, Volume 214, Issue 4, pp 805–818 | Cite as

Involvement of the orexin/hypocretin system in ethanol conditioned place preference

  • Charlene M. Voorhees
  • Christopher L. Cunningham
Original Investigation



Recent studies suggest that orexin/hypocretin is involved in drug reward and drug-seeking behaviors, including ethanol self-administration. However, orexin’s role in ethanol-induced seeking behaviors remains unclear.


These studies examined the role of orexin in the acquisition and expression of ethanol conditioned place preference (CPP) using the orexin 1 receptor (OX1R) antagonist SB-334867.


Effects of SB-334867 (0–30 mg/kg) on locomotor activity were determined in DBA/2J mice (Experiment 1). SB-334867 (0–30 mg/kg) was administered during acquisition of ethanol (2 g/kg) CPP to determine whether orexin signaling is required (Experiment 2). Blood ethanol concentrations (BECs) were measured after ethanol (2 g/kg) injection to determine whether SB-334867 (30 mg/kg) pretreatment altered ethanol pharmacokinetics (Experiment 3). Finally, SB-334867 (0–40 mg/kg) was given before ethanol-free preference testing (Experiments 4 and 5).


SB-334867 did not alter basal locomotor activity (Experiment 1). SB-334867 (30 mg/kg) reduced ethanol-induced locomotor stimulation, but did not affect the acquisition of ethanol CPP (Experiment 2) or BEC, suggesting no alteration in ethanol pharmacokinetics (Experiment 3). Although OX1R antagonism blocked expression of a weak ethanol CPP (Experiment 4), it did not affect expression of a moderate to strong CPP (Experiment 5).


Blockade of OX1R by systemic administration of SB-334867 reduced ethanol-stimulated activity, but did not affect acquisition or expression of ethanol-induced CPP, suggesting that orexin does not influence ethanol’s primary or conditioned rewarding effects. Other neurotransmitter systems may be sufficient to support acquisition and expression of CPP despite alterations in orexin signaling.


Conditioned place preference SB-334867 Orexin Locomotor activity Inbred mice (DBA/2J) 


