, Volume 215, Issue 1, pp 191–203 | Cite as

Selective blockade of the orexin-2 receptor attenuates ethanol self-administration, place preference, and reinstatement

  • James R. ShoblockEmail author
  • Natalie Welty
  • Leah Aluisio
  • Ian Fraser
  • S. Timothy Motley
  • Kirsten Morton
  • James Palmer
  • Pascal Bonaventure
  • Nicholas I. Carruthers
  • Timothy W. Lovenberg
  • Jamin Boggs
  • Ruggero Galici
Original Investigation



Orexin-1 receptor antagonists have been shown to block the reinforcing effects of drugs of abuse and food. However, whether blockade of orexin-2 receptor has similar effects has not been determined. We have recently described the in vitro and in vivo effects of JNJ-10397049, a selective and brain penetrant orexin-2 receptor antagonist.


The goal of these studies was to evaluate whether systemic administration of JNJ-10397049 blocks the rewarding effects of ethanol and reverses ethanol withdrawal in rodents. As a comparison, SB-408124, a selective orexin-1 receptor antagonist, was also evaluated.


Rats were trained to orally self-administer ethanol (8% v/v) or saccharin (0.1% v/v) under a fixed-ratio 3 schedule of reinforcement. A separate group of rats received a liquid diet of ethanol (8% v/v) and withdrawal signs were evaluated 4 h after ethanol discontinuation. In addition, ethanol-induced increases in extracellular dopamine levels in the nucleus accumbens were tested. In separate experiments, the acquisition, expression, and reinstatement of conditioned place preference (CPP) were evaluated in mice.


Our results indicate that JNJ-10397049 (1, 3, and 10 mg/kg, sc) dose-dependently reduced ethanol self-administration without changing saccharin self-administration, dopamine levels, or withdrawal signs in rats. Treatment with JNJ-10397049 (10 mg/kg, sc) attenuated the acquisition, expression, and reinstatement of ethanol CPP and ethanol-induced hyperactivity in mice. Surprisingly, SB-408124 (3, 10 and 30 mg/kg, sc) did not have any effect in these procedures.


Collectively, these results indicate, for the first time, that blockade of orexin-2 receptors is effective in reducing the reinforcing effects of ethanol.


Hypocretin Alcoholism Self administration Microdialysis Reward Orexin receptor type 2 


