby PM (2004a) A positron emission tomography study of the 5-HT1A receptor in schizophrenia and during clozapine treatment. J Psychopharmacol 18:346–354PubMedGoogle Scholar
  26. Bantick RA, Rabiner EA, Hirani E, de Vries MH, Hume SP, Grasby PM (2004b) Occupancy of agonist drugs at the 5-HT1A receptor. Neuropsychopharmacology 29:847–859PubMedGoogle Scholar
  27. Barak S, Weiner I (2011) The M1/M4 preferring agonist xanomeline reverses amphetamine-, MK801- and scopolamine-induced abnormalities of latent inhibition: putative efficacy against positive, negative and cognitive symptoms in schizophrenia. Int J Neuropsychopharmacol 1–14 (in press)Google Scholar
  28. Bardin L, Kleven MS, Barret-Grevoz C, Depoortere R, Newman-Tancredi A (2006a) Antipsychotic-like vs cataleptogenic actions in mice of novel antipsychotics having D2 antagonist and 5-HT1A agonist properties. Neuropsychopharmacology 31:1869–1879PubMedGoogle Scholar
  29. Bardin L, Newman-Tancredi A, Depoortère R (2006b) Comparative analysis of typical, atypical, and novel antipsychotics with preferential D2/D3 and 5-HT1A affinity in rodent models of cognition and memory deficits: I The hole-board and the social recognition tests. 25th Congress of International NeuroPsychopharmacology. Int J Neuropsychopharm Chicago, pp P01.166Google Scholar
  30. Bardin L, Auclair A, Kleven MS, Prinssen EP, Koek W, Newman-Tancredi A, Depoortere R (2007) Pharmacological profiles in rats of novel antipsychotics with combined dopamine D2/serotonin 5-HT1A activity: comparison with typical and atypical conventional antipsychotics. Behav Pharmacol 18:103–118PubMedGoogle Scholar
  31. Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38:1083–1152PubMedGoogle Scholar
  32. Bartoszyk GD, Roos C, Ziegler H (1996) 5-HT1A receptors are not involved in clozapine’s lack of cataleptogenic potential. Neuropharmacology 35:1645–1646PubMedGoogle Scholar
  33. Beique JC, Campbell B, Perring P, Hamblin MW, Walker P, Mladenovic L, Andrade R (2004) Serotonergic regulation of membrane potential in developing rat prefrontal cortex: coordinated expression of 5-hydroxytryptamine (5-HT)1A, 5-HT2A, and 5-HT7 receptors. J Neurosci 24:4807–4817PubMedGoogle Scholar
  34. Benkert O, Muller-Siecheneder F, Wetzel H (1995) Dopamine agonists in schizophrenia: a review. Eur Neuropsychopharmacol 5(Suppl):43–53PubMedGoogle Scholar
  35. Berends AC, Luiten PG, Nyakas C (2005) A review of the neuroprotective properties of the 5-HT1A receptor agonist repinotan HCl (BAYx3702) in ischemic stroke. CNS Drug Rev 11:379–402PubMedGoogle Scholar
  36. Blier P, Ward NM (2003) Is there a role for 5-HT1A agonists in the treatment of depression? Biol Psychiatry 53:193–203PubMedGoogle Scholar
  37. Bortolozzi A, Diaz-Mataix L, Toth M, Celada P, Artigas F (2007) In vivo actions of aripiprazole on serotonergic and dopaminergic systems in rodent brain. Psychopharmacol Berl 191:745–758Google Scholar
  38. Bortolozzi A, Masana M, Diaz-Mataix L, Cortes R, Scorza MC, Gingrich JA, Toth M, Artigas F (2010) Dopamine release induced by atypical antipsychotics in prefrontal cortex requires 5-HT1A receptors but not 5-HT2A receptors. Int J Neuropsychopharmacol 13(10):1299–1314PubMedGoogle Scholar
  39. Boulay D, Depoortere R, Louis C, Perrault G, Griebel G, Soubrie P (2004) SSR181507, a putative atypical antipsychotic with dopamine D2 antagonist and 5-HT1A agonist activities: improvement of social interaction deficits induced by phencyclidine in rats. Neuropharmacology 46:1121–1129PubMedGoogle Scholar
  40. Boulay D, Bergis O, Avenet P, Griebel G (2010) The glycine transporter-1 inhibitor SSR103800 displays a selective and specific antipsychotic-like profile in normal and transgenic mice. Neuropsychopharmacology 35:416–427PubMedGoogle Scholar
  41. Bradford AM, Savage KM, Jones DN, Kalinichev M (2010) Validation and pharmacological characterisation of MK-801-induced locomotor hyperactivity in BALB/C mice as an assay for detection of novel antipsychotics. Psychopharmacol Berl 212:155–170Google Scholar
  42. Bridges TM, LeBois EP, Hopkins CR, Wood MR, Jones CK, Conn PJ, Lindsley CW (2010) The antipsychotic potential of muscarinic allosteric modulation. Drug News Perspect 23:229–240PubMedGoogle Scholar
  43. Bristow MR, Murphy GA, Krause-Steinrauf H, Anderson JL, Carlquist JF, Thaneemit-Chen S, Krishnan V, Abraham WT, Lowes BD, Port JD, Davis GW, Lazzeroni LC, Robertson AD, Lavori PW, Liggett SB (2010) An alpha2C-adrenergic receptor polymorphism alters the norepinephrine-lowering effects and therapeutic response of the beta-blocker bucindolol in chronic heart failure. Circ Heart Fail 3:21–28PubMedGoogle Scholar
  44. Bruins Slot LA, Kleven MS, Newman-Tancredi A (2005) Effects of novel antipsychotics with mixed D(2) antagonist/5-HT(1A) agonist properties on PCP-induced social interaction deficits in the rat. Neuropharmacology 49:996–1006PubMedGoogle Scholar
  45. Bruins Slot LA, De Vries L, Newman-Tancredi A, Cussac D (2006) Differential profile of antipsychotics at serotonin 5-HT1A and dopamine D2S receptors coupled to extracellular signal-regulated kinase. Eur J Pharmacol 534:63–70PubMedGoogle Scholar
  46. Burnet PW, Eastwood SL, Harrison PJ (1997) [3 H]WAY-100635 for 5-HT1A receptor autoradiography in human brain: a comparison with [3 H]8-OH-DPAT and demonstration of increased binding in the frontal cortex in schizophrenia. Neurochem Int 30:565–574PubMedGoogle Scholar
  47. Caine SB, Geyer MA, Swerdlow NR (1995) Effects of D3/D2 dopamine receptor agonists and antagonists on prepulse inhibition of acoustic startle in the rat. Neuropsychopharmacology 12:139–145PubMedGoogle Scholar
  48. Calcagno E, Carli M, Invernizzi RW (2006) The 5-HT(1A) receptor agonist 8-OH-DPAT prevents prefrontocortical glutamate and serotonin release in response to blockade of cortical NMDA receptors. J Neurochem 96:853–860PubMedGoogle Scholar
  49. Carilla-Durand E, Assié MB, Maraval M, Newman-Tancredi A (2004a) Effects on plasma prolactin and corticosterone levels of antipsychotics with diverse dopamine D2 and serotonin 5-HT1A properties 24th Congress of International NeuroPsychopharmacology, Paris, pp P02.507Google Scholar