  1. Aston-Jones G, Smith RJ, Moorman DE, Richardson KA (2009) Role of lateral hypothalamic orexin neurons in reward processing and addiction. Neuropharmacology 56(Suppl 1):112–121PubMedCrossRefGoogle Scholar
  2. Aston-Jones G, Smith RJ, Sartor GC, Moorman DE, Massi L, Tahsili-Fahadan P, Richardson KA (2010) Lateral hypothalamic orexin/hypocretin neurons: a role in reward-seeking and addiction. Brain Res 1314:74–90PubMedCrossRefGoogle Scholar
  3. Bardo MT, Bevins RA (2000) Conditioned place preference: what does it add to our preclinical understanding of drug reward? Psychopharmacology 153:31–43PubMedCrossRefGoogle Scholar
  4. Bechtholt AJ, Cunningham CL (2005) Ethanol-induced conditioned place preference is expressed through a ventral tegmental area dependent mechanism. Behav Neurosci 119:213–223PubMedCrossRefGoogle Scholar
  5. Boehm SL II, Piercy MM, Bergstrom HC, Phillips TJ (2002) Ventral tegmental area region governs GABA(B) receptor modulation of ethanol-stimulated activity in mice. Neuroscience 115:185–200PubMedCrossRefGoogle Scholar
  6. Bonci A, Borgland S (2009) Role of orexin/hypocretin and CRF in the formation of drug-dependent synaptic plasticity in the mesolimbic system. Neuropharmacology 56(Suppl 1):107–111PubMedCrossRefGoogle Scholar
  7. Borgland SL, Chang SJ, Bowers MS, Thompson JL, Vittoz N, Floresco SB, Chou J, Chen BT, Bonci A (2009) Orexin A/hypocretin-1 selectively promotes motivation for positive reinforcers. J Neurosci 29:11215–11225PubMedCrossRefGoogle Scholar
  8. Boutrel B, Kenny PJ, Specio SE, Martin-Fardon R, Markou A, Koob GF, de Lecea L (2005) Role for hypocretin in mediating stress-induced reinstatement of cocaine-seeking behavior. Proc Natl Acad Sci USA 102:19168–19173PubMedCrossRefGoogle Scholar
  9. Boyce-Rustay JM, Cunningham CL (2004) The role of NMDA receptor binding sites in ethanol place conditioning. Behav Neurosci 118:822–834PubMedCrossRefGoogle Scholar
  10. Cason AM, Smith RJ, Tahsili-Fahadan P, Moorman DE, Sartor GC, Aston-Jones G (2010) Role of orexin/hypocretin in reward-seeking and addiction: implications for obesity. Physiol BehavGoogle Scholar
  11. Chester JA, Cunningham CL (1999a) Baclofen alters ethanol-stimulated activity but not conditioned place preference or taste aversion in mice. Pharmacol Biochem Behav 63:325–331PubMedCrossRefGoogle Scholar
  12. Chester JA, Cunningham CL (1999b) GABA(A) receptors modulate ethanol-induced conditioned place preference and taste aversion in mice. Psychopharmacology (Berl) 144:363–372CrossRefGoogle Scholar
  13. Cunningham CL, Gremel CM (2006) Proximal ethanol pretreatment interferes with acquisition of ethanol-induced conditioned place preference. Pharmacol Biochem Behav 85:612–619PubMedCrossRefGoogle Scholar
  14. Cunningham CL, Dickinson SD, Okorn DM (1995) Naloxone facilitates extinction but does not affect acquisition or expression of ethanol-induced conditioned place preference. Exp Clin Psychopharmacol 3:330–343CrossRefGoogle Scholar
  15. Cunningham CL, Henderson CM, Bormann NM (1998) Extinction of ethanol-induced conditioned place preference and conditioned place aversion: effects of naloxone. Psychopharmacology 139:62–70PubMedCrossRefGoogle Scholar
  16. Cunningham C, Fidler T, Hill K (2000) Animal models of alcohol’s motivational effects. Alcohol Res Health 24:85–92PubMedGoogle Scholar
  17. Cunningham CL, Ferree NK, Howard MA (2003) Apparatus bias and place conditioning with ethanol in mice. Psychopharmacology (Berl) 170:409–422CrossRefGoogle Scholar
  18. Cunningham CL, Gremel CM, Groblewski PA (2006) Drug-induced conditioned place preference and aversion in mice. Nat Protoc 1:1662–1670PubMedCrossRefGoogle Scholar
  19. Dayas CV, McGranahan TM, Martin-Fardon R, Weiss F (2008) Stimuli linked to ethanol availability activate hypothalamic CART and orexin neurons in a reinstatement model of relapse. Biol Psychiatry 63:152–157PubMedCrossRefGoogle Scholar
  20. de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik VT, Bartlett FS II, Frankel WN, van den Pol AN, Bloom FE, Gautvik KM, Sutcliffe JG (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci USA 95:322–327PubMedCrossRefGoogle Scholar