  1. Aston-Jones G, Smith RJ, Moorman DE, Richardson KA (2009) Role of lateral hypothalamic orexin neurons in reward processing and addiction. Neuropharmacology 56(Suppl 1):112–121PubMedCrossRefGoogle Scholar
  2. Baldo BA, Daniel RA, Berridge CW, Kelley AE (2003) Overlapping distributions of orexin/hypocretin- and dopamine-beta-hydroxylase immunoreactive fibers in rat brain regions mediating arousal, motivation, and stress. J Comp Neurol 464:220–237PubMedCrossRefGoogle Scholar
  3. Barbier AJ, Aluisio L, Lord B, Qu Y, Wilson SJ, Boggs JD, Bonaventure P, Miller K, Fraser I, Dvorak L, Pudiak C, Dugovic C, Shelton J, Mazur C, Letavic MA, Carruthers NI, Lovenberg TW (2007) Pharmacological characterization of JNJ-28583867, a histamine H(3) receptor antagonist and serotonin reuptake inhibitor. Eur J Pharmacol 576:43–54PubMedCrossRefGoogle Scholar
  4. Bonaventure P, Kelly L, Aluisio L, Shelton J, Lord B, Galici R, Miller K, Atack J, Lovenberg TW, Dugovic C (2007) Selective blockade of 5-hydroxytryptamine (5-HT)7 receptors enhances 5-HT transmission, antidepressant-like behavior, and rapid eye movement sleep suppression induced by citalopram in rodents. J Pharmacol Exp Ther 321:690–698PubMedCrossRefGoogle Scholar
  5. Borgland SL, Taha SA, Sarti F, Fields HL, Bonci A (2006) Orexin A in the VTA is critical for the induction of synaptic plasticity and behavioral sensitization to cocaine. Neuron 49:589–601PubMedCrossRefGoogle Scholar
  6. Borgland SL, Storm E, Bonci A (2008) Orexin B/hypocretin 2 increases glutamatergic transmission to ventral tegmental area neurons. Eur J Neurosci 28:1545–1556PubMedCrossRefGoogle Scholar
  7. Borgland SL, Chang SJ, Bowers MS, Thompson JL, Vittoz N, Floresco SB, Chou J, Chen BT, Bonci A (2009) Orexin A/hypocretin-1 selectively promotes motivation for positive reinforcers. J Neurosci 29:11215–11225PubMedCrossRefGoogle Scholar
  8. Boutrel B, Kenny PJ, Specio SE, Martin-Fardon R, Markou A, Koob GF, de Lecea L (2005) Role for hypocretin in mediating stress-induced reinstatement of cocaine-seeking behavior. Proc Natl Acad Sci U S A 102:19168–19173PubMedCrossRefGoogle Scholar
  9. Bouza C, Angeles M, Munoz A, Amate JM (2004) Efficacy and safety of naltrexone and acamprosate in the treatment of alcohol dependence: a systematic review. Addiction 99:811–828PubMedCrossRefGoogle Scholar
  10. Bover MT, Foulds J, Steinberg MB, Richardson D, Marcella SW (2008) Waking at night to smoke as a marker for tobacco dependence: patient characteristics and relationship to treatment outcome. Int J Clin Pract 62:182–190PubMedCrossRefGoogle Scholar
  11. Brower KJ, Aldrich MS, Robinson EA, Zucker RA, Greden JF (2001) Insomnia, self-medication, and relapse to alcoholism. Am J Psychiatry 158:399–404PubMedCrossRefGoogle Scholar
  12. Carelli RM (2002) The nucleus accumbens and reward: neurophysiological investigations in behaving animals. Behav Cogn Neurosci Rev 1:281–296PubMedCrossRefGoogle Scholar
  13. Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, Richardson JA, Williams SC, Xiong Y, Kisanuki Y, Fitch TE, Nakazato M, Hammer RE, Saper CB, Yanagisawa M (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98:437–451PubMedCrossRefGoogle Scholar
  14. Cunningham CL, Malott DH, Dickinson SD, Risinger FO (1992) Haloperidol does not alter expression of ethanol-induced conditioned place preference. Behav Brain Res 50:1–5PubMedCrossRefGoogle Scholar
  15. de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik VT, Bartlett FS, Frankel WN, van den Pol AN, Bloom FE, Gautvik KM, Sutcliffe JG (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A 95:322–327PubMedCrossRefGoogle Scholar
  16. Dugovic C, Shelton JE, Aluisio LE, Fraser IC, Jiang X, Sutton SW, Bonaventure P, Yun S, Li X, Lord B, Dvorak CA, Carruthers NI, Lovenberg TW (2009) Blockade of orexin-1 receptors attenuates orexin-2 receptor antagonism-induced sleep promotion in the rat. J Pharmacol Exp Ther 330:142–151PubMedCrossRefGoogle Scholar
  17. Espana RA, Oleson EB, Locke JL, Brookshire BR, Roberts DC, Jones SR (2010) The hypocretin-orexin system regulates cocaine self-administration via actions on the mesolimbic dopamine system. Eur J Neurosci 31:336–348PubMedCrossRefGoogle Scholar