  50. Carilla-Durand E, Assié MB, Maraval M, Newman-Tancredi A (2004b) Effects on plasma prolactin and corticosterone levels of antipsychotics with diverse dopamine D2 and serotonin 5-HT1A properties. 24th Congress of International NeuroPsychopharmacology, Paris, pp Poster P02.507Google Scholar
  51. Casey DE, Sands EE, Heisterberg J, Yang HM (2008) Efficacy and safety of bifeprunox in patients with an acute exacerbation of schizophrenia: results from a randomized, double-blind, placebo-controlled, multicenter, dose-finding study. Psychopharmacol Berl 200:317–331Google Scholar
  52. Chessick CA, Allen MH, Thase M, Batista Miralha da Cunha AB, Kapczinski FF, de Lima MS, dos Santos Souza JJ (2006) Azapirones for generalized anxiety disorder. Cochrane Database Syst Rev 3: CD006115Google Scholar
  53. Chou YH, Halldin C, Farde L (2003) Occupancy of 5-HT1A receptors by clozapine in the primate brain: a PET study. Psychopharmacol Berl 166:234–240Google Scholar
  54. Clarke HF, Dalley JW, Crofts HS, Robbins TW, Roberts AC (2004) Cognitive inflexibility after prefrontal serotonin depletion. Science 304:878–880PubMedGoogle Scholar
  55. Clarke HF, Walker SC, Dalley JW, Robbins TW, Roberts AC (2007) Cognitive inflexibility after prefrontal serotonin depletion is behaviorally and neurochemically specific. Cereb Cortex 17:18–27PubMedGoogle Scholar
  56. Corripio I, Catafau AM, Perez V, Puigdemont D, Mena E, Aguilar Y, Carrio I, Alvarez E (2005) Striatal dopaminergic D2 receptor occupancy and clinical efficacy in psychosis exacerbation: a 123I-IBZM study with ziprasidone and haloperidol. Prog Neuropsychopharmacol Biol Psychiatry 29:91–96PubMedGoogle Scholar
  57. Cosi C, Carilla-Durand E, Assié MB, Ormiere AM, Maraval M, Leduc N, Newman-Tancredi A (2006) Partial agonist properties of the antipsychotics SSR181507, aripiprazole and bifeprunox at dopamine D2 receptors: G protein activation and prolactin release. Eur J Pharmacol 535:135–144PubMedGoogle Scholar
  58. Csermely P, Agoston V, Pongor S (2005) The efficiency of multi-target drugs: the network approach might help drug design. Trends Pharmacol Sci 26:178–182PubMedGoogle Scholar
  59. Cussac D, Duqueyroix D, Newman-Tancredi A, Millan MJ (2002) Stimulation by antipsychotic agents of mitogen-activated protein kinase (MAPK) coupled to cloned, human (h)serotonin (5-HT)(1A) receptors. Psychopharmacol Berl 162:168–177Google Scholar
  60. Cussac D, Martel JC, Assié MB, Heusler P, Rauly-Lestienne I, Ailhaud MC, Danty N, Leduc N, Ormière AM, Pulou G, Tardif S, Newman-Tancredi A (2008) Distinctive affinity profile of novel antipsychotics possessing combined D2 and 5-HT1A receptor properties compared with conventional and atypical antipsychotics. Society for Neuroscience—38th Annual Meeting, Washington DC, pp 155.9Google Scholar
  61. Czyrak A, Czepiel K, Mackowiak M, Chocyk A, Wedzony K (2003) Serotonin 5-HT1A receptors might control the output of cortical glutamatergic neurons in rat cingulate cortex. Brain Res 989:42–51PubMedGoogle Scholar
  62. Dahan L, Husum H, Mnie-Filali O, Arnt J, Hertel P, Haddjeri N (2009) Effects of bifeprunox and aripiprazole on rat serotonin and dopamine neuronal activity and anxiolytic behaviour. J Psychopharmacol 23:177–189PubMedGoogle Scholar
  63. Davis JM, Chen N, Glick ID (2003) A meta-analysis of the efficacy of second-generation antipsychotics. Arch Gen Psychiatry 60:553–564PubMedGoogle Scholar
  64. Delay J, Deniker P, Harl JM (1952) Utilisation en thérapeutique psychiatrique d’une phénothiazine d’action centrale élective (4560 RP). Ann Med Psychol (Paris) 110:112–117Google Scholar
  65. Depoortere R, Boulay D, Perrault G, Bergis O, Decobert M, Francon D, Jung M, Simiand J, Soubrie P, Scatton B (2003) SSR181507, a dopamine D2 receptor antagonist and 5-HT1A receptor agonistII: Behavioral profile predictive of an atypical antipsychotic activity. Neuropsychopharmacology 28:1889–1902PubMedGoogle Scholar
  66. Depoortere R, Auclair AL, Bardin L, Bruins Slot L, Kleven MS, Colpaert F, Vacher B, Newman-Tancredi A (2007a) F15063, a compound with D2/D3 antagonist, 5-HT 1A agonist and D4 partial agonist properties. III. Activity in models of cognition and negative symptoms. Br J Pharmacol 151:266–277PubMedGoogle Scholar
  67. Depoortere R, Bardin L, Auclair AL, Kleven MS, Prinssen E, Colpaert F, Vacher B, Newman-Tancredi A (2007b) F15063, a compound with D2/D3 antagonist, 5-HT 1A agonist and D4 partial agonist properties. II. Activity in models of positive symptoms of schizophrenia. Br J Pharmacol 151:253–265PubMedGoogle Scholar
  68. Depoortere R, Barret-Grevoz C, Bardin L, Newman-Tancredi A (2008) Apomorphine-induced emesis in dogs: differential sensitivity to established and novel dopamine D2/5-HT1A antipsychotic compounds. Eur J Pharmacol 597:34–38PubMedGoogle Scholar
  69. Doly S, Valjent E, Setola V, Callebert J, Herve D, Launay JM, Maroteaux L (2008) Serotonin 5-HT2B receptors are required for 3,4-methylenedioxymethamphetamine-induced hyperlocomotion and 5-HT release in vivo and in vitro. J Neurosci 28:2933–2940PubMedGoogle Scholar
  70. Elliott J, Reynolds GP (1999) Agonist-stimulated GTPgamma[35 S] binding to 5-HT(1A) receptors in human post-mortem brain. Eur J Pharmacol 386:313–315PubMedGoogle Scholar
  71. Evans K, McGrath J, Milns R (2003) Searching for schizophrenia in ancient Greek and Roman literature: a systematic review. Acta Psychiatr Scand 107:323–330PubMedGoogle Scholar
  72. Fermini B, Fossa AA (2003) The impact of drug-induced QT interval prolongation on drug discovery and development. Nat Rev Drug Discov 2:439–447PubMedGoogle Scholar
  73. Fitzgerald LW, Probert AW, Borosky SA, Evans L, Whisman T, Donovan CM, Knauer CS, Akunne H, Johnson DS, White AD, Serpa KA (2009) In vitro pharmacological profile of PF-00217830, a novel dopamine D2 and 5-HT1A partial agonist/5-HT2A antagonist targeting the treatment of positive and negative symptoms of schizophrenia Society for Neuroscience, Chicago, IL, USA, pp 646.23Google Scholar
  74. Goff DC, Midha KK, Brotman AW, McCormick S, Waites M, Amico ET (1991) An open trial of buspirone added to neuroleptics in schizophrenic patients. J Clin Psychopharmacol 11:193–197PubMedGoogle Scholar
