Psychopharmacology

, Volume 216, Issue 2, pp 153–171 | Cite as

Neuroimaging and drug taking in primates

Review

Abstract

Rationale

Neuroimaging techniques have led to significant advances in our understanding of the neurobiology of drug taking and the treatment of drug addiction in humans. Neuroimaging approaches provide a powerful translational approach that can link findings from humans and laboratory animals.

Objective

This review describes the utility of neuroimaging toward understanding the neurobiological basis of drug taking and documents the close concordance that can be achieved among neuroimaging, neurochemical, and behavioral endpoints.

Results

The study of drug interactions with dopamine and serotonin transporters in vivo has identified pharmacological mechanisms of action associated with the abuse liability of stimulants. Neuroimaging has identified the extended limbic system, including the prefrontal cortex and anterior cingulate, as important neuronal circuitry that underlies drug taking. The ability to conduct within-subject longitudinal assessments of brain chemistry and neuronal function has enhanced our efforts to document long-term changes in dopamine D2 receptors, monoamine transporters, and prefrontal metabolism due to chronic drug exposure. Dysregulation of dopamine function and brain metabolic changes in areas involved in reward circuitry have been linked to drug taking behavior, cognitive impairment, and treatment response.

Conclusions

Experimental designs employing neuroimaging should consider well-documented determinants of drug taking, including pharmacokinetic considerations, subject history, and environmental variables. Methodological issues to consider include limited molecular probes, lack of neurochemical specificity in brain activation studies, and the potential influence of anesthetics in animal studies. Nevertheless, these integrative approaches should have important implications for understanding drug taking behavior and the treatment of drug addiction.

Keywords

PET imaging fMRI Self-administration Cerebral blood flow Cerebral metabolism Dopamine Serotonin Stimulants Cocaine Nonhuman primates 