  21. Deng C, Li KY, Zhou C, Ye JH (2009) Ethanol enhances glutamate transmission by retrograde dopamine signaling in a postsynaptic neuron/synaptic bouton preparation from the ventral tegmental area. Neuropsychopharmacology 34:1233–1244PubMedCrossRefGoogle Scholar
  22. Dole VP, Ho A, Gentry RT (1985) Toward an analogue of alcoholism in mice: criteria for recognition of pharmacologically motivated drinking. Proc Natl Acad Sci USA 82:3469–3471PubMedCrossRefGoogle Scholar
  23. Fadel J, Deutch AY (2002) Anatomical substrates of orexin–dopamine interactions: lateral hypothalamic projections to the ventral tegmental area. Neuroscience 111:379–387PubMedCrossRefGoogle Scholar
  24. Goldstein DB (1983) Pharmacology of alcohol. Oxford University Press, Oxford University PressGoogle Scholar
  25. Gremel CM, Cunningham CL (2007) Role of test activity in ethanol-induced disruption of place preference expression in mice. Psychopharmacology (Berl) 191:195–202CrossRefGoogle Scholar
  26. Gremel CM, Cunningham CL (2008) Roles of the nucleus accumbens and amygdala in the acquisition and expression of ethanol-conditioned behavior in mice. J Neurosci 28:1076–1084PubMedCrossRefGoogle Scholar
  27. Gremel CM, Cunningham CL (2009) Involvement of amygdala dopamine and nucleus accumbens NMDA receptors in ethanol-seeking behavior in mice. Neuropsychopharmacology 34:1443–1453PubMedCrossRefGoogle Scholar
  28. Gremel CM, Cunningham CL (2010) Effects of disconnection of amygdala dopamine and nucleus accumbens N-methyl-d-aspartate receptors on ethanol-seeking behavior in mice. Eur J Neurosci 31:148–155PubMedCrossRefGoogle Scholar
  29. Groblewski PA, Bax LS, Cunningham CL (2008) Reference-dose place conditioning with ethanol in mice: empirical and theoretical analysis. Psychopharmacology (Berl) 201:97–106CrossRefGoogle Scholar
  30. Hara J, Beuckmann CT, Nambu T, Willie JT, Chemelli RM, Sinton CM, Sugiyama F, Yagami K, Goto K, Yanagisawa M, Sakurai T (2001) Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 30:345–354PubMedCrossRefGoogle Scholar
  31. Harris GC, Aston-Jones G (2006) Arousal and reward: a dichotomy in orexin function. Trends Neurosci 29:571–577PubMedCrossRefGoogle Scholar
  32. Harris GC, Wimmer M, Aston-Jones G (2005) A role for lateral hypothalamic orexin neurons in reward seeking. Nature 437:556–559PubMedCrossRefGoogle Scholar
  33. Harris GC, Wimmer M, Randall-Thompson JF, Aston-Jones G (2007) Lateral hypothalamic orexin neurons are critically involved in learning to associate an environment with morphine reward. Behav Brain Res 183:43–51PubMedCrossRefGoogle Scholar
  34. Hollander JA, Lu Q, Cameron MD, Kamenecka TM, Kenny PJ (2008) Insular hypocretin transmission regulates nicotine reward. Proc Natl Acad Sci USA 105:19480–19485PubMedCrossRefGoogle Scholar
  35. Ishii Y, Blundell JE, Halford JC, Upton N, Porter R, Johns A, Jeffrey P, Summerfield S, Rodgers RJ (2005) Anorexia and weight loss in male rats 24 h following single dose treatment with orexin-1 receptor antagonist SB-334867. Behav Brain Res 157:331–341PubMedCrossRefGoogle Scholar
  36. Lawrence A, Cowen M, Yang H, Chen F, Oldfield B (2006) The orexin system regulates alcohol-seeking in rats. Br J Pharmacol 148:752–759PubMedCrossRefGoogle Scholar
  37. Leeman RF, Heilig M, Cunningham CL, Stephens DN, Duka T, O’Malley SS (2010) Ethanol consumption: how should we measure it? Achieving consilience between human and animal phenotypes. Addict Biol 15:109–124PubMedCrossRefGoogle Scholar
  38. Marcus JN, Aschkenasi CJ, Lee CE, Chemelli RM, Saper CB, Yanagisawa M, Elmquist JK (2001) Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol 435:6–25PubMedCrossRefGoogle Scholar
  39. Moorman DE, Aston-Jones G (2009) Orexin-1 receptor antagonism decreases ethanol consumption and preference selectively in high-ethanol—preferring Sprague–Dawley rats. Alcohol 43:379–386PubMedCrossRefGoogle Scholar