  75. Gogos A, Nathan PJ, Guille V, Croft RJ, van den Buuse M (2006) Estrogen prevents 5-HT1A receptor-induced disruptions of prepulse inhibition in healthy women. Neuropsychopharmacology 31:885–889PubMedGoogle Scholar
  76. Gogos A, Bogeski M, van den Buuse M (2008) Role of serotonin-1A receptors in the action of antipsychotic drugs: comparison of prepulse inhibition studies in mice and rats and relevance for human pharmacology. Behav Pharmacol 19:548–561PubMedGoogle Scholar
  77. Grof P, Joffe R, Kennedy S, Persad E, Syrotiuk J, Bradford D (1993) An open study of oral flesinoxan, a 5-HT1A receptor agonist, in treatment-resistant depression. Int Clin Psychopharmacol 8:167–172PubMedGoogle Scholar
  78. Grunder G (2010) Cariprazine, an orally active D2/D3 receptor antagonist, for the potential treatment of schizophrenia, bipolar mania and depression. Curr Opin Investig Drugs 11:823–832PubMedGoogle Scholar
  79. Gyertyan I, Saghy K (2007) The selective dopamine D3 receptor antagonists, SB 277011-A and S 33084 block haloperidol-induced catalepsy in rats. Eur J Pharmacol 572:171–174PubMedGoogle Scholar
  80. Hadjighassem MR, Austin MC, Szewczyk B, Daigle M, Stockmeier CA, Albert PR (2009) Human Freud-2/CC2D1B: a novel repressor of postsynaptic serotonin-1A receptor expression. Biol Psychiatry 66:214–222PubMedGoogle Scholar
  81. Hagiwara H, Fujita Y, Ishima T, Kunitachi S, Shirayama Y, Iyo M, Hashimoto K (2008) Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of the antipsychotic drug perospirone: role of serotonin 5-HT1A receptors. Eur Neuropsychopharmacol 18:448–454PubMedGoogle Scholar
  82. Hashimoto T, Nishino N, Nakai H, Tanaka C (1991) Increase in serotonin 5-HT1A receptors in prefrontal and temporal cortices of brains from patients with chronic schizophrenia. Life Sci 48:355–363PubMedGoogle Scholar
  83. Hatta K, Sato K, Hamakawa H, Takebayashi H, Kimura N, Ochi S, Sudo Y, Asukai N, Nakamura H, Usui C, Kawabata T, Hirata T, Sawa Y (2009) Effectiveness of second-generation antipsychotics with acute-phase schizophrenia. Schizophr Res 113:49–55PubMedGoogle Scholar
  84. Heusler P, Newman-Tancredi A, Castro-Fernandez A, Cussac D (2007) Differential agonist and inverse agonist profile of antipsychotics at D2L receptors coupled to GIRK potassium channels. Neuropharmacology 52:1106–1113PubMedGoogle Scholar
  85. Heusler P, Newman-Tancredi A, Loock T, Cussac D (2008) Antipsychotics differ in their ability to internalise human dopamine D2S and human serotonin 5-HT1A receptors in HEK293 cells. Eur J Pharmacol 581:37–46PubMedGoogle Scholar
  86. Honey GD, Bullmore ET, Soni W, Varatheesan M, Williams SC, Sharma T (1999) Differences in frontal cortical activation by a working memory task after substitution of risperidone for typical antipsychotic drugs in patients with schizophrenia. Proc Natl Acad Sci USA 96:13432–13437PubMedGoogle Scholar
  87. Horiguchi M, Meltzer HY (2010) Interactions among the atypical antipsychotic drug (APD), lurasidone, 5-HT1A and metabotropic glutamate receptor 2/3 (mGluR2/3) agonism, and 5-HT2A antagonism, to attenuate phencyclidine (PCP)-induced deficit in rat novel object recognition (NOR) Society for Neuroscience—40th Annual Meeting, San Diego, CA, pp Program No. 610.12Google Scholar
  88. Howes OD, Kapur S (2009) The dopamine hypothesis of schizophrenia: version III—the final common pathway. Schizophr Bull 35:549–562PubMedGoogle Scholar
  89. Howes OD, McDonald C, Cannon M, Arseneault L, Boydell J, Murray RM (2004) Pathways to schizophrenia: the impact of environmental factors. Int J Neuropsychopharmacol 7(Suppl 1):S7–S13PubMedGoogle Scholar
  90. Iacono WG (1998) Identifying psychophysiological risk for psychopathology: examples from substance abuse and schizophrenia research. Psychophysiology 35:621–637PubMedGoogle Scholar
  91. Ichikawa J, Meltzer HY (2000) The effect of serotonin(1A) receptor agonism on antipsychotic drug-induced dopamine release in rat striatum and nucleus accumbens. Brain Res 858:252–263PubMedGoogle Scholar
  92. Ichikawa J, Ishii H, Bonaccorso S, Fowler WL, O’Laughlin IA, Meltzer HY (2001) 5-HT(2A) and D(2) receptor blockade increases cortical DA release via 5-HT(1A) receptor activation: a possible mechanism of atypical antipsychotic-induced cortical dopamine release. J Neurochem 76:1521–1531PubMedGoogle Scholar
  93. Ichikawa J, Dai J, O’Laughlin IA, Fowler WL, Meltzer HY (2002) Atypical, but not typical, antipsychotic drugs increase cortical acetylcholine release without an effect in the nucleus accumbens or striatum. Neuropsychopharmacology 26:325–339PubMedGoogle Scholar
  94. Idris N, Neill J, Grayson B, Bang-Andersen B, Witten LM, Brennum LT, Arnt J (2010) Sertindole improves sub-chronic PCP-induced reversal learning and episodic memory deficits in rodents: involvement of 5-HT(6) and 5-HT (2A) receptor mechanisms. Psychopharmacol Berl 208:23–36Google Scholar
  95. Ikeda K, Murai T, Tsujimura T, Fukuoka T, Ikejiri M, Hoshino K, Ishiyama T, Kimura J, Taiji M (2010) A unique cognitive enhancing effect of lurasidone in object retrieval with detours, a test of executive function in non-human primates Society for Neuroscience—40th Annual Meeting, San Diego, CA, pp Program No. 506.23Google Scholar
  96. Invernizzi RW, Cervo L, Samanin R (1988) 8-Hydroxy-2-(di-n-propylamino) tetralin, a selective serotonin1A receptor agonist, blocks haloperidol-induced catalepsy by an action on raphe nuclei medianus and dorsalis. Neuropharmacology 27:515–518PubMedGoogle Scholar
  97. Ishibashi T, Horisawa T, Tokuda K, Ishiyama T, Ogasa M, Tagashira R, Matsumoto K, Nishikawa H, Ueda Y, Toma S, Oki H, Tanno N, Saji I, Ito A, Ohno Y, Nakamura M (2010) Pharmacological profile of lurasidone, a novel antipsychotic agent with potent 5-hydroxytryptamine 7 (5-HT7) and 5-HT1A receptor activity. J Pharmacol Exp Ther 334:171–181PubMedGoogle Scholar
  98. Jentsch JD, Roth RH (1999) The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 20:201–225PubMedGoogle Scholar
  99. Jones CA, McCreary AC (2008) Serotonergic approaches in the development of novel antipsychotics. Neuropharmacology 55:1056–1065PubMedGoogle Scholar
