, Volume 212, Issue 1, pp 59–72 | Cite as

Imaging brain regional and cortical laminar effects of selective D3 agonists and antagonists

  • Ji-Kyung Choi
  • Joseph B. Mandeville
  • Y. Iris Chen
  • Peter Grundt
  • Susanta K. Sarkar
  • Amy H. Newman
  • Bruce G. Jenkins
original investigation



Dopamine D3 receptors (D3R) may be important therapeutic targets for both drug abuse and dyskinesias in Parkinson’s disease; however, little is known about their functional circuitry.


We wished to determine if D3R antagonists SB-277011 and PG-01037 and D3R-preferring agonist 7-OH-DPAT are D3R selective in vivo. We further wished to characterize the response to D3R drugs using whole brain imaging to identify novel D3R circuitry.


We investigated D3R circuitry in rats using pharmacologic MRI and challenge with selective D3R antagonists and agonist at various doses to examine regional changes in cerebral blood volume (CBV). We compared regional activation patterns with D2R/D3R agonists, as well as with prior studies of mRNA expression and autoradiography.


D3R antagonists induced positive CBV changes and D3R agonist negative CBV changes in brain regions including nucleus accumbens, infralimbic cortex, thalamus, interpeduncular region, hypothalamus, and hippocampus (strongest in subiculum). All D3R-preferring drugs showed markedly greater responses in nucleus accumbens than in caudate/putamen consistent with D3R selectivity and contrary to what was observed with D2R agonists. At high doses of D3R agonist, functional changes were differentiated across cortical laminae, with layer V–VI yielding positive CBV changes and layer IV yielding negative CBV changes. These results are not inconsistent with differential D1R and D3R innervation in these layers respectively showed previously using post-mortem techniques.


MRI provides a new tool for testing the in vivo selectivity of novel D3R dopaminergic ligands where radiolabels may not be available. Further, the functional D3R circuitry strongly involves hypothalamus and subiculum as well as the limbic striatum.


Cortical layers Dopamine D3 receptor Hippocampus Hypothalamus Infralimbic cortex Limbic circuitry MRI Nucleus accumbens Subiculum 



This work was supported by NIH/NIDA DA16187-06.