References

  1. Abreu ME, Bigelow GE, Fleisher L, Walsh SL (2001) Effect of intravenous injection speed on responses to cocaine and hydromorphone in humans. Psychopharmacol Berl 154:76–84CrossRefGoogle Scholar
  2. Andersen ML, Kessler E, Murnane KS, McClung JC, Tufik S, Howell LL (2010) Dopamine transporter-related effects of modafinil in rhesus monkeys. Psychopharmacol Berl 210:439–448CrossRefGoogle Scholar
  3. Anderson AL, Reid MS, Li SH, Holmes T, Shemanski L, Slee A, Smith EV, Kahn R, Chiang N, Vocci F, Ciraulo D, Dackis C, Roache JD, Salloum IM, Somoza E, Urschel HC 3rd, Elkashef AM (2009) Modafinil for the treatment of cocaine dependence. Drug Alcohol Depend 104:133–139PubMedCrossRefGoogle Scholar
  4. Banks ML, Sprague JE, Kisor DF, Czoty PW, Nichols DE, Nader MA (2007) Ambient temperature effects on 3,4-methylenedioxymethamphetamine-induced thermodysregulation and pharmacokinetics in male monkeys. Drug Metab Dispos 35:1840–1845PubMedCrossRefGoogle Scholar
  5. Banks ML, Czoty PW, Gage HD, Bounds MC, Garg PK, Garg S, Nader MA (2008) Effects of cocaine and MDMA self-administration on serotonin transporter availability in monkeys. Neuropsychopharmacology 33:219–225PubMedCrossRefGoogle Scholar
  6. Baumann MH, Clark RD, Franken FH, Rutter JJ, Rothman RB (2008) Tolerance to 3,4-methylenedioxymethamphetamine in rats exposed to single high-dose binges. Neuroscience 152:773–784PubMedCrossRefGoogle Scholar
  7. Berger B, Trottier S, Verney C, Gaspar P, Alvarez C (1988) Regional and laminar distribution of the dopamine and serotonin innervation in the macaque cerebral cortex: a radioautographic study. J Comp Neurol 273:99–119PubMedCrossRefGoogle Scholar
  8. Boileau I, Dagher A, Leyton M, Welfeld K, Booij L, Diksic M, Benkelfat C (2007) Conditioned dopamine release in humans: a positron emission tomography [11C]raclopride study with amphetamine. J Neurosci 27:3998–4003PubMedCrossRefGoogle Scholar
  9. Breiter HC, Gollub RL, Weisskoff RM, Kennedy DN, Makris N, Berke JD, Goodman JM, Kantor HL, Gastfriend DR, Riorden JP, Mathew RT, Rosen BR, Hyman SE (1997) Acute effects of cocaine on human brain activity and emotion. Neuron 19:591–611PubMedCrossRefGoogle Scholar
  10. Brevard ME, Meyer JS, Harder JA, Ferris CF (2006) Imaging brain activity in conscious monkeys following oral MDMA (“Ecstasy”). Magn Reson Imaging 24:707–714PubMedCrossRefGoogle Scholar
  11. Bubar MJ, Cunningham KA (2006) Serotonin 5-HT2A and 5-HT2C receptors as potential targets for modulation of psychostimulant use and dependence. Curr Top Med Chem 6:1971–1985PubMedCrossRefGoogle Scholar
  12. Buchert R, Thomasius R, Petersen K, Wilke F, Obrocki J, Nebeling B, Wartberg L, Zapletalova P, Clausen M (2006) Reversibility of Ecstasy-induced reduction in serotonin transporter availability in polydrug Ecstasy users. Eur J Nucl Med Mol Imaging 33:188–199PubMedCrossRefGoogle Scholar
  13. Childress AR, Mozley PD, McElgin W, Fitzgerald J, Reivich M, O’Brien CP (1999) Limbic activation during cue-induced cocaine craving. Am J Psychiatry 156:11–18PubMedGoogle Scholar
  14. Cowan RL, Bolo NR, Dietrich M, Haga E, Lukas SE, Renshaw PF (2007) Occipital cortical proton MRS at 4 Tesla in human moderate MDMA polydrug users. Psychiatry Res 155:179–188PubMedCrossRefGoogle Scholar
  15. Czoty PW, Ginsburg BC, Howell LL (2002) Serotonergic attenuation of the reinforcing and neurochemical effects of cocaine in squirrel monkeys. J Pharmacol Exp Ther 300:831–837PubMedCrossRefGoogle Scholar
  16. Czoty PW, Morgan D, Shannon EE, Gage HD, Nader MA (2004) Characterization of dopamine D1 and D2 receptor function in socially housed cynomolgus monkeys self-administering cocaine. Psychopharmacol Berl 174:381–388CrossRefGoogle Scholar
  17. Czoty PW, Gage HD, Nader MA (2005) PET imaging of striatal dopamine D2 receptors in nonhuman primates: increases in availability produced by chronic raclopride treatment. Synapse 58:215–219PubMedCrossRefGoogle Scholar
  18. Czoty PW, Riddick NV, Gage HD, Sandridge M, Nader SH, Garg S, Bounds M, Garg PK, Nader MA (2009) Effect of menstrual cycle phase on dopamine D2 receptor availability in female cynomolgus monkeys. Neuropsychopharmacology 34:548–554PubMedCrossRefGoogle Scholar
  19. Dackis CA, Lynch KG, Yu E, Samaha FF, Kampman KM, Cornish JW, Rowan A, Poole S, White L, O’Brien CP (2003) Modafinil and cocaine: a double-blind, placebo-controlled drug interaction study. Drug Alcohol Depend 70:29–37PubMedCrossRefGoogle Scholar
  20. Dackis CA, Kampman KM, Lynch KG, Pettinati HM, O’Brien CP (2005) A double-blind, placebo-controlled trial of modafinil for cocaine dependence. Neuropsychopharmacology 30:205–211PubMedCrossRefGoogle Scholar
  21. Daumann J, Fischermann T, Pilatus U, Thron A, Moeller-Hartmann W, Gouzoulis-Mayfrank E (2004) Proton magnetic resonance spectroscopy in Ecstasy (MDMA) users. Neurosci Lett 362:113–116PubMedCrossRefGoogle Scholar
  22. Deneau G, Yanagita T, Seevers MH (1969) Self-administration of psychoactive substances by the monkey. Psychopharmacologia 16:30–48PubMedCrossRefGoogle Scholar
  23. Devinsky O, Morrell MJ, Vogt BA (1995) Contributions of anterior cingulate cortex to behaviour. Brain 118(Pt 1):279–306PubMedCrossRefGoogle Scholar
  24. Dewey SL, Smith GS, Logan J, Brodie JD, Yu DW, Ferrieri RA, King PT, MacGregor RR, Martin TP, Wolf AP et al (1992) GABAergic inhibition of endogenous dopamine release measured in vivo with 11C-raclopride and positron emission tomography. J Neurosci 12:3773–3780PubMedGoogle Scholar
  25. de Win MM, Jager G, Booij J, Reneman L, Schilt T, Lavini C, Olabarriaga SD, den Heeten GJ, van den Brink W (2008) Sustained effects of ecstasy on the human brain: a prospective neuroimaging study in novel users. Brain 131:2936–2945Google Scholar