  100. Jordan S, Koprivica V, Chen R, Tottori K, Kikuchi T, Altar CA (2002) The antipsychotic aripiprazole is a potent, partial agonist at the human 5-HT1A receptor. Eur J Pharmacol 441:137–140PubMedGoogle Scholar
  101. Jordan S, Koprivica V, Dunn R, Tottori K, Kikuchi T, Altar CA (2004) In vivo effects of aripiprazole on cortical and striatal dopaminergic and serotonergic function. Eur J Pharmacol 483:45–53PubMedGoogle Scholar
  102. Kalkman HO, Loetscher E (2003) alpha2C-Adrenoceptor blockade by clozapine and other antipsychotic drugs. Eur J Pharmacol 462:33–40PubMedGoogle Scholar
  103. Kapur S, Mamo D (2003) Half a century of antipsychotics and still a central role for dopamine D2 receptors. Prog Neuropsychopharmacol Biol Psychiatry 27:1081–1090PubMedGoogle Scholar
  104. Keller MB, Ruwe FJ, Janssens CJ, Sitsen JM, Jokinen R, Janczewski J (2005) Relapse prevention with gepirone ER in outpatients with major depression. J Clin Psychopharmacol 25:79–84PubMedGoogle Scholar
  105. Kenakin T (2011) Functional selectivity and biased receptor signaling. J Pharmacol Exp Ther 336(2):296–302PubMedGoogle Scholar
  106. Khan A, Batool F, Haleem DJ (2001) Behavioral effects of 8-OH-DPAT in single and repeated haloperidol injected rats. Pak J Pharm Sci 14:9–17PubMedGoogle Scholar
  107. Kirk SL, Glazebrook J, Grayson B, Neill JC, Reynolds GP (2009) Olanzapine-induced weight gain in the rat: role of 5-HT2C and histamine H1 receptors. Psychopharmacol Berl 207:119–125Google Scholar
  108. Kiss B, Horvath A, Nemethy Z, Schmidt E, Laszlovszky I, Bugovics G, Fazekas K, Hornok K, Orosz S, Gyertyan I, Agai-Csongor E, Domany G, Tihanyi K, Adham N, Szombathelyi Z (2010) Cariprazine (RGH-188), a dopamine D(3) receptor-preferring, D(3)/D(2) dopamine receptor antagonist-partial agonist antipsychotic candidate: in vitro and neurochemical profile. J Pharmacol Exp Ther 333:328–340PubMedGoogle Scholar
  109. Kleven M, Prinssen EP, Koek W (1996) Role of 5-HT1A receptors in the ability of mixed 5-HT1A receptor agonist/dopamine D2 receptor antagonists to inhibit methylphenidate-induced behaviors in rats. Eur J Pharmacol 313:25–34PubMedGoogle Scholar
  110. Kleven MS, Barret-Grevoz C, Bruins Slot L, Newman-Tancredi A (2005) Novel antipsychotic agents with 5-HT(1A) agonist properties: role of 5-HT(1A) receptor activation in attenuation of catalepsy induction in rats. Neuropharmacology 49:135–143PubMedGoogle Scholar
  111. Kollins SH, MacDonald EK, Rush CR (2001) Assessing the abuse potential of methylphenidate in nonhuman and human subjects: a review. Pharmacol Biochem Behav 68:611–627PubMedGoogle Scholar
  112. Kroeze WK, Roth BL (1998) The molecular biology of serotonin receptors: therapeutic implications for the interface of mood and psychosis. Biol Psychiatry 44:1128–1142PubMedGoogle Scholar
  113. Kroeze WK, Hufeisen SJ, Popadak BA, Renock SM, Steinberg S, Ernsberger P, Jayathilake K, Meltzer HY, Roth BL (2003) H1-histamine receptor affinity predicts short-term weight gain for typical and atypical antipsychotic drugs. Neuropsychopharmacology 28:519–526PubMedGoogle Scholar
  114. Krystal JH, D’Souza DC, Mathalon D, Perry E, Belger A, Hoffman R (2003) NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: toward a paradigm shift in medication development. Psychopharmacol Berl 169:215–233Google Scholar
  115. Krystal JH, Mathew SJ, D’Souza DC, Garakani A, Gunduz-Bruce H, Charney DS (2010) Potential psychiatric applications of metabotropic glutamate receptor agonists and antagonists. CNS Drugs 24:669–693PubMedGoogle Scholar
  116. Kumar JS, Mann JJ (2007) PET tracers for 5-HT(1A) receptors and uses thereof. Drug Discov Today 12:748–756PubMedGoogle Scholar
  117. Kuroki T, Nagao N, Nakahara T (2008) Neuropharmacology of second-generation antipsychotic drugs: a validity of the serotonin-dopamine hypothesis. Prog Brain Res 172:199–212PubMedGoogle Scholar
  118. Lawrence AJ (2007) Optimisation of anti-psychotic therapeutics: a balancing act? Br J Pharmacol 151:161–162PubMedGoogle Scholar
  119. Le Francois B, Czesak M, Steubl D, Albert PR (2008) Transcriptional regulation at a HTR1A polymorphism associated with mental illness. Neuropharmacology 55:977–985PubMedGoogle Scholar
  120. Lemoine L, Verdurand M, Vacher B, Blanc E, Le Bars D, Newman-Tancredi A, Zimmer L (2010) [18 F]F15599, a novel 5-HT1A receptor agonist, as a radioligand for PET neuroimaging. Eur J Nucl Med Mol Imaging 37:594–605PubMedGoogle Scholar
  121. Lemonde S, Turecki G, Bakish D, Du L, Hrdina PD, Bown CD, Sequeira A, Kushwaha N, Morris SJ, Basak A, Ou XM, Albert PR (2003) Impaired repression at a 5-hydroxytryptamine 1A receptor gene polymorphism associated with major depression and suicide. J Neurosci 23:8788–8799PubMedGoogle Scholar
  122. Leucht S, Wahlbeck K, Hamann J, Kissling W (2003) New generation antipsychotics versus low-potency conventional antipsychotics: a systematic review and meta-analysis. Lancet 361:1581–1589PubMedGoogle Scholar
  123. Lewis R (2004) Should cognitive deficit be a diagnostic criterion for schizophrenia? J Psychiatry Neurosci 29:102–113PubMedGoogle Scholar
  124. Leysen J (2000) Receptor profile of antipsychotics. In: Ellenbroek BA, Cools AR (eds) Atypical antipsychotics. Birkhäuser, Basel, Switzerland, pp 57–81Google Scholar
  125. Leysen JE, Janssen PM, Schotte A, Luyten WH, Megens AA (1993) Interaction of antipsychotic drugs with neurotransmitter receptor sites in vitro and in vivo in relation to pharmacological and clinical effects: role of 5HT2 receptors. Psychopharmacol Berl 112:S40–S54Google Scholar
  126. Li Z, Ichikawa J, Dai J, Meltzer HY (2004) Aripiprazole, a novel antipsychotic drug, preferentially increases dopamine release in the prefrontal cortex and hippocampus in rat brain. Eur J Pharmacol 493:75–83PubMedGoogle Scholar
  127. Li Z, Huang M, Ichikawa J, Dai J, Meltzer HY (2005) N-desmethylclozapine, a major metabolite of clozapine, increases cortical acetylcholine and dopamine release in vivo via stimulation of M1 muscarinic receptors. Neuropsychopharmacology 30:1986–1995PubMedGoogle Scholar