  1. Ahlenius S, Salmi P (1994) Behavioral and biochemical effects of the dopamine D3 receptor-selective ligand, 7-OH-DPAT, in the normal and the reserpine-treated rat. Eur J Pharmacol 260:177–181CrossRefPubMedGoogle Scholar
  2. Attwell D, Iadecola C (2002) The neural basis of functional brain imaging signals. Trends Neurosci 25:621–625CrossRefPubMedGoogle Scholar
  3. Baker LE, Hood CA, Heidema AM (1999) Assessment of D3 versus D2 receptor modulation of the discriminative stimulus effects of (+)-7-OH-DPAT in rats. Behav Pharmacol 10:717–722CrossRefPubMedGoogle Scholar
  4. Bancroft GN, Morgan KA, Flietstra RJ, Levant B (1998) Binding of [3H]PD 128907, a putatively selective ligand for the D3 dopamine receptor, in rat brain: a receptor binding and quantitative autoradiographic study. Neuropsychopharmacology 18:305–316CrossRefPubMedGoogle Scholar
  5. Bezard E, Ferry S, Mach U, Stark H, Leriche L, Boraud T, Gross C, Sokoloff P (2003) Attenuation of levodopa-induced dyskinesia by normalizing dopamine D3 receptor function. Nat Med 9:762–767CrossRefPubMedGoogle Scholar
  6. Black KJ, Hershey T, Koller JM, Videen TO, Mintun MA, Price JL, Perlmutter JS (2002) A possible substrate for dopamine-related changes in mood and behavior: prefrontal and limbic effects of a D3-preferring dopamine agonist. Proc Natl Acad Sci U S A 99:17113–17118CrossRefPubMedGoogle Scholar
  7. Bordet R, Ridray S, Carboni S, Diaz J, Sokoloff P, Schwartz JC (1997) Induction of dopamine D3 receptor expression as a mechanism of behavioral sensitization to levodopa. Proc Natl Acad Sci U S A 94:3363–3367CrossRefPubMedGoogle Scholar
  8. Boulay D, Depoortere R, Perrault G, Borrelli E, Sanger DJ (1999) Dopamine D2 receptor knock-out mice are insensitive to the hypolocomotor and hypothermic effects of dopamine D2/D3 receptor agonists. Neuropharmacology 38:1389–1396CrossRefPubMedGoogle Scholar
  9. Chen Q, Andersen AH, Zhang Z, Ovadia A, Gash DM, Avison MJ (1996) Mapping drug-induced changes in cerebral R2* by Multiple Gradient Recalled Echo functional MRI. Magn Reson Imaging 14:469–476CrossRefPubMedGoogle Scholar
  10. Chen YI, Galpern WR, Brownell AL, Matthews RT, Bogdanov M, Isacson O, Beal MF, Rosen BR, Jenkins BG (1997) Detection of dopaminergic neurotransmitter activity using pharmacologic MRI: correlation with PET, microdialysis, and behavioral data. Mag Reson Med 38:389–398CrossRefGoogle Scholar
  11. Chen YC, Mandeville JB, Nguyen TV, Talele A, Cavagna F, Jenkins BG (2001) Improved mapping of pharmacologically induced neuronal activation using the IRON technique with superparamagnetic blood pool agents. J Magn Reson Imaging 14:517–524CrossRefPubMedGoogle Scholar
  12. Chen YC, Choi JK, Andersen SL, Rosen BR, Jenkins BG (2005) Mapping dopamine D2/D3 receptor function using pharmacological magnetic resonance imaging. Psychopharmacology (Berl) 180:705–715CrossRefGoogle Scholar
  13. Chen YI, Choi JK, Xu H, Ren J, Andersen SL, Jenkins BG (2010) Pharmacologic neuroimaging of the ontogeny of dopamine receptor function. Dev Neurosci Jun 3, epub ahead of printGoogle Scholar
  14. Choi JK, Chen YI, Hamel E, Jenkins BG (2006) Brain hemodynamic changes mediated by dopamine receptors: role of the cerebral microvasculature in dopamine-mediated neurovascular coupling. Neuroimage 30:700–712CrossRefPubMedGoogle Scholar
  15. Collins GT, Newman AH, Grundt P, Rice KC, Husbands SM, Chauvignac C, Chen J, Wang S, Woods JH (2007) Yawning and hypothermia in rats: effects of dopamine D3 and D2 agonists and antagonists. Psychopharmacology (Berl) 193:159–170CrossRefGoogle Scholar
  16. Collins GT, Truccone A, Haji-Abdi F, Newman AH, Grundt P, Rice KC, Husbands SM, Greedy BM, Enguehard-Gueiffier C, Gueiffier A, Chen J, Wang S, Katz JL, Grandy DK, Sunahara RK, Woods JH (2009) Proerectile effects of dopamine D2-like agonists are mediated by the D3 receptor in rats and mice. J Pharmacol Exp Ther 329:210–217CrossRefPubMedGoogle Scholar
  17. Gaspar P, Bloch B, Le Moine C (1995) D1 and D2 receptor gene expression in the rat frontal cortex: cellular localization in different classes of efferent neurons. Eur J Neurosci 7:1050–1063CrossRefPubMedGoogle Scholar