  18. Georgescu D, Zachariou V, Barrot M, Mieda M, Willie JT, Eisch AJ, Yanagisawa M, Nestler EJ, DiLeone RJ (2003) Involvement of the lateral hypothalamic peptide orexin in morphine dependence and withdrawal. J Neurosci 23:3106–3111PubMedGoogle Scholar
  19. Hamidovic A, de Wit H (2009) Sleep deprivation increases cigarette smoking. Pharmacol Biochem Behav 93:263–269PubMedCrossRefGoogle Scholar
  20. Harris GC, Wimmer M, Aston-Jones G (2005) A role for lateral hypothalamic orexin neurons in reward seeking. Nature 437:556–559PubMedCrossRefGoogle Scholar
  21. Harris GC, Wimmer M, Randall-Thompson JF, Ston-Jones G (2007) Lateral hypothalamic orexin neurons are critically involved in learning to associate an environment with morphine reward. Behav Brain Res 183:43–51PubMedCrossRefGoogle Scholar
  22. Hollander JA, Lu Q, Cameron MD, Kamenecka TM, Kenny PJ (2008) Insular hypocretin transmission regulates nicotine reward. Proc Natl Acad Sci U S A 105:19480–19485PubMedCrossRefGoogle Scholar
  23. Hollister LE, Johnson K, Boukhabza D, Gillespie HK (1981) Aversive effects of naltrexone in subjects not dependent on opiates. Drug Alcohol Depend 8:37–41PubMedCrossRefGoogle Scholar
  24. Imperato A, Di Chiara G (1986) Preferential stimulation of dopamine release in the nucleus accumbens of freely moving rats by ethanol. J Pharmacol Exp Ther 239:219–228PubMedGoogle Scholar
  25. Kane JK, Parker SL, Matta SG, Fu Y, Sharp BM, Li MD (2000) Nicotine up-regulates expression of orexin and its receptors in rat brain. Endocrinology 141:3623–3629PubMedCrossRefGoogle Scholar
  26. Kane JK, Parker SL, Li MD (2001) Hypothalamic orexin-A binding sites are downregulated by chronic nicotine treatment in the rat. Neurosci Lett 298:1–4PubMedCrossRefGoogle Scholar
  27. Knapp DJ, Overstreet DH, Breese GR (2005) Modulation of ethanol withdrawal-induced anxiety-like behavior during later withdrawals by treatment of early withdrawals with benzodiazepine/gamma-aminobutyric acid ligands. Alcohol Clin Exp Res 29:553–563PubMedCrossRefGoogle Scholar
  28. Lawrence AJ, Cowen MS, Yang HJ, Chen F, Oldfield B (2006) The orexin system regulates alcohol-seeking in rats. Br J Pharmacol 148:752–759PubMedCrossRefGoogle Scholar
  29. Lin L, Faraco J, Li R, Kadotani H, Rogers W, Lin X, Qiu X, de Jong PJ, Nishino S, Mignot E (1999) The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98:365–376PubMedCrossRefGoogle Scholar
  30. Malherbe P, Borroni E, Pinard E, Wettstein JG, Knoflach F (2009) Biochemical and electrophysiological characterization of almorexant, a dual OX1/OX2 antagonist: comparison with selective OX1 and OX2 antagonists. Mol Pharmacol 76:618–31PubMedCrossRefGoogle Scholar
  31. Mark TL, Kranzler HR, Song X (2003) Understanding US addiction physicians' low rate of naltrexone prescription. Drug Alcohol Depend 71:219–228PubMedCrossRefGoogle Scholar
  32. Meert TF (1993) Effects of various serotonergic agents on alcohol intake and alcohol preference in Wistar rats selected at two different levels of alcohol preference. Alcohol Alcohol 28:157–170PubMedGoogle Scholar
  33. Meyer PJ, Meshul CK, Phillips TJ (2009) Ethanol- and cocaine-induced locomotion are genetically related to increases in accumbal dopamine. Genes Brain Behav 8:346–355PubMedCrossRefGoogle Scholar
  34. Moorman DE, Aston-Jones G (2009) Orexin-1 receptor antagonism decreases ethanol consumption and preference selectively in high-ethanol-preferring Sprague–Dawley rats. Alcohol 43(5):379–386, Ref Type: AbstractPubMedCrossRefGoogle Scholar
  35. Mukai K, Kim J, Nakajima K, Oomura Y, Wayner MJ, Sasaki K (2009) Electrophysiological effects of orexin/hypocretin on nucleus accumbens shell neurons in rats: an in vitro study. Peptides 30:1487–1496PubMedCrossRefGoogle Scholar
  36. Nair SG, Golden SA, Shaham Y (2008) Differential effects of the hypocretin 1 receptor antagonist SB 334867 on high-fat food self-administration and reinstatement of food seeking in rats. Br J Pharmacol 154:406–416PubMedCrossRefGoogle Scholar
  37. Nakamura T, Uramura K, Nambu T, Yada T, Goto K, Yanagisawa M, Sakurai T (2000) Orexin-induced hyperlocomotion and stereotypy are mediated by the dopaminergic system. Brain Res 873:181–187PubMedCrossRefGoogle Scholar