  128. Lieberman JA, Kane JM, Gadaleta D, Brenner R, Lesser MS, Kinon B (1984) Methylphenidate challenge as a predictor of relapse in schizophrenia. Am J Psychiatry 141:633–638PubMedGoogle Scholar
  129. Lieberman JA, Kane JM, Alvir J (1987) Provocative tests with psychostimulant drugs in schizophrenia. Psychopharmacol Berl 91:415–433Google Scholar
  130. Llado-Pelfort L, Assie MB, Newman-Tancredi A, Artigas F, Celada P (2010) Preferential in vivo action of F15599, a novel 5-HT1A receptor agonist, at postsynaptic 5-HT1A receptors. Br J Pharmacol 160:1929–1940PubMedGoogle Scholar
  131. Loiseau F, Millan MJ (2009) Blockade of dopamine D(3) receptors in frontal cortex, but not in sub-cortical structures, enhances social recognition in rats: similar actions of D(1) receptor agonists, but not of D(2) antagonists. Eur Neuropsychopharmacol 19:23–33PubMedGoogle Scholar
  132. Mailman RB, Murthy V (2010) Third generation antipsychotic drugs: partial agonism or receptor functional selectivity? Curr Pharm Des 16:488–501PubMedGoogle Scholar
  133. Mannoury la Cour C, El Mestikawy S, Hanoun N, Hamon M, Lanfumey L (2006) Regional differences in the coupling of 5-hydroxytryptamine-1A receptors to G proteins in the rat brain. Mol Pharmacol 70:1013–1021PubMedGoogle Scholar
  134. Marcus MM, Wiker C, Franberg O, Konradsson-Geuken A, Langlois X, Jardemark K, Svensson TH (2010) Adjunctive alpha2-adrenoceptor blockade enhances the antipsychotic-like effect of risperidone and facilitates cortical dopaminergic and glutamatergic, NMDA receptor-mediated transmission. Int J Neuropsychopharmacol 13:891–903PubMedGoogle Scholar
  135. Martel J-C, Cussac D, Assié M-B, Rauly-Lestienne I, Newman-Tancredi A (2006) Antagonism of serotonin 5-HT2B receptors: activity of atypical benzamide antipsychotics in comparison with 5-HT2A, 5-HT2C and dopamine D2 receptors. Society for Neuroscience—36th Annual Meeting, Atlanta, Georgia, pp Program number 93.8Google Scholar
  136. Martin P, Waters N, Schmidt CJ, Carlsson A, Carlsson ML (1998) Rodent data and general hypothesis: antipsychotic action exerted through 5-Ht2A receptor antagonism is dependent on increased serotonergic tone. J Neural Transm 105:365–396PubMedGoogle Scholar
  137. Mauler F, Fahrig T, Horvath E, Jork R (2001) Inhibition of evoked glutamate release by the neuroprotective 5-HT(1A) receptor agonist BAY x 3702 in vitro and in vivo. Brain Res 888:150–157PubMedGoogle Scholar
  138. McCormick PN, Kapur S, Graff-Guerrero A, Raymond R, Nobrega JN, Wilson AA (2010) The antipsychotics olanzapine, risperidone, clozapine, and haloperidol are D2-selective ex vivo but not in vitro. Neuropsychopharmacology 35:1826–1835PubMedGoogle Scholar
  139. McCreary AC, Glennon JC, Ashby CR Jr, Meltzer HY, Li Z, Reinders JH, Hesselink MB, Long SK, Herremans AH, van Stuivenberg H, Feenstra RW, Kruse CG (2007) SLV313 (1-(2,3-dihydro-benzo[1,4]dioxin-5-yl)-4- [5-(4-fluoro-phenyl)-pyridin-3-ylmethyl]-piperazine monohydrochloride): a novel dopamine D2 receptor antagonist and 5-HT1A receptor agonist potential antipsychotic drug. Neuropsychopharmacology 32:78–94PubMedGoogle Scholar
  140. McMillen BA, Scott SM, Davanzo EA (1988) Reversal of neuroleptic-induced catalepsy by novel aryl-piperazine anxiolytic drugs. J Pharm Pharmacol 40:885–887PubMedGoogle Scholar
  141. Medori R, Mannaert E, Grunder G (2006) Plasma antipsychotic concentration and receptor occupancy, with special focus on risperidone long-acting injectable. Eur Neuropsychopharmacol 16:233–240PubMedGoogle Scholar
  142. Melkersson K, Dahl ML (2004) Adverse metabolic effects associated with atypical antipsychotics: literature review and clinical implications. Drugs 64:701–723PubMedGoogle Scholar
  143. Meltzer HY, Sumiyoshi T (2008) Does stimulation of 5-HT(1A) receptors improve cognition in schizophrenia? Behav Brain Res 195:98–102PubMedGoogle Scholar
  144. Meltzer HY, Park S, Kessler R (1999) Cognition, schizophrenia, and the atypical antipsychotic drugs. Proc Natl Acad Sci USA 96:13591–13593PubMedGoogle Scholar
  145. Meltzer HY, Li Z, Kaneda Y, Ichikawa J (2003) Serotonin receptors: their key role in drugs to treat schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 27:1159–1172PubMedGoogle Scholar
  146. Meltzer HY, Horiguchi M, Massey BW (2011) The role of serotonin in the NMDA receptor antagonist models of psychosis and cognitive impairment. Psychopharmacology (Berl) 213(2–3):289–305Google Scholar
  147. Mezler M, Geneste H, Gault L, Marek GJ (2010) LY-2140023, a prodrug of the group II metabotropic glutamate receptor agonist LY-404039 for the potential treatment of schizophrenia. Curr Opin Investig Drugs 11:833–845PubMedGoogle Scholar
  148. Michelsen JW, Meyer JM (2007) Cardiovascular effects of antipsychotics. Expert Rev Neurother 7:829–839PubMedGoogle Scholar
  149. Millan MJ (2000) Improving the treatment of schizophrenia: focus on serotonin (5-HT)(1A) receptors. J Pharmacol Exp Ther 295:853–861PubMedGoogle Scholar
  150. Millan MJ (2005) N-Methyl-D-aspartate receptors as a target for improved antipsychotic agents: novel insights and clinical perspectives. Psychopharmacol Berl 179:30–53Google Scholar
  151. Millan MJ, Gobert A, Newman-Tancredi A, Audinot V, Lejeune F, Rivet JM, Cussac D, Nicolas JP, Muller O, Lavielle G (1998a) S 16924 ((R)-2-[1-[2-(2,3-dihydro-benzo[1,4] dioxin-5-Yloxy)-ethyl]-pyrrolidin-3yl]-1-(4-fluoro-phenyl)-ethanone), a novel, potential antipsychotic with marked serotonin (5-HT)1A agonist properties: I. Receptorial and neurochemical profile in comparison with clozapine and haloperidol. J Pharmacol Exp Ther 286:1341–1355PubMedGoogle Scholar
  152. Millan MJ, Schreiber R, Dekeyne A, Rivet JM, Bervoets K, Mavridis M, Sebban C, Maurel-Remy S, Newman-Tancredi A, Spedding M, Muller O, Lavielle G, Brocco M (1998b) S 16924 ((R)-2-[1-[2-(2,3-dihydro-benzo[1,4] dioxin-5-yloxy)-ethyl]-pyrrolidin-3yl]-1-(4-fluoro-phenyl)-ethanone), a novel, potential antipsychotic with marked serotonin (5-HT)1A agonist properties: II. Functional profile in comparison to clozapine and haloperidol. J Pharmacol Exp Ther 286:1356–1373PubMedGoogle Scholar