  18. Graff-Guerrero A, Redden L, Abi-Saab W, Katz DA, Houle S, Barsoum P, Bhathena A, Palaparthy R, Saltarelli MD, Kapur S (2009) Blockade of [11C](+)-PHNO binding in human subjects by the dopamine D3 receptor antagonist ABT-925. Int J Neuropsychopharmacol 13:273–87CrossRefPubMedGoogle Scholar
  19. Grundt P, Prevatt KM, Cao J, Taylor M, Floresca CZ, Choi JK, Jenkins BG, Luedtke RR, Newman AH (2007) Heterocyclic analogues of N-(4-(4-(2, 3-dichlorophenyl)piperazin-1-yl)butyl)arylcarboxamides with functionalized linking chains as novel dopamine D3 receptor ligands: potential substance abuse therapeutic agents. J Med Chem 50:4135–4146CrossRefPubMedGoogle Scholar
  20. Gurevich EV, Joyce JN (2000) Dopamine D(3) receptor is selectively and transiently expressed in the developing whisker barrel cortex of the rat. J Comp Neurol 420:35–51CrossRefPubMedGoogle Scholar
  21. Herroelen L, De Backer JP, Wilczak N, Flamez A, Vauquelin G, De Keyser J (1994) Autoradiographic distribution of D3-type dopamine receptors in human brain using [3H]7-hydroxy-N, N-di-n-propyl-2-aminotetralin. Brain Res 648:222–228CrossRefPubMedGoogle Scholar
  22. Jenkins BG, Sanchez-Pernaute R, Brownell AL, Chen YC, Isacson O (2004) Mapping dopamine function in primates using pharmacologic magnetic resonance imaging. J Neurosci 24:9553–9560CrossRefPubMedGoogle Scholar
  23. Khan ZU, Gutierrez A, Martin R, Penafiel A, Rivera A, De La Calle A (1998) Differential regional and cellular distribution of dopamine D2-like receptors: an immunocytochemical study of subtype-specific antibodies in rat and human brain. J Comp Neurol 402:353–371CrossRefPubMedGoogle Scholar
  24. Levant B (1998) Differential distribution of D3 dopamine receptors in the brains of several mammalian species. Brain Res 800:269–274CrossRefPubMedGoogle Scholar
  25. Levant B, Bancroft GN, Selkirk CM (1996) In vivo occupancy of D2 dopamine receptors by 7-OH-DPAT. Synapse 24:60–64CrossRefPubMedGoogle Scholar
  26. Levesque D, Diaz J, Pilon C, Martres MP, Giros B, Souil E, Schott D, Morgat JL, Schwartz JC, Sokoloff P (1992) Identification, characterization, and localization of the dopamine D3 receptor in rat brain using 7-[3H]hydroxy-N, N-di-n-propyl-2-aminotetralin. Proc Natl Acad Sci U S A 89:8155–8159CrossRefPubMedGoogle Scholar
  27. Mandeville JB, Jenkins BG, Chen YC, Choi JK, Kim YR, Belen D, Liu C, Kosofsky BE, Marota JJ (2004) Exogenous contrast agent improves sensitivity of gradient-echo functional magnetic resonance imaging at 9.4T. Magn Reson Med 52:1272–1281CrossRefPubMedGoogle Scholar
  28. Marota JJ, Mandeville JB, Weisskoff RM, Moskowitz MA, Rosen BR, Kosofsky BE (2000) Cocaine activation discriminates dopaminergic projections by temporal response: an fMRI study in rat. Neuroimage 11:13–23CrossRefPubMedGoogle Scholar
  29. Meador-Woodruff (1994) Update on dopamine receptors. Ann Clin Psychiatry 6:79–90Google Scholar
  30. Neisewander JL, Fuchs RA, Tran-Nguyen LT, Weber SM, Coffey GP, Joyce JN (2004) Increases in dopamine D3 receptor binding in rats receiving a cocaine challenge at various time points after cocaine self-administration: implications for cocaine-seeking behavior. Neuropsychopharmacology 29:1479–1487CrossRefPubMedGoogle Scholar
  31. Newman AH, Grundt P, Nader MA (2005) Dopamine D3 receptor partial agonists and antagonists as potential drug abuse therapeutic agents. J Med Chem 48:3663–3679CrossRefPubMedGoogle Scholar
  32. Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic, New YorkGoogle Scholar
  33. Pritchard LM, Logue AD, Hayes S, Welge JA, Xu M, Zhang J, Berger SP, Richtand NM (2003) 7-OH-DPAT and PD 128907 selectively activate the D3 dopamine receptor in a novel environment. Neuropsychopharmacology 28:100–107CrossRefPubMedGoogle Scholar
  34. Rabiner EA, Slifstein M, Nobrega J, Plisson C, Huiban M, Raymond R, Diwan M, Wilson AA, McCormick P, Gentile G, Gunn RN, Laruelle MA (2009) In vivo quantification of regional dopamine-D3 receptor binding potential of (+)-PHNO: studies in non-human primates and transgenic mice. Synapse 63:782–793CrossRefPubMedGoogle Scholar