  26. Dworkin SI, Mirkis S, Smith JE (1995) Response-dependent versus response-independent presentation of cocaine: differences in the lethal effects of the drug. Psychopharmacol Berl 117:262–266CrossRefGoogle Scholar
  27. Ehrman RN, Robbins SJ, Childress AR, O’Brien CP (1992) Conditioned responses to cocaine-related stimuli in cocaine abuse patients. Psychopharmacol Berl 107:523–529CrossRefGoogle Scholar
  28. Fantegrossi WE, Woolverton WL, Kilbourn M, Sherman P, Yuan J, Hatzidimitriou G, Ricaurte GA, Woods JH, Winger G (2004) Behavioral and neurochemical consequences of long-term intravenous self-administration of MDMA and its enantiomers by rhesus monkeys. Neuropsychopharmacology 29:1270–1281PubMedCrossRefGoogle Scholar
  29. Ford RD, Balster RL (1977) Reinforcing properties of intravenous procaine in rhesus monkeys. Pharmacol Biochem Behav 6:289–296PubMedCrossRefGoogle Scholar
  30. Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, Macgregor RR, Hitzemann R, Logan J, Bendriem B, Gatley SJ et al (1989) Mapping cocaine binding sites in human and baboon brain in vivo. Synapse 4:371–377PubMedCrossRefGoogle Scholar
  31. Fowler JS, Kroll C, Ferrieri R, Alexoff D, Logan J, Dewey SL, Schiffer W, Schlyer D, Carter P, King P, Shea C, Xu Y, Muench L, Benveniste H, Vaska P, Volkow ND (2007) PET studies of d-methamphetamine pharmacokinetics in primates: comparison with l-methamphetamine and (−)-cocaine. J Nucl Med 48:1724–1732PubMedCrossRefGoogle Scholar
  32. Fox PT, Raichle ME, Mintun MA, Dense C (1988) Nonoxidative glucose consumption during focal physiologic neural activity. Science 241:462–464PubMedCrossRefGoogle Scholar
  33. Fuster JM (1997) Network memory. Trends Neurosci 20:451–459PubMedCrossRefGoogle Scholar
  34. Garavan H, Pankiewicz J, Bloom A, Cho JK, Sperry L, Ross TJ, Salmeron BJ, Risinger R, Kelley D, Stein EA (2000) Cue-induced cocaine craving: neuroanatomical specificity for drug users and drug stimuli. Am J Psychiatry 157:1789–1798PubMedCrossRefGoogle Scholar
  35. Ginsburg BC, Kimmel HL, Carroll FI, Goodman MM, Howell LL (2005) Interaction of cocaine and dopamine transporter inhibitors on behavior and neurochemistry in monkeys. Pharmacol Biochem Behav 80:481–491PubMedCrossRefGoogle Scholar
  36. Gold LH, Balster RL (1996) Evaluation of the cocaine-like discriminative stimulus effects and reinforcing effects of modafinil. Psychopharmacol Berl 126:286–292CrossRefGoogle Scholar
  37. Grant S, London ED, Newlin DB, Villemagne VL, Liu X, Contoreggi C, Phillips RL, Kimes AS, Margolin A (1996) Activation of memory circuits during cue-elicited cocaine craving. Proc Natl Acad Sci USA 93:12040–12045PubMedCrossRefGoogle Scholar
  38. Grant KA, Shively CA, Nader MA, Ehrenkaufer RL, Line SW, Morton TE, Gage HD, Mach RH (1998) Effect of social status on striatal dopamine D2 receptor binding characteristics in cynomolgus monkeys assessed with positron emission tomography. Synapse 29:80–83PubMedCrossRefGoogle Scholar
  39. Haber SN (1986) Neurotransmitters in the human and nonhuman primate basal ganglia. Hum Neurobiol 5:159–168PubMedGoogle Scholar
  40. Haber SN, Fudge JL (1997) The primate substantia nigra and VTA: integrative circuitry and function. Crit Rev Neurobiol 11:323–342PubMedGoogle Scholar
  41. Haber SN, Knutson B (2010) The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 35:4–26PubMedCrossRefGoogle Scholar
  42. Haber SN, McFarland NR (1999) The concept of the ventral striatum in nonhuman primates. Ann NY Acad Sci 877:33–48PubMedCrossRefGoogle Scholar
  43. Haber SN, Kim KS, Mailly P, Calzavara R (2006) Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning. J Neurosci 26:8368–8376PubMedCrossRefGoogle Scholar
  44. Hart CL, Haney M, Vosburg SK, Rubin E, Foltin RW (2008) Smoked cocaine self-administration is decreased by modafinil. Neuropsychopharmacology 33:761–768PubMedCrossRefGoogle Scholar
  45. Hashimoto K, Tsukada H, Nishiyama S, Fukumoto D, Kakiuchi T, Iyo M (2007) Protective effects of minocycline on the reduction of dopamine transporters in the striatum after administration of methamphetamine: a positron emission tomography study in conscious monkeys. Biol Psychiatry 61:577–581PubMedCrossRefGoogle Scholar
  46. Hemby SE, Co C, Koves TR, Smith JE, Dworkin SI (1997) Differences in extracellular dopamine concentrations in the nucleus accumbens during response-dependent and response-independent cocaine administration in the rat. Psychopharmacol Berl 133:7–16CrossRefGoogle Scholar
  47. Henry PK, Murnane KS, Votaw JR, Howell LL (2010) Acute brain metabolic effects of cocaine in rhesus monkeys with a history of cocaine use. Brain Imaging Behav 4:212–219PubMedCrossRefGoogle Scholar
  48. Holman BL, Carvalho PA, Mendelson J, Teoh SK, Nardin R, Hallgring E, Hebben N, Johnson KA (1991) Brain perfusion is abnormal in cocaine-dependent polydrug users: a study using technetium-99 m-HMPAO and ASPECT. J Nucl Med 32:1206–1210PubMedGoogle Scholar
  49. Holman BL, Mendelson J, Garada B, Teoh SK, Hallgring E, Johnson KA, Mello NK (1993) Regional cerebral blood flow improves with treatment in chronic cocaine polydrug users. J Nucl Med 34:723–727PubMedGoogle Scholar
  50. Howell LL (2008) Nonhuman primate neuroimaging and cocaine medication development. Exp Clin Psychopharmacol 16:446–457PubMedCrossRefGoogle Scholar
  51. Howell LL, Byrd LD (1995) Serotonergic modulation of the behavioral effects of cocaine in the squirrel monkey. J Pharmacol Exp Ther 275:1551–1559PubMedGoogle Scholar
  52. Howell LL, Murnane KS (2008) Nonhuman primate neuroimaging and the neurobiology of psychostimulant addiction. Ann NY Acad Sci 1141:176–194PubMedCrossRefGoogle Scholar