  40. Narita M, Nagumo Y, Hashimoto S, Narita M, Khotib J, Miyatake M, Sakurai T, Yanagisawa M, Nakamachi T, Shioda S, Suzuki T (2006) Direct involvement of orexinergic systems in the activation of the mesolimbic dopamine pathway and related behaviors induced by morphine. J Neurosci 26:398–405PubMedCrossRefGoogle Scholar
  41. Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG, Kilduff TS (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18:9996–10015PubMedGoogle Scholar
  42. Pickering C, Avesson L, Liljequist S, Lindblom J, Schiöth HB (2007) The role of hypothalamic peptide gene expression in alcohol self-administration behavior. Peptides 28:2361–2371PubMedCrossRefGoogle Scholar
  43. Plaza-Zabala A, Martin-Garcia E, de Lecea L, Maldonado R, Berrendero F (2010) Hypocretins regulate the anxiogenic-like effects of nicotine and induce reinstatement of nicotine-seeking behavior. J Neurosci 30:2300–2310PubMedCrossRefGoogle Scholar
  44. Porter RA, Chan WN, Coulton S, Johns A, Hadley MS, Widdowson K, Jerman JC, Brough SJ, Coldwell M, Smart D, Jewitt F, Jeffrey P, Austin N (2001) 1, 3-Biarylureas as selective non-peptide antagonists of the orexin-1 receptor. Bioorg Med Chem Lett 11:1907–1910PubMedCrossRefGoogle Scholar
  45. Richards JK, Simms J, Steensland P, Taha SA, Borgland SL, Bonci A, Bartlett S (2008) Inhibition of orexin-1/hypocretin-1 receptors inhibits yohimbine-induced reinstatement of ethanol and sucrose seeking in Long–Evans rats. Psychopharmacology (Berl) 199:109–117CrossRefGoogle Scholar
  46. Risinger FO, Dickinson SD, Cunningham CL (1992) Haloperidol reduces ethanol-induced motor activity stimulation but not conditioned place preference. Psychopharmacology (Berl) 107:453–456CrossRefGoogle Scholar
  47. Rodgers RJ, Halford JC, Nunes de Souza RL, Canto de Souza AL, Piper DC, Arch JR, Upton N, Porter RA, Johns A, Blundell JE (2001) SB-334867, a selective orexin-1 receptor antagonist, enhances behavioural satiety and blocks the hyperphagic effect of orexin-A in rats. Eur J Neurosci 13:1444–1452PubMedCrossRefGoogle Scholar
  48. Rustay NR, Crabbe JC (2004) Genetic analysis of rapid tolerance to ethanol’s incoordinating effects in mice: inbred strains and artificial selection. Behav Genet 34:441–451PubMedCrossRefGoogle Scholar
  49. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JR, Buckingham RE, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu WS, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92:573–585PubMedCrossRefGoogle Scholar
  50. Schneider ER, Rada P, Darby RD, Leibowitz SF, Hoebel BG (2007) Orexigenic peptides and alcohol intake: differential effects of orexin, galanin, and ghrelin. Alcohol Clin Exp Res 31:1858–1865PubMedCrossRefGoogle Scholar
  51. Sharf R, Sarhan M, Dileone RJ (2008) Orexin mediates the expression of precipitated morphine withdrawal and concurrent activation of the nucleus accumbens shell. Biol Psychiatry 64:175–183PubMedCrossRefGoogle Scholar
  52. Sharf R, Guarnieri DJ, Taylor JR, DiLeone RJ (2010) Orexin mediates morphine place preference, but not morphine-induced hyperactivity or sensitization. Brain Res 1317:24–32PubMedCrossRefGoogle Scholar
  53. Smart D, Sabido-David C, Brough SJ, Jewitt F, Johns A, Porter RA, Jerman JC (2001) SB-334867-A: the first selective orexin-1 receptor antagonist. Br J Pharmacol 132:1179–1182PubMedCrossRefGoogle Scholar
  54. Smith RJ, See RE, Aston-Jones G (2009) Orexin/hypocretin signaling at the orexin 1 receptor regulates cue-elicited cocaine-seeking. Eur J Neurosci 30:493–503PubMedCrossRefGoogle Scholar
  55. Smith RJ, Tahsili-Fahadan P, Aston-Jones G (2010) Orexin/hypocretin is necessary for context-driven cocaine-seeking. Neuropharmacology 58:179–184PubMedCrossRefGoogle Scholar
  56. Xiao C, Shao XM, Olive MF, Griffin WC 3rd, Li KY, Krnjevic K, Zhou C, Ye JH (2009) Ethanol facilitates glutamatergic transmission to dopamine neurons in the ventral tegmental area. Neuropsychopharmacology 34:307–318PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Charlene M. Voorhees
    • 1
  • Christopher L. Cunningham
    • 1
  1. 1.Department of Behavioral Neuroscience, L470 Portland Alcohol Research CenterOregon Health and Science UniversityPortlandUSA

Personalised recommendations