  153. Millan MJ, Brocco M, Gobert A, Joly F, Bervoets K, Rivet J, Newman-Tancredi A, Audinot V, Maurel S (1999) Contrasting mechanisms of action and sensitivity to antipsychotics of phencyclidine versus amphetamine: importance of nucleus accumbens 5-HT2A sites for PCP-induced locomotion in the rat. Eur J Neurosci 11:4419–4432PubMedGoogle Scholar
  154. Millan MJ, Brocco M, Rivet JM, Audinot V, Newman-Tancredi A, Maiofiss L, Queriaux S, Despaux N, Peglion JL, Dekeyne A (2000) S18327 (1-[2-[4-(6-fluoro-1, 2-benzisoxazol-3-yl)piperid-1-yl]ethyl]3-phenyl imidazolin-2-one), a novel, potential antipsychotic displaying marked antagonist properties at alpha(1)- and alpha(2)-adrenergic receptors: II. Functional profile and a multiparametric comparison with haloperidol, clozapine, and 11 other antipsychotic agents. J Pharmacol Exp Ther 292:54–66PubMedGoogle Scholar
  155. Millan MJ, Di Cara B, Dekeyne A, Panayi F, De Groote L, Sicard D, Cistarelli L, Billiras R, Gobert A (2007) Selective blockade of dopamine D(3) versus D(2) receptors enhances frontocortical cholinergic transmission and social memory in rats: a parallel neurochemical and behavioural analysis. J Neurochem 100:1047–1061PubMedGoogle Scholar
  156. Millan MJ, Buccafusco JJ, Loiseau F, Watson DJ, Decamp E, Fone KC, Thomasson-Perret N, Hill M, Mocaer E, Schneider JS (2010) The dopamine D(3) receptor antagonist, S33138, counters cognitive impairment in a range of rodent and primate procedures. Int J Neuropsychopharmacol 13:1035–1051PubMedGoogle Scholar
  157. Mojtabai R, Lavelle J, Gibson PJ, Bromet EJ (2003) Atypical antipsychotics in first admission schizophrenia: medication continuation and outcomes. Schizophr Bull 29:519–530PubMedGoogle Scholar
  158. Moller HJ (2005) Antipsychotic and antidepressive effects of second generation antipsychotics: two different pharmacological mechanisms? Eur Arch Psychiatry Clin Neurosci 255:190–201PubMedGoogle Scholar
  159. Mossner R, Schuhmacher A, Kuhn KU, Cvetanovska G, Rujescu D, Zill P, Quednow BB, Rietschel M, Wolwer W, Gaebel W, Wagner M, Maier W (2009) Functional serotonin 1A receptor variant influences treatment response to atypical antipsychotics in schizophrenia. Pharmacogenet Genomics 19:91–94PubMedGoogle Scholar
  160. Nagai T, Murai R, Matsui K, Kamei H, Noda Y, Furukawa H, Nabeshima T (2009) Aripiprazole ameliorates phencyclidine-induced impairment of recognition memory through dopamine D1 and serotonin 5-HT1A receptors. Psychopharmacol Berl 202:315–328Google Scholar
  161. Nakai S, Hirose T, Mori T, Stark A, Araki H, Kikuchi T (2008) The effect of aripiprazole on prepulse inhibition of the startle response in normal and hyperdopaminergic states in rats. Int J Neurosci 118:39–57PubMedGoogle Scholar
  162. Nasrallah HA (2008) Atypical antipsychotic-induced metabolic side effects: insights from receptor-binding profiles. Mol Psychiatry 13:27–35PubMedGoogle Scholar
  163. Natesan S, Reckless GE, Barlow KB, Nobrega JN, Kapur S (2010) Partial agonists in schizophrenia—why some work and others do not: insights from preclinical animal models. Int J Neuropsychopharmacol 1–14Google Scholar
  164. Naumenko VS, Bazovkina DV, Kondaurova EM, Zubkov EA, Kulikov AV (2010) The role of 5-HT2A receptor and 5-HT2A/5-HT1A receptor interaction in the suppression of catalepsy. Genes Brain Behav 9:519–524PubMedGoogle Scholar
  165. Newman-Tancredi A (2010) The importance of 5-HT1A receptor agonism in antipsychotic drug action: rationale and perspectives. Curr Opin Investig Drugs 11:802–812PubMedGoogle Scholar
  166. Newman-Tancredi A, Assié MB, Leduc N, Ormiere AM, Danty N, Cosi C (2005) Novel antipsychotics activate recombinant human and native rat serotonin 5-HT1A receptors: affinity, efficacy and potential implications for treatment of schizophrenia. Int J Neuropsychopharmacol 8:341–356PubMedGoogle Scholar
  167. Newman-Tancredi A, Assié M-B, Martel J-C, Cosi C, Heusler P, Bruins Slot L, Carilla-Durand E, Cussac D (2006) F15063, a novel antipsychotic with D2/D3 antagonist, 5-HT1A agonist and D4 partial agonist properties: I. receptor affinity and efficacy in vitro and activity in neurochemical and neuroendocrine tests in rodents. 19th ECNP Congress Paris, France, pp Poster P.3.d.004Google Scholar
  168. Newman-Tancredi A, Assié MB, Martel JC, Cosi C, Slot LB, Palmier C, Rauly-Lestienne I, Colpaert F, Vacher B, Cussac D (2007a) F15063, a potential antipsychotic with D2/D3 antagonist, 5-HT1A agonist and D4 partial agonist properties. I. In vitro receptor affinity and efficacy profile. Br J Pharmacol 151:237–252PubMedGoogle Scholar
  169. Newman-Tancredi A, Cussac D, Depoortere R (2007b) Neuropharmacological profile of bifeprunox: merits and limitations in comparison with other third-generation antipsychotics. Curr Opin Investig Drugs 8:539–554PubMedGoogle Scholar
  170. Newman-Tancredi A, Heusler P, Martel JC, Ormiere AM, Leduc N, Cussac D (2008) Agonist and antagonist properties of antipsychotics at human dopamine D4.4 receptors: G-protein activation and K + channel modulation in transfected cells. Int J Neuropsychopharmacol 11:293–307PubMedGoogle Scholar
  171. Newman-Tancredi A, Martel JC, Assie MB, Buritova J, Lauressergues E, Cosi C, Heusler P, Bruins Slot L, Colpaert FC, Vacher B, Cussac D (2009) Signal transduction and functional selectivity of F15599, a preferential post-synaptic 5-HT1A receptor agonist. Br J Pharmacol 156:338–353PubMedGoogle Scholar
  172. Nuss P, Tessier C (2010) Antipsychotic medication, functional outcome and quality of life in schizophrenia: focus on amisulpride. Curr Med Res Opin 26:787–801PubMedGoogle Scholar
  173. Ogren SO, Eriksson TM, Elvander-Tottie E, D’Addario C, Ekstrom JC, Svenningsson P, Meister B, Kehr J, Stiedl O (2008) The role of 5-HT1A receptors in learning and memory. Behav Brain Res 195:54–77PubMedGoogle Scholar
  174. Ojima T, Ito C, Sakurai E, Watanabe T, Yanai K (2004) Effects of serotonin-dopamine antagonists on prepulse inhibition and neurotransmitter contents in the rat cortex. Neurosci Lett 366:130–134PubMedGoogle Scholar
  175. Peet M (2004) Diet, diabetes and schizophrenia: review and hypothesis. Br J Psychiatry Suppl 47:S102–S105PubMedGoogle Scholar