  53. Howell LL, Wilcox KM (2002) Functional imaging and neurochemical correlates of stimulant self-administration in primates. Psychopharmacol Berl 163:352–361CrossRefGoogle Scholar
  54. Howell LL, Czoty PW, Kuhar MJ, Carrol FI (2000) Comparative behavioral pharmacology of cocaine and the selective dopamine uptake inhibitor RTI-113 in the squirrel monkey. J Pharmacol Exp Ther 292:521–529PubMedGoogle Scholar
  55. Howell LL, Hoffman JM, Votaw JR, Landrum AM, Jordan JF (2001) An apparatus and behavioral training protocol to conduct positron emission tomography (PET) neuroimaging in conscious rhesus monkeys. J Neurosci Methods 106:161–169PubMedCrossRefGoogle Scholar
  56. Howell LL, Hoffman JM, Votaw JR, Landrum AM, Wilcox KM, Lindsey KP (2002) Cocaine-induced brain activation determined by positron emission tomography neuroimaging in conscious rhesus monkeys. Psychopharmacol Berl 159:154–160CrossRefGoogle Scholar
  57. Howell LL, Carroll FI, Votaw JR, Goodman MM, Kimmel HL (2007) Effects of combined dopamine and serotonin transporter inhibitors on cocaine self-administration in rhesus monkeys. J Pharmacol Exp Ther 320:757–765PubMedCrossRefGoogle Scholar
  58. Howell LL, Votaw JR, Goodman MM, Lindsey KP (2010) Cortical activation during cocaine use and extinction in rhesus monkeys. Psychopharmacol Berl 208:191–199CrossRefGoogle Scholar
  59. Innis RB, Malison RT, al-Tikriti M, Hoffer PB, Sybirska EH, Seibyl JP, Zoghbi SS, Baldwin RM, Laruelle M, Smith EO et al (1992) Amphetamine-stimulated dopamine release competes in vivo for [123I]IBZM binding to the D2 receptor in nonhuman primates. Synapse 10:177–184PubMedCrossRefGoogle Scholar
  60. Ito R, Dalley JW, Robbins TW, Everitt BJ (2002) Dopamine release in the dorsal striatum during cocaine-seeking behavior under the control of a drug-associated cue. J Neurosci 22:6247–6253PubMedGoogle Scholar
  61. Jasinski DR (2000) An evaluation of the abuse potential of modafinil using methylphenidate as a reference. J Psychopharmacol 14:53–60PubMedCrossRefGoogle Scholar
  62. Jenkins BG, Sanchez-Pernaute R, Brownell AL, Chen YC, Isacson O (2004) Mapping dopamine function in primates using pharmacologic magnetic resonance imaging. J Neurosci 24:9553–9560PubMedCrossRefGoogle Scholar
  63. Johanson CE (1980) The reinforcing properties of procaine, chloroprocaine and proparacaine in rhesus monkeys. Psychopharmacol Berl 67:189–194CrossRefGoogle Scholar
  64. Johanson CE, Frey KA, Lundahl LH, Keenan P, Lockhart N, Roll J, Galloway GP, Koeppe RA, Kilbourn MR, Robbins T, Schuster CR (2006) Cognitive function and nigrostriatal markers in abstinent methamphetamine abusers. Psychopharmacology (Berl)Google Scholar
  65. Kalivas PW, O’Brien C (2008) Drug addiction as a pathology of staged neuroplasticity. Neuropsychopharmacology 33:166–180PubMedCrossRefGoogle Scholar
  66. Kalivas PW, Volkow ND (2005) The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry 162:1403–1413PubMedCrossRefGoogle Scholar
  67. Kelleher RT, Morse WH (1968) Determinants of the specificity of behavioral effects of drugs. Ergeb Physiol 60:1–56PubMedGoogle Scholar
  68. Kilts CD, Schweitzer JB, Quinn CK, Gross RE, Faber TL, Muhammad F, Ely TD, Hoffman JM, Drexler KP (2001) Neural activity related to drug craving in cocaine addiction. Arch Gen Psychiatry 58:334–341PubMedCrossRefGoogle Scholar
  69. Kimmel HL, O’Connor JA, Carroll FI, Howell LL (2007) Faster onset and dopamine transporter selectivity predict stimulant and reinforcing effects of cocaine analogs in squirrel monkeys. Pharmacol Biochem Behav 86:45–54PubMedCrossRefGoogle Scholar
  70. Kimmel HL, Negus SS, Wilcox KM, Ewing SB, Stehouwer J, Goodman MM, Votaw JR, Mello NK, Carroll FI, Howell LL (2008) Relationship between rate of drug uptake in brain and behavioral pharmacology of monoamine transporter inhibitors in rhesus monkeys. Pharmacol Biochem Behav 90:453–462PubMedCrossRefGoogle Scholar
  71. Kirkland Henry P, Davis M, Howell LL (2009) Effects of cocaine self-administration history under limited and extended access conditions on in vivo striatal dopamine neurochemistry and acoustic startle in rhesus monkeys. Psychopharmacol Berl 205:237–247CrossRefGoogle Scholar
  72. Kosten TR, Scanley BE, Tucker KA, Oliveto A, Prince C, Sinha R, Potenza MN, Skudlarski P, Wexler BE (2006) Cue-induced brain activity changes and relapse in cocaine-dependent patients. Neuropsychopharmacology 31:644–650PubMedCrossRefGoogle Scholar
  73. Kufahl PR, Li Z, Risinger RC, Rainey CJ, Wu G, Bloom AS, Li SJ (2005) Neural responses to acute cocaine administration in the human brain detected by fMRI. Neuroimage 28:904–914PubMedCrossRefGoogle Scholar
  74. Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R, Cheng H-M, Brady TJ, Rosen BR (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci 89:5675PubMedCrossRefGoogle Scholar
  75. Lane SD, Steinberg JL, Ma L, Hasan KM, Kramer LA, Zuniga EA, Narayana PA, Moeller FG (2010) Diffusion tensor imaging and decision making in cocaine dependence. PLoS ONE 5:e11591PubMedCrossRefGoogle Scholar
  76. Laruelle M (2000) Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review. J Cereb Blood Flow Metab 20:423–451PubMedCrossRefGoogle Scholar
  77. Laruelle M, Iyer RN, al-Tikriti MS, Zea-Ponce Y, Malison R, Zoghbi SS, Baldwin RM, Kung HF, Charney DS, Hoffer PB, Innis RB, Bradberry CW (1997) Microdialysis and SPECT measurements of amphetamine-induced dopamine release in nonhuman primates. Synapse 25:1–14PubMedCrossRefGoogle Scholar
  78. Laties VG (1986) Lessons from the history of behavioral pharmacology. In: Krasnegor NA, Gray DB, Thompson T (eds) Advances in behavioral pharmacology. Erlbaum, HillsdaleGoogle Scholar