  35. Reavill C, Taylor SG, Wood MD, Ashmeade T, Austin NE, Avenell KY, Boyfield I, Branch CL, Cilia J, Coldwell MC, Hadley MS, Hunter AJ, Jeffrey P, Jewitt F, Johnson CN, Jones DN, Medhurst AD, Middlemiss DN, Nash DJ, Riley GJ, Routledge C, Stemp G, Thewlis KM, Trail B, Vong AK, Hagan JJ (2000) Pharmacological actions of a novel, high-affinity, and selective human dopamine D(3) receptor antagonist, SB-277011-A. J Pharmacol Exp Ther 294:1154–1165PubMedGoogle Scholar
  36. Richtand NM, Kelsoe JR, Segal DS, Kuczenski R (1995) Regional quantification of D1, D2, and D3 dopamine receptor mRNA in rat brain using a ribonuclease protection assay. Brain Res Mol Brain Res 33:97–103CrossRefPubMedGoogle Scholar
  37. Risinger RC, Salmeron BJ, Ross TJ, Amen SL, Sanfilipo M, Hoffmann RG, Bloom AS, Garavan H, Stein EA (2005) Neural correlates of high and craving during cocaine self-administration using BOLD fMRI. Neuroimage 26:1097–1108CrossRefPubMedGoogle Scholar
  38. Sanchez-Pernaute R, Jenkins BG, Choi JK, Iris Chen YC, Isacson O (2007) In vivo evidence of D3 dopamine receptor sensitization in parkinsonian primates and rodents with l-DOPA-induced dyskinesias. Neurobiol Dis 27:220–227CrossRefPubMedGoogle Scholar
  39. Schwartz JC, Diaz J, Bordet R, Griffon N, Perachon S, Pilon C, Ridray S, Sokoloff P (1998) Functional implications of multiple dopamine receptor subtypes: the D1/D3 receptor coexistence. Brain Res Brain Res Rev 26:236–242CrossRefPubMedGoogle Scholar
  40. Schwarz AJ, Gozzi A, Reese T, Heidbreder CA, Bifone A (2007) Pharmacological modulation of functional connectivity: the correlation structure underlying the phMRI response to d-amphetamine modified by selective dopamine D3 receptor antagonist SB277011A. Magn Reson Imaging 25:811–820CrossRefPubMedGoogle Scholar
  41. Shen T, Weissleder R, Papisov M, Bogdanov A Jr, Brady TJ (1993) Monocrystalline iron oxide nanocompounds (MION): physicochemical properties. Magn Reson Med 29:599–604CrossRefPubMedGoogle Scholar
  42. Sokoloff P, Giros B, Martres MP, Bouthenet ML, Schwartz JC (1990) Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347:146–151CrossRefPubMedGoogle Scholar
  43. Svensson K, Carlsson A, Waters N (1994) Locomotor inhibition by the D3 ligand R-(+)-7-OH-DPAT is independent of changes in dopamine release. J Neural Transm Gen Sect 95:71–74CrossRefPubMedGoogle Scholar
  44. Swanson LW (1981) A direct projection from Ammon’s horn to prefrontal cortex in the rat. Brain Res 217:150–154CrossRefPubMedGoogle Scholar
  45. Vorel SR, Ashby CR Jr, Paul M, Liu X, Hayes R, Hagan JJ, Middlemiss DN, Stemp G, Gardner EL (2002) Dopamine D3 receptor antagonism inhibits cocaine-seeking and cocaine-enhanced brain reward in rats. J Neurosci 22:9595–9603PubMedGoogle Scholar
  46. Zaharchuk G, Mandeville JB, Bogdanov AA Jr, Weissleder R, Rosen BR, Marota JJ (1999) Cerebrovascular dynamics of autoregulation and hypoperfusion. An MRI study of CBF and changes in total and microvascular cerebral blood volume during hemorrhagic hypotension. Stroke 30:2197–2204, discussion 2204-5PubMedGoogle Scholar
  47. Zhang Z, Andersen A, Grondin R, Barber T, Avison R, Gerhardt G, Gash D (2001) Pharmacological MRI mapping of age-associated changes in basal ganglia circuitry of awake rhesus monkeys. Neuroimage 14:1159–1167CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Ji-Kyung Choi
    • 1
  • Joseph B. Mandeville
    • 1
  • Y. Iris Chen
    • 1
  • Peter Grundt
    • 2
  • Susanta K. Sarkar
    • 3
  • Amy H. Newman
    • 2
  • Bruce G. Jenkins
    • 1
  1. 1.Athinoula A. Martinos Center for Biomedical Imaging, Department of RadiologyMassachusetts General Hospital and Harvard Medical SchoolCharlestownUSA
  2. 2.Medicinal Chemistry SectionNational Institute on Drug Abuse-Intramural Research Program, National Institutes of HealthBaltimoreUSA
  3. 3.Medicine Development, Oncology R&DGlaxoSmithKlineCollegevilleUSA

Personalised recommendations