  176. Porsolt RD, Moser PC, Castagne V (2010) Behavioral indices in antipsychotic drug discovery. J Pharmacol Exp Ther 333:632–638PubMedGoogle Scholar
  177. Prinssen EP, Kleven MS, Koek W (1996) Effects of dopamine antagonists in a two-way active avoidance procedure in rats: interactions with 8-OH-DPAT, ritanserin, and prazosin. Psychopharmacol Berl 128:191–197Google Scholar
  178. Prinssen EP, Colpaert FC, Koek W (2002) 5-HT1A receptor activation and anti-cataleptic effects: high-efficacy agonists maximally inhibit haloperidol-induced catalepsy. Eur J Pharmacol 453:217–221PubMedGoogle Scholar
  179. Rajji TK, Uchida H, Ismail Z, Ng W, Mamo DC, Remington G, Pollock BG, Mulsant BH (2010) Clozapine and global cognition in schizophrenia. J Clin Psychopharmacol 30:431–436PubMedGoogle Scholar
  180. Reynolds GP, Kirk SL (2010) Metabolic side effects of antipsychotic drug treatment—pharmacological mechanisms. Pharmacol Ther 125:169–179PubMedGoogle Scholar
  181. Reynolds GP, Arranz B, Templeman LA, Fertuzinhos S, San L (2006) Effect of 5-HT1A receptor gene polymorphism on negative and depressive symptom response to antipsychotic treatment of drug-naive psychotic patients. Am J Psychiatry 163:1826–1829PubMedGoogle Scholar
  182. Rollema H, Lu Y, Schmidt AW, Zorn SH (1997) Clozapine increases dopamine release in prefrontal cortex by 5-HT1A receptor activation. Eur J Pharmacol 338:R3–R5PubMedGoogle Scholar
  183. Rollema H, Lu Y, Schmidt AW, Sprouse JS, Zorn SH (2000) 5-HT(1A) receptor activation contributes to ziprasidone-induced dopamine release in the rat prefrontal cortex. Biol Psychiatry 48:229–237PubMedGoogle Scholar
  184. Rossler W, Salize HJ, van Os J, Riecher-Rossler A (2005) Size of burden of schizophrenia and psychotic disorders. Eur Neuropsychopharmacol 15:399–409PubMedGoogle Scholar
  185. Roth BL, Sheffler DJ, Kroeze WK (2004) Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat Rev Drug Discov 3:353–359PubMedGoogle Scholar
  186. Sams-Dodd F (1999) Phencyclidine in the social interaction test: an animal model of schizophrenia with face and predictive validity. Rev Neurosci 10:59–90PubMedGoogle Scholar
  187. Santana N, Bortolozzi A, Serrats J, Mengod G, Artigas F (2004) Expression of serotonin1A and serotonin2A receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb Cortex 14:1100–1109PubMedGoogle Scholar
  188. Schotte A, Janssen PF, Megens AA, Leysen JE (1993) Occupancy of central neurotransmitter receptors by risperidone, clozapine and haloperidol, measured ex vivo by quantitative autoradiography. Brain Res 631:191–202PubMedGoogle Scholar
  189. Shapiro DA, Renock S, Arrington E, Chiodo LA, Liu LX, Sibley DR, Roth BL, Mailman R (2003) Aripiprazole, a novel atypical antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacology 28:1400–1411PubMedGoogle Scholar
  190. Sharma RP, Shapiro LE (1996) The 5-HT1A receptor system: possible implications for schizophrenic negative symptomatology. Psychiatr Ann 26:88–93Google Scholar
  191. Shirazi-Southall S, Rodriguez DE, Nomikos GG (2002) Effects of typical and atypical antipsychotics and receptor selective compounds on acetylcholine efflux in the hippocampus of the rat. Neuropsychopharmacology 26:583–594PubMedGoogle Scholar
  192. Shiwa T, Amano T, Matsubayashi H, Seki T, Sasa M, Sakai N (2003) Perospirone, a novel antipsychotic agent, hyperpolarizes rat dorsal raphe neurons via 5-HT1A receptor. J Pharmacol Sci 93:114–117PubMedGoogle Scholar
  193. Silver H, Feldman P, Bilker W, Gur RC (2003) Working memory deficit as a core neuropsychological dysfunction in schizophrenia. Am J Psychiatry 160:1809–1816PubMedGoogle Scholar
  194. Smith RC, Davis JM (1977) Comparative effects of d-amphetamine, l-amphetamine, and methylphenidate on mood in man. Psychopharmacol Berl 53:1–12Google Scholar
  195. Snigdha S, Neill JC (2008) Improvement of phencyclidine-induced social behaviour deficits in rats: involvement of 5-HT1A receptors. Behav Brain Res 191:26–31PubMedGoogle Scholar
  196. Sovner R, Parnell-Sovner N (1989) Use of buspirone in the treatment of schizophrenia. J Clin Psychopharmacol 9:61–62PubMedGoogle Scholar
  197. Spiros A, Carr R, Geerts H (2010) Not all partial dopamine D(2) receptor agonists are the same in treating schizophrenia. Exploring the effects of bifeprunox and aripiprazole using a computer model of a primate striatal dopaminergic synapse. Neuropsychiatr Dis Treat 6:589–603PubMedGoogle Scholar
  198. Stark AD, Jordan S, Allers KA, Bertekap RL, Chen R, Mistry Kannan T, Molski TF, Yocca FD, Sharp T, Kikuchi T, Burris KD (2007) Interaction of the novel antipsychotic aripiprazole with 5-HT1A and 5-HT 2A receptors: functional receptor-binding and in vivo electrophysiological studies. Psychopharmacol Berl 190:373–382Google Scholar
  199. Sumiyoshi T, Stockmeier CA, Overholser JC, Dilley GE, Meltzer HY (1996) Serotonin1A receptors are increased in postmortem prefrontal cortex in schizophrenia. Brain Res 708:209–214PubMedGoogle Scholar
  200. Sumiyoshi T, Matsui M, Nohara S, Yamashita I, Kurachi M, Sumiyoshi C, Jayathilake K, Meltzer HY (2001a) Enhancement of cognitive performance in schizophrenia by addition of tandospirone to neuroleptic treatment. Am J Psychiatry 158:1722–1725PubMedGoogle Scholar
  201. Sumiyoshi T, Matsui M, Yamashita I, Nohara S, Kurachi M, Uehara T, Sumiyoshi S, Sumiyoshi C, Meltzer HY (2001b) The effect of tandospirone, a serotonin(1A) agonist, on memory function in schizophrenia. Biol Psychiatry 49:861–868PubMedGoogle Scholar
  202. Sumiyoshi T, Higuchi Y, Matsui M, Arai H, Takamiya C, Meltzer HY, Kurachi M (2007) Effective adjunctive use of tandospirone with perospirone for enhancing verbal memory and quality of life in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 31:965–967PubMedGoogle Scholar
  203. Sumiyoshi T, Tsunoda M, Higuchi Y, Itoh T, Seo T, Itoh H, Suzuki M, Kurachi M (2010) Serotonin-1A receptor gene polymorphism and the ability of antipsychotic drugs to improve attention in schizophrenia. Adv Ther 27:307–313PubMedGoogle Scholar
  204. Szewczyk B, Albert PR, Burns AM, Czesak M, Overholser JC, Jurjus GJ, Meltzer HY, Konick LC, Dieter L, Herbst N, May W, Rajkowska G, Stockmeier CA, Austin MC (2009) Gender-specific decrease in NUDR and 5-HT1A receptor proteins in the prefrontal cortex of subjects with major depressive disorder. Int J Neuropsychopharmacol 12:155–168PubMedGoogle Scholar