  79. Letchworth SR, Nader MA, Smith HR, Friedman DP, Porrino LJ (2001) Progression of changes in dopamine transporter binding site density as a result of cocaine self-administration in rhesus monkeys. J Neurosci 21:2799–2807Google Scholar
  80. Levin JM, Holman BL, Mendelson JH, Teoh SK, Garada B, Johnson KA, Springer S (1994) Gender differences in cerebral perfusion in cocaine abuse: technetium-99 m-HMPAO SPECT study of drug-abusing women. J Nucl Med 35:1902–1909PubMedGoogle Scholar
  81. Lindsey KP, Wilcox KM, Votaw JR, Goodman MM, Plisson C, Carroll FI, Rice KC, Howell LL (2004) Effects of dopamine transporter inhibitors on cocaine self-administration in rhesus monkeys: relationship to transporter occupancy determined by positron emission tomography neuroimaging. J Pharmacol Exp Ther 309:959–969PubMedCrossRefGoogle Scholar
  82. Lyons D, Friedman DP, Nader MA, Porrino LJ (1996) Cocaine alters cerebral metabolism within the ventral striatum and limbic cortex of monkeys. J Neurosci 16:1230–1238PubMedGoogle Scholar
  83. Maas LC, Lukas SE, Kaufman MJ, Weiss RD, Daniels SL, Rogers VW, Kukes TJ, Renshaw PF (1998) Functional magnetic resonance imaging of human brain activation during cue-induced cocaine craving. Am J Psychiatry 155:124–126PubMedGoogle Scholar
  84. Mach RH, Nader MA, Ehrenkaufer RL, Line SW, Smith CR, Gage HD, Morton TE (1997) Use of positron emission tomography to study the dynamics of psychostimulant-induced dopamine release. Pharmacol Biochem Behav 57:477–486PubMedCrossRefGoogle Scholar
  85. Madras BK, Xie Z, Lin Z, Jassen A, Panas H, Lynch L, Johnson R, Livni E, Spencer TJ, Bonab AA, Miller GM, Fischman AJ (2006) Modafinil occupies dopamine and norepinephrine transporters in vivo and modulates the transporters and trace amine activity in vitro. J Pharmacol Exp Ther 319:561–569PubMedCrossRefGoogle Scholar
  86. Malison RT, Best SE, van Dyck CH, McCance EF, Wallace EA, Laruelle M, Baldwin RM, Seibyl JP, Price LH, Kosten TR, Innis RB (1998) Elevated striatal dopamine transporters during acute cocaine abstinence as measured by [123I] beta-CIT SPECT. Am J Psychiatry 155:832–834PubMedGoogle Scholar
  87. Marsch LA, Bickel WK, Badger GJ, Rathmell JP, Swedberg MD, Jonzon B, Norsten-Hoog C (2001) Effects of infusion rate of intravenously administered morphine on physiological, psychomotor, and self-reported measures in humans. J Pharmacol Exp Ther 299:1056–1065PubMedGoogle Scholar
  88. Martinez D, Slifstein M, Narendran R, Foltin RW, Broft A, Hwang DR, Perez A, Abi-Dargham A, Fischman MW, Kleber HD, Laruelle M (2009) Dopamine D1 receptors in cocaine dependence measured with PET and the choice to self-administer cocaine. Neuropsychopharmacology 34:1774–1782PubMedCrossRefGoogle Scholar
  89. Mathew RJ, Wilson WH, Lowe JV, Humphries D (1996) Acute changes in cranial blood flow after cocaine hydrochloride. Biol Psychiatry 40:609–616PubMedCrossRefGoogle Scholar
  90. McCann UD, Szabo Z, Scheffel U, Dannals RF, Ricaurte GA (1998) Positron emission tomographic evidence of toxic effect of MDMA (“Ecstasy”) on brain serotonin neurons in human beings. Lancet 352:1433–1437PubMedCrossRefGoogle Scholar
  91. McCann UD, Kuwabara H, Kumar A, Palermo M, Abbey R, Brasic J, Ye W, Alexander M, Dannals RF, Wong DF, Ricaurte GA (2008) Persistent cognitive and dopamine transporter deficits in abstinent methamphetamine users. Synapse 62:91–100Google Scholar
  92. Melega WP, Jorgensen MJ, Lacan G, Way BM, Pham J, Morton G, Cho AK, Fairbanks LA (2008) Long-term methamphetamine administration in the vervet monkey models aspects of a human exposure: brain neurotoxicity and behavioral profiles. Neuropsychopharmacology 33:1441–1452PubMedCrossRefGoogle Scholar
  93. Minati L, Grisoli M, Bruzzone MG (2007) MR spectroscopy, functional MRI, and diffusion-tensor imaging in the aging brain: a conceptual review. J Geriatr Psychiatry Neurol 20:3–21PubMedCrossRefGoogle Scholar
  94. Moeller FG, Steinberg JL, Schmitz JM, Ma L, Liu S, Kjome KL, Rathnayaka N, Kramer LA, Narayana PA (2010) Working memory fMRI activation in cocaine-dependent subjects: association with treatment response. Psychiatry Res 181:174–182PubMedCrossRefGoogle Scholar
  95. Moore RJ, Vinsant SL, Nader MA, Porrino LJ, Friedman DP (1998) Effect of cocaine self-administration on dopamine D2 receptors in rhesus monkeys. Synapse 30:88–96PubMedCrossRefGoogle Scholar
  96. Morgan D, Grant KA, Gage HD, Mach RH, Kaplan JR, Prioleau O, Nader SH, Buchheimer N, Ehrenkaufer RL, Nader MA (2002) Social dominance in monkeys: dopamine D2 receptors and cocaine self-administration. Nat Neurosci 5:169–174PubMedCrossRefGoogle Scholar
  97. Mukherjee J, Yang ZY, Lew R, Brown T, Kronmal S, Cooper MD, Seiden LS (1997) Evaluation of d-amphetamine effects on the binding of dopamine D-2 receptor radioligand, 18F-fallypride in nonhuman primates using positron emission tomography. Synapse 27:1–13PubMedCrossRefGoogle Scholar
  98. Murnane KS, Howell LL (2010) Development of an apparatus and methodology for conducting functional magnetic resonance imaging (fMRI) with pharmacological stimuli in conscious rhesus monkeys. J Neurosci Methods 191:11–20PubMedCrossRefGoogle Scholar
  99. Murnane KS, Fantegrossi WE, Godfrey JR, Banks ML, Howell LL (2010) Endocrine and neurochemical effects of 3,4-methylenedioxymethamphetamine and its stereoisomers in rhesus monkeys. J Pharmacol Exp Ther 334:642–650PubMedCrossRefGoogle Scholar
  100. Nader MA, Czoty PW (2005) PET imaging of dopamine D2 receptors in monkey models of cocaine abuse: genetic predisposition versus environmental modulation. Am J Psychiatry 162:1473–1482PubMedCrossRefGoogle Scholar