  38. Narita M, Nagumo Y, Hashimoto S, Narita M, Khotib J, Miyatake M, Sakurai T, Yanagisawa M, Nakamachi T, Shioda S, Suzuki T (2006) Direct involvement of orexinergic systems in the activation of the mesolimbic dopamine pathway and related behaviors induced by morphine. J Neurosci 26:398–405PubMedCrossRefGoogle Scholar
  39. Narita M, Nagumo Y, Miyatake M, Ikegami D, Kurahashi K, Suzuki T (2007) Implication of protein kinase C in the orexin-induced elevation of extracellular dopamine levels and its rewarding effect. Eur J Neurosci 25:1537–1545PubMedCrossRefGoogle Scholar
  40. Ohno K, Sakurai T (2008) Orexin neuronal circuitry: role in the regulation of sleep and wakefulness. Front Neuroendocrinol 29:70–87PubMedCrossRefGoogle Scholar
  41. Otmani S, Demazieres A, Staner C, Jacob N, Nir T, Zisapel N, Staner L (2008) Effects of prolonged-release melatonin, zolpidem, and their combination on psychomotor functions, memory recall, and driving skills in healthy middle aged and elderly volunteers. Hum Psychopharmacol 23:693–705PubMedCrossRefGoogle Scholar
  42. Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates. Academic, San DiegoGoogle Scholar
  43. Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG, Kilduff TS (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18:9996–10015PubMedGoogle Scholar
  44. Pfeffer AO, Samson HH (1988) Haloperidol and apomorphine effects on ethanol reinforcement in free feeding rats. Pharmacol Biochem Behav 29:343–350PubMedCrossRefGoogle Scholar
  45. Richards JK, Simms JA, Steensland P, Taha SA, Borgland SL, Bonci A, Bartlett SE (2008) Inhibition of orexin-1/hypocretin-1 receptors inhibits yohimbine-induced reinstatement of ethanol and sucrose seeking in Long-Evans rats. Psychopharmacology (Berl) 199:109–117CrossRefGoogle Scholar
  46. Robinson DL, Carelli RM (2008) Distinct subsets of nucleus accumbens neurons encode operant responding for ethanol versus water. Eur J Neurosci 28:1887–1894PubMedCrossRefGoogle Scholar
  47. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JR, Buckingham RE, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu WS, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92:573–585PubMedCrossRefGoogle Scholar
  48. Scammell T, Winrow C (2011) Orexin receptors: pharmacology and therapeutic opportunities. Annu Rev Pharmacol Toxicol 51:243–266PubMedCrossRefGoogle Scholar
  49. Scharf DM, Dunbar MS, Shiffman S (2008) Smoking during the night: prevalence and smoker characteristics. Nicotine Tob Res 10:167–178PubMedCrossRefGoogle Scholar
  50. Sharf R, Sarhan M, DiLeone RJ (2008) Orexin mediates the expression of precipitated morphine withdrawal and concurrent activation of the nucleus accumbens shell. Biol Psychiatry 64:175–183PubMedCrossRefGoogle Scholar
  51. Smith RJ, See RE, Aston-Jones G (2009) Orexin/hypocretin signaling at the orexin 1 receptor regulates cue-elicited cocaine-seeking. Eur J Neurosci 30:493–503PubMedCrossRefGoogle Scholar
  52. Teran A, Majadas S, Galan J (2008) Quetiapine in the treatment of sleep disturbances associated with addictive conditions: a retrospective study. Subst Use Misuse 43:2169–2171PubMedCrossRefGoogle Scholar
  53. Upton N (2005) In vivo pharmacology of orexin (hypocretin) receptors. In: de Lecea L, Sutcliffe JG (eds) Hypocretins. Springer, US, pp 205–220CrossRefGoogle Scholar
  54. Wang B, You ZB, Wise RA (2009) Reinstatement of cocaine seeking by hypocretin (orexin) in the ventral tegmental area: independence from the local corticotropin-releasing factor network. Biol Psychiatry 65:857–862PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • James R. Shoblock
    • 1
    Email author
  • Natalie Welty
    • 1
  • Leah Aluisio
    • 1
  • Ian Fraser
    • 1
  • S. Timothy Motley
    • 1
  • Kirsten Morton
    • 1
  • James Palmer
    • 1
  • Pascal Bonaventure
    • 1
  • Nicholas I. Carruthers
    • 1
  • Timothy W. Lovenberg
    • 1
  • Jamin Boggs
    • 1
  • Ruggero Galici
    • 1
    • 2
  1. 1.NeuroscienceJohnson & Johnson Pharmaceutical Research & Development, L.L.CSan DiegoUSA
  2. 2.Bristol Myers-SquibbWallingfordUSA

Personalised recommendations