  205. Tadori Y, Kitagawa H, Forbes RA, McQuade RD, Stark A, Kikuchi T (2007) Differences in agonist/antagonist properties at human dopamine D(2) receptors between aripiprazole, bifeprunox and SDZ 208–912. Eur J Pharmacol 574:103–111PubMedGoogle Scholar
  206. Tadori Y, Forbes RA, McQuade RD, Kikuchi T (2009) Receptor reserve-dependent properties of antipsychotics at human dopamine D2 receptors. Eur J Pharmacol 607:35–40PubMedGoogle Scholar
  207. Tanaka E, North RA (1993) Actions of 5-hydroxytryptamine on neurons of the rat cingulate cortex. J Neurophysiol 69:1749–1757PubMedGoogle Scholar
  208. Tauscher J, Kapur S, Verhoeff NP, Hussey DF, Daskalakis ZJ, Tauscher-Wisniewski S, Wilson AA, Houle S, Kasper S, Zipursky RB (2002) Brain serotonin 5-HT(1A) receptor binding in schizophrenia measured by positron emission tomography and [11 C]WAY-100635. Arch Gen Psychiatry 59:514–520PubMedGoogle Scholar
  209. Titier K, Girodet PO, Verdoux H, Molimard M, Begaud B, Haverkamp W, Lader M, Moore N (2005) Atypical antipsychotics: from potassium channels to torsade de pointes and sudden death. Drug Saf 28:35–51PubMedGoogle Scholar
  210. Tohyama Y, Yamane F, Merid MF, Diksic M (2001) Effects of selective 5-HT1A receptor antagonists on regional serotonin synthesis in the rat brain: an autoradiographic study with alpha-[14 C]methyl-L-tryptophan. Eur Neuropsychopharmacol 11:193–202PubMedGoogle Scholar
  211. Tsai GE, Lin PY (2010) Strategies to enhance N-methyl-D-aspartate receptor-mediated neurotransmission in schizophrenia, a critical review and meta-analysis. Curr Pharm Des 16:522–537PubMedGoogle Scholar
  212. Urban JD, Clarke WP, von Zastrow M, Nichols DE, Kobilka B, Weinstein H, Javitch JA, Roth BL, Christopoulos A, Sexton PM, Miller KJ, Spedding M, Mailman RB (2007a) Functional selectivity and classical concepts of quantitative pharmacology. J Pharmacol Exp Ther 320:1–13PubMedGoogle Scholar
  213. Urban JD, Vargas GA, von Zastrow M, Mailman RB (2007b) Aripiprazole has functionally selective actions at dopamine D2 receptor-mediated signaling pathways. Neuropsychopharmacology 32:67–77PubMedGoogle Scholar
  214. van den Buuse M, Gogos A (2007) Differential effects of antipsychotic drugs on serotonin-1A receptor-mediated disruption of prepulse inhibition. J Pharmacol Exp Ther 320:1224–1236PubMedGoogle Scholar
  215. Van Vliet BJ, Mos J, Van der Heijden JAM, Feenstra R, Kruse CG, Long SK (2000a) DU 127090: a highly potent, atypical dopamine receptor ligand—a putative potent full spectrum antipsychotic with low EPS potential. Eur J Neuropsychopharmacology 10(suppl3):2.034Google Scholar
  216. Van Vliet BJ, Ronken E, Tulp M, Feenstra R, Kruse CG (2000b) DU 127090: a highly potent, atypical dopamine receptor ligand—high potency but low efficacy at dopamine D2 receptors in vitro. Eur J Neuropsychopharmacology 10(suppl3):2.035Google Scholar
  217. Wadenberg ML, Ahlenius S (1991) Antipsychotic-like profile of combined treatment with raclopride and 8-OH-DPAT in the rat: enhancement of antipsychotic-like effects without catalepsy. J Neural Transm Gen Sect 83:43–53PubMedGoogle Scholar
  218. Wadenberg ML, Young KA, Richter JT, Hicks PB (1999) Effects of local application of 5-hydroxytryptamine into the dorsal or median raphe nuclei on haloperidol-induced catalepsy in the rat. Neuropharmacology 38:151–156PubMedGoogle Scholar
  219. Wang L, Fang C, Zhang A, Du J, Yu L, Ma J, Feng G, Xing Q, He L (2008) The –1019 C/G polymorphism of the 5-HT1A receptor gene is associated with negative symptom response to risperidone treatment in schizophrenia patients. J Psychopharmacol 22:904–909PubMedGoogle Scholar
  220. Weber M, Chang WL, Breier MR, Yang A, Millan MJ, Swerdlow NR (2010) The effects of the dopamine D2 agonist sumanirole on prepulse inhibition in rats. Eur Neuropsychopharmacol 20:421–425PubMedGoogle Scholar
  221. Wedzony K, Mackowiak M, Czyrak A, Fijal K, Michalska B (1997) Single doses of MK-801, a non-competitive antagonist of NMDA receptors, increase the number of 5-HT1A serotonin receptors in the rat brain. Brain Res 756:84–91PubMedGoogle Scholar
  222. Wedzony K, Mackowiak M, Zajaczkowski W, Fijal K, Chocyk A, Czyrak A (2000) WAY 100135, an antagonist of 5-HT1A serotonin receptors, attenuates psychotomimetic effects of MK-801. Neuropsychopharmacology 23:547–559PubMedGoogle Scholar
  223. Wedzony K, Chocyk A, Mackowiak M (2008) A search for colocalization of serotonin 5-HT2A and 5-HT1A receptors in the rat medial prefrontal and entorhinal cortices—immunohistochemical studies. J Physiol Pharmacol 59:229–238PubMedGoogle Scholar
  224. Winstanley CA, Chudasama Y, Dalley JW, Theobald DE, Glennon JC, Robbins TW (2003) Intra-prefrontal 8-OH-DPAT and M100907 improve visuospatial attention and decrease impulsivity on the five-choice serial reaction time task in rats. Psychopharmacol Berl 167:304–314Google Scholar
  225. Wong EH, Yocca F, Smith MA, Lee CM (2010) Challenges and opportunities for drug discovery in psychiatric disorders: the drug hunters’ perspective. Int J Neuropsychopharmacol 13:1269–1284PubMedGoogle Scholar
  226. Yadav PN, Abbas AI, Farrell MS, Setola V, Sciaky N, Huang XP, Kroeze WK, Crawford LK, Piel DA, Keiser MJ, Irwin JJ, Shoichet BK, Deneris ES, Gingrich J, Beck SG, Roth BL (2011) The presynaptic component of the serotonergic system is required for clozapine’s efficacy. Neuropsychopharmacology 36:638–651PubMedGoogle Scholar
  227. Yuen EY, Jiang Q, Chen P, Feng J, Yan Z (2008) Activation of 5-HT2A/C receptors counteracts 5-HT1A regulation of n-methyl-D-aspartate receptor channels in pyramidal neurons of prefrontal cortex. J Biol Chem 283:17194–17204PubMedGoogle Scholar
  228. Zocchi A, Fabbri D, Heidbreder CA (2005) Aripiprazole increases dopamine but not noradrenaline and serotonin levels in the mouse prefrontal cortex. Neurosci Lett 387:157–161PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.NeuroAct CommunicationCastresFrance
  2. 2.Biousian Biosystems, IncLexingtonUSA

Personalised recommendations