  101. Nader MA, Daunais JB, Moore T, Nader SH, Moore RJ, Smith HR, Friedman DP, Porrino LJ (2002) Effects of cocaine self-administration on striatal dopamine systems in rhesus monkeys: initial and chronic exposure. Neuropsychopharmacology 27:35–46PubMedCrossRefGoogle Scholar
  102. Nader MA, Morgan D, Gage HD, Nader SH, Calhoun TL, Buchheimer N, Ehrenkaufer R, Mach RH (2006) PET imaging of dopamine D2 receptors during chronic cocaine self-administration in monkeys. Nat Neurosci 9:1050–1056PubMedCrossRefGoogle Scholar
  103. Nader MA, Czoty PW, Gould RW, Riddick NV (2008) Review. Positron emission tomography imaging studies of dopamine receptors in primate models of addiction. Philos Trans R Soc Lond B Biol Sci 363:3223–3232PubMedCrossRefGoogle Scholar
  104. Narendran R, Slifstein M, Hwang DR, Hwang Y, Scher E, Reeder S, Martinez D, Laruelle M (2007) Amphetamine-induced dopamine release: duration of action as assessed with the D2/3 receptor agonist radiotracer (−)-N-[(11)C]propyl-norapomorphine ([11C]NPA) in an anesthetized nonhuman primate. Synapse 61:106–109PubMedCrossRefGoogle Scholar
  105. Nelson RA, Boyd SJ, Ziegelstein RC, Herning R, Cadet JL, Henningfield JE, Schuster CR, Contoreggi C, Gorelick DA (2006) Effect of rate of administration on subjective and physiological effects of intravenous cocaine in humans. Drug Alcohol Depend 82:19–24PubMedCrossRefGoogle Scholar
  106. Ogawa S, Tank DW, Menon R, Ellermann JM, Kim S-G, Merkle H, Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci 89:5951–5955PubMedCrossRefGoogle Scholar
  107. Panlilio LV, Goldberg SR, Gilman JP, Jufer R, Cone EJ, Schindler CW (1998) Effects of delivery rate and non-contingent infusion of cocaine on cocaine self-administration in rhesus monkeys. Psychopharmacol Berl 137:253–258CrossRefGoogle Scholar
  108. Phelps ME, Mazziotta JC (1985) Positron emission tomography: human brain function and biochemistry. Science 228:799–809PubMedCrossRefGoogle Scholar
  109. Porrino LJ, Lyons D, Miller MD, Smith HR, Friedman DP, Daunais JB, Nader MA (2002) Metabolic mapping of the effects of cocaine during the initial phases of self-administration in the nonhuman primate. J Neurosci 22:7687–7694PubMedGoogle Scholar
  110. Porrino LJ, Daunais JB, Smith HR, Nader MA (2004) The expanding effects of cocaine: studies in a nonhuman primate model of cocaine self-administration. Neurosci Biobehav Rev 27:813–820PubMedCrossRefGoogle Scholar
  111. Reivich M, Alavi A, Wolf A, Fowler J, Russell J, Arnett C, MacGregor RR, Shiue CY, Atkins H, Anand A et al (1985) Glucose metabolic rate kinetic model parameter determination in humans: the lumped constants and rate constants for [18F]fluorodeoxyglucose and [11C]deoxyglucose. J Cereb Blood Flow Metab 5:179–192PubMedCrossRefGoogle Scholar
  112. Reneman L, Majoie CB, Schmand B, van den Brink W, den Heeten GJ (2001) Prefrontal N-acetylaspartate is strongly associated with memory performance in (abstinent) Ecstasy users: preliminary report. Biol Psychiatry 50:550–554PubMedCrossRefGoogle Scholar
  113. Reneman L, Booij J, Lavalaye J, de Bruin K, Reitsma JB, Gunning B, den Heeten GJ, van Den Brink W (2002) Use of amphetamine by recreational users of Ecstasy (MDMA) is associated with reduced striatal dopamine transporter densities: a [123I]beta-CIT SPECT study—preliminary report. Psychopharmacol Berl 159:335–340CrossRefGoogle Scholar
  114. Ricaurte GA, Forno LS, Wilson MA, DeLanney LE, Irwin I, Molliver ME, Langston JW (1988) (±)3,4-Methylenedioxymethamphetamine selectively damages central serotonergic neurons in nonhuman primates. Jama 260:51–55PubMedCrossRefGoogle Scholar
  115. Ricaurte GA, McCann UD, Szabo Z, Scheffel U (2000) Toxicodynamics and long-term toxicity of the recreational drug, 3,4-methylenedioxymethamphetamine (MDMA, ‘Ecstasy’). Toxicol Lett 112–113:143–146PubMedCrossRefGoogle Scholar
  116. Ritz MC, Boja JW, George FR, Kuhar MJ (1989) Cocaine binding sites related to drug self-administration. NIDA Res Monogr 95:239–246PubMedGoogle Scholar
  117. Saadat KS, Elliott JM, Green AR, Moran PM (2006) High-dose MDMA does not result in long-term changes in impulsivity in the rat. Psychopharmacol Berl 188:75–83CrossRefGoogle Scholar
  118. Scheffel U, Szabo Z, Mathews WB, Finley PA, Dannals RF, Ravert HT, Szabo K, Yuan J, Ricaurte GA (1998) In vivo detection of short- and long-term MDMA neurotoxicity—a positron emission tomography study in the living baboon brain. Synapse 29:183–192PubMedCrossRefGoogle Scholar
  119. Sekine Y, Iyo M, Ouchi Y, Matsunaga T, Tsukada H, Okada H, Yoshikawa E, Futatsubashi M, Takei N, Mori N (2001) Methamphetamine-related psychiatric symptoms and reduced brain dopamine transporters studied with PET. Am J Psychiatry 158:1206–1214Google Scholar
  120. Senda M, Kimura Y, Herscovitch P (2002) Brain imaging using PET. Academic, San DiegoGoogle Scholar
  121. Seneca N, Finnema SJ, Farde L, Gulyas B, Wikstrom HV, Halldin C, Innis RB (2006) Effect of amphetamine on dopamine D2 receptor binding in nonhuman primate brain: a comparison of the agonist radioligand [11C]MNPA and antagonist [11C]raclopride. Synapse 59:260–269PubMedCrossRefGoogle Scholar
  122. Sleight AJ, Stam NJ, Mutel V, Vanderheyden PM (1996) Radiolabelling of the human 5-HT2A receptor with an agonist, a partial agonist and an antagonist: effects on apparent agonist affinities. Biochem Pharmacol 51:71–76PubMedCrossRefGoogle Scholar
  123. Spragg SDS (1940) Morphine addiction in chimpanzees. Comp Psychol Monogr 15:1–132Google Scholar
  124. Stoops WW, Lile JA, Fillmore MT, Glaser PE, Rush CR (2005) Reinforcing effects of modafinil: influence of dose and behavioral demands following drug administration. Psychopharmacol Berl 182:186–193CrossRefGoogle Scholar
  125. Strickland TL, Mena I, Villanueva-Meyer J, Miller BL, Cummings J, Mehringer CM, Satz P, Myers H (1993) Cerebral perfusion and neuropsychological consequences of chronic cocaine use. J Neuropsychiatry Clin Neurosci 5:419–427PubMedGoogle Scholar
  126. Thomasius R, Zapletalova P, Petersen K, Buchert R, Andresen B, Wartberg L, Nebeling B, Schmoldt A (2006) Mood, cognition and serotonin transporter availability in current and former ecstasy (MDMA) users: the longitudinal perspective. J Psychopharmacol 20:211–225PubMedCrossRefGoogle Scholar
  127. Thompson T, Schuster CR (1964) Morphine self-administration, food-reinforced, and avoidance behaviors in rhesus monkeys. Psychopharmacologia 5:87–94PubMedCrossRefGoogle Scholar
  128. Tokunaga M, Seneca N, Shin RM, Maeda J, Obayashi S, Okauchi T, Nagai Y, Zhang MR, Nakao R, Ito H, Innis RB, Halldin C, Suzuki K, Higuchi M, Suhara T (2009) Neuroimaging and physiological evidence for involvement of glutamatergic transmission in regulation of the striatal dopaminergic system. J Neurosci 29:1887–1896PubMedCrossRefGoogle Scholar
  129. van Berckel BN, Kegeles LS, Waterhouse R, Guo N, Hwang DR, Huang Y, Narendran R, Van Heertum R, Laruelle M (2006) Modulation of amphetamine-induced dopamine release by group II metabotropic glutamate receptor agonist LY354740 in non-human primates studied with positron emission tomography. Neuropsychopharmacology 31:967–977PubMedCrossRefGoogle Scholar
  130. Villemagne V, Yuan J, Wong DF, Dannals RF, Hatzidimitriou G, Mathews WB, Ravert HT, Musachio J, McCann UD, Ricaurte GA (1998) Brain dopamine neurotoxicity in baboons treated with doses of methamphetamine comparable to those recreationally abused by humans: evidence from [11C]WIN-35,428 positron emission tomography studies and direct in vitro determinations. J Neurosci 18:419–427PubMedGoogle Scholar
  131. Vogt BA, Finch DM, Olson CR (1992) Functional heterogeneity in cingulate cortex: the anterior executive and posterior evaluative regions. Cereb Cortex 2:435–443PubMedGoogle Scholar
  132. Volkow ND, Fowler JS (2000) Addiction, a disease of compulsion and drive: involvement of the orbitofrontal cortex. Cereb Cortex 10:318–325PubMedCrossRefGoogle Scholar
  133. Volkow ND, Mullani N, Gould KL, Adler S, Krajewski K (1988) Cerebral blood flow in chronic cocaine users: a study with positron emission tomography. Br J Psychiatry 152:641–648PubMedCrossRefGoogle Scholar
  134. Volkow ND, Fowler JS, Wolf AP, Hitzemann R, Dewey S, Bendriem B, Alpert R, Hoff A (1991) Changes in brain glucose metabolism in cocaine dependence and withdrawal. Am J Psychiatry 148:621–626PubMedGoogle Scholar
  135. Volkow ND, Ding YS, Fowler JS, Wang GJ, Logan J, Gatley JS, Dewey S, Ashby C, Liebermann J, Hitzemann R et al (1995) Is methylphenidate like cocaine? Studies on their pharmacokinetics and distribution in the human brain. Arch Gen Psychiatry 52:456–463PubMedGoogle Scholar
  136. Volkow ND, Wang GJ, Fischman MW, Foltin RW, Fowler JS, Abumrad NN, Vitkun S, Logan J, Gatley SJ, Pappas N, Hitzemann R, Shea CE (1997a) Relationship between subjective effects of cocaine and dopamine transporter occupancy. Nature 386:827–830PubMedCrossRefGoogle Scholar
  137. Volkow ND, Wang GJ, Fowler JS, Logan J, Angrist B, Hitzemann R, Lieberman J, Pappas N (1997b) Effects of methylphenidate on regional brain glucose metabolism in humans: relationship to dopamine D2 receptors. Am J Psychiatry 154:50–55PubMedGoogle Scholar
  138. Volkow ND, Wang GJ, Fowler JS, Logan J, Gatley SJ, Hitzemann R, Chen AD, Dewey SL, Pappas N (1997c) Decreased striatal dopaminergic responsiveness in detoxified cocaine-dependent subjects. Nature 386:830–833 PMID: 9126741Google Scholar
  139. Volkow ND, Fowler JS, Gatley SJ, Dewey SL, Wang GJ, Logan J, Ding YS, Franceschi D, Gifford A, Morgan A, Pappas N, King P (1999a) Comparable changes in synaptic dopamine induced by methylphenidate and by cocaine in the baboon brain. Synapse 31:59–66PubMedCrossRefGoogle Scholar
  140. Volkow ND, Wang GJ, Fowler JS, Gatley SJ, Logan J, Ding YS, Dewey SL, Hitzemann R, Gifford AN, Pappas NR (1999b) Blockade of striatal dopamine transporters by intravenous methylphenidate is not sufficient to induce self-reports of “high”. J Pharmacol Exp Ther 288:14–20PubMedGoogle Scholar
  141. Volkow ND, Wang GJ, Fowler JS, Hitzemann R, Angrist B, Gatley SJ, Logan J, Ding YS, Pappas N (1999c) Association of methylphenidate-induced craving with changes in right striato-orbitofrontal metabolism in cocaine abusers: implications in addiction. Am J Psychiatry 156:19–26PubMedGoogle Scholar
  142. Volkow ND, Wang GJ, Fischman MW, Foltin R, Fowler JS, Franceschi D, Franceschi M, Logan J, Gatley SJ, Wong C, Ding YS, Hitzemann R, Pappas N (2000) Effects of route of administration on cocaine induced dopamine transporter blockade in the human brain. Life Sci 67:1507–1515PubMedCrossRefGoogle Scholar
  143. Volkow ND, Chang L, Wang GJ, Fowler JS, Ding YS, Sedler M, Logan J, Franceschi D, Gatley J, Hitzemann R, Gifford A, Wong C, Pappas N (2001a) Low level of brain dopamine D2 receptors in methamphetamine abusers: association with metabolism in the orbitofrontal cortex. Am J Psychiatry 158: 2015–2021Google Scholar
  144. Volkow ND, Chang L, Wang GJ, Fowler JS, Franceschi D, Sedler M, Gatley SJ, Miller E, Hitzemann R, Ding YS, Logan J (2001b) Loss of dopamine transporters in methamphetamine abusers recovers with protracted abstinence. J Neurosci 21:9414–9418PubMedGoogle Scholar
  145. Volkow ND, Chang L, Wang GJ, Fowler JS, Franceschi D, Sedler MJ, Gatley SJ, Hitzemann R, Ding YS, Wong C, Logan J (2001c) Higher cortical and lower subcortical metabolism in detoxified methamphetamine abusers. Am J Psychiatry. 158(3):383–389. <http://www.ncbi.nlm.nih.gov/pubmed/11229978> PMID: 11229978Google Scholar
  146. Volkow ND, Chang L, Wang GJ, Fowler JS, Leonido-Yee M, Franceschi D, Sedler MJ, Gatley SJ, Hitzemann R, Ding YS, Logan J, Wong C, Miller EN (2001d) Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. Am J Psychiatry 158: 377–382Google Scholar
  147. Volkow ND, Wang GJ, Ma Y, Fowler JS, Zhu W, Maynard L, Telang F, Vaska P, Ding YS, Wong C, Swanson JM (2003) Expectation enhances the regional brain metabolic and the reinforcing effects of stimulants in cocaine abusers. J Neurosci 23:11461–11468PubMedGoogle Scholar
  148. Volkow ND, Fowler JS, Wang GJ, Swanson JM (2004) Dopamine in drug abuse and addiction: results from imaging studies and treatment implications. Mol Psychiatry 9:557–569PubMedCrossRefGoogle Scholar
  149. Volkow ND, Wang GJ, Ma Y, Fowler JS, Wong C, Jayne M, Telang F, Swanson JM (2006) Effects of expectation on the brain metabolic responses to methylphenidate and to its placebo in non-drug abusing subjects. Neuroimage 32:1782–1792PubMedCrossRefGoogle Scholar
  150. Volkow ND, Wang GJ, Telang F, Fowler JS, Logan J, Childress AR, Jayne M, Ma Y, Wong C (2008) Dopamine increases in striatum do not elicit craving in cocaine abusers unless they are coupled with cocaine cues. Neuroimage 39:1266–1273PubMedCrossRefGoogle Scholar
  151. Volkow ND, Fowler JS, Logan J, Alexoff D, Zhu W, Telang F, Wang GJ, Jayne M, Hooker JM, Wong C, Hubbard B, Carter P, Warner D, King P, Shea C, Xu Y, Muench L, Apelskog-Torres K (2009) Effects of modafinil on dopamine and dopamine transporters in the male human brain: clinical implications. Jama 301:1148–1154PubMedCrossRefGoogle Scholar
  152. Vosburg SK, Hart CL, Haney M, Rubin E, Foltin RW (2010) Modafinil does not serve as a reinforcer in cocaine abusers. Drug Alcohol Depend 106:233–236PubMedCrossRefGoogle Scholar
  153. Votaw JR, Howell LL, Martarello L, Hoffman JM, Kilts CD, Lindsey KP, Goodman MM (2002) Measurement of dopamine transporter occupancy for multiple injections of cocaine using a single injection of [F-18]FECNT. Synapse 44:203–210PubMedCrossRefGoogle Scholar
  154. Walton ME, Croxson PL, Behrens TE, Kennerley SW, Rushworth MF (2007) Adaptive decision making and value in the anterior cingulate cortex. Neuroimage 36(Suppl 2):T142–T154PubMedCrossRefGoogle Scholar
  155. Weerts EM, Fantegrossi WE, Goodwin AK (2007) The value of nonhuman primates in drug abuse research. Exp Clin Psychopharmacol 15:309–327PubMedCrossRefGoogle Scholar
  156. Wexler BE, Gottschalk CH, Fulbright RK, Prohovnik I, Lacadie CM, Rounsaville BJ, Gore JC (2001) Functional magnetic resonance imaging of cocaine craving. Am J Psychiatry 158:86–95PubMedCrossRefGoogle Scholar
  157. Wilcox KM, Paul IA, Woolverton WL (1999) Comparison between dopamine transporter affinity and self-administration potency of local anesthetics in rhesus monkeys. Eur J Pharmacol 367:175–181PubMedCrossRefGoogle Scholar
  158. Wilcox KM, Lindsey KP, Votaw JR, Goodman MM, Martarello L, Carroll FI, Howell LL (2002) Self-administration of cocaine and the cocaine analog RTI-113: relationship to dopamine transporter occupancy determined by PET neuroimaging in rhesus monkeys. Synapse 43:78–85PubMedCrossRefGoogle Scholar
  159. Wilcox KM, Kimmel HL, Lindsey KP, Votaw JR, Goodman MM, Howell LL (2005) In vivo comparison of the reinforcing and dopamine transporter effects of local anesthetics in rhesus monkeys. Synapse 58:220–228PubMedCrossRefGoogle Scholar
  160. Wilcox KM, Zhou Y, Wong DF, Alexander M, Rahmim A, Hilton J, Weed MR (2008) Blood levels and DA transporter occupancy of orally administered methylphenidate in juvenile rhesus monkeys measured by high resolution PET. Synapse 62:950–952PubMedCrossRefGoogle Scholar
  161. Winsauer PJ, McCann UD, Yuan J, Delatte MS, Stevenson MW, Ricaurte GA, Moerschbaecher JM (2002) Effects of fenfluramine, m-CPP and triazolam on repeated-acquisition in squirrel monkeys before and after neurotoxic MDMA administration. Psychopharmacol Berl 159:388–396CrossRefGoogle Scholar
  162. Woolverton WL (1995) Comparison of the reinforcing efficacy of cocaine and procaine in rhesus monkeys responding under a progressive-ratio schedule. Psychopharmacol Berl 120:296–302CrossRefGoogle Scholar
  163. Woolverton WL, Wang Z (2004) Relationship between injection duration, transporter occupancy and reinforcing strength of cocaine. Eur J Pharmacol 486:251–257PubMedCrossRefGoogle Scholar
  164. Xiao ZW, Cao CY, Wang ZX, Li JX, Liao HY, Zhang XX (2006) Changes of dopamine transporter function in striatum during acute morphine addiction and its abstinence in rhesus monkey. Chin Med J (Engl) 119:1802–1807Google Scholar
  165. Xu J, DeVito EE, Worhunsky PD, Carroll KM, Rounsaville BJ, Potenza MN (2010) White matter integrity is associated with treatment outcome measures in cocaine dependence. Neuropsychopharmacology 35:1541–1549PubMedCrossRefGoogle Scholar
  166. Yokoyama C, Yamanaka H, Onoe K, Kawasaki A, Nagata H, Shirakami K, Doi H, Onoe H (2010) Mapping of serotonin transporters by positron emission tomography with [(11)C]DASB in conscious common marmosets: comparison with rhesus monkeys. Synapse 64:594–601PubMedCrossRefGoogle Scholar
  167. Zolkowska D, Jain R, Rothman RB, Partilla JS, Roth BL, Setola V, Prisinzano TE, Baumann MH (2009) Evidence for the involvement of dopamine transporters in behavioral stimulant effects of modafinil. J Pharmacol Exp Ther 329:738–746PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Yerkes National Primate Research CenterEmory UniversityAtlantaUSA
  2. 2.Department of Psychiatry and Behavioral SciencesEmory UniversityAtlantaUSA
  3. 3.Department of PharmacologyEmory UniversityAtlantaUSA

Personalised recommendations