Psychopharmacology

, Volume 210, Issue 3, pp 331–336

Norepinephrine transporter occupancy by antidepressant in human brain using positron emission tomography with (S,S)-[18F]FMeNER-D2

  • Mizuho Sekine
  • Ryosuke Arakawa
  • Hiroshi Ito
  • Masaki Okumura
  • Takeshi Sasaki
  • Hidehiko Takahashi
  • Harumasa Takano
  • Yoshiro Okubo
  • Christer Halldin
  • Tetsuya Suhara
Original Investigation

Abstract

Rationale

Central norepinephrine transporter (NET) is one of the main targets of antidepressants. Although the measurement of NET occupancy has been attempted in humans, the outcomes have been inconclusive.

Objective

In this study, the occupancy of NET by different doses of an antidepressant, nortriptyline, was measured using positron emission tomography (PET) with (S,S)-[18F]FMeNER-D2.

Materials and methods

PET scans using (S,S)-[18F]FMeNER-D2 were performed on six healthy men before and after oral administration of a single oral dose of nortriptyline (10–75 mg). After a bolus i.v. injection of (S,S)-[18F]FMeNER-D2, dynamic scanning was performed for 0–90 min, followed by scanning for 120–180 min. The ratio of the thalamus-to-caudate areas under the curve (120–180 min) minus 1 was used as the binding potential (BPND) for NET. NET occupancy was calculated as the percentage reduction of BPND. Venous blood samples were taken to measure the concentrations of nortriptyline just before injection of the tracer and at 180 min after the injection.

Results

Mean NET occupancies by nortriptyline were 16.4% at 10 mg, 33.2% at 25 mg, and 41.1% at 75 mg. The mean plasma concentration of nortriptyline was less than the lower limit of detection at 10 mg, 23.7 ng/mL at 25 mg, and 50.5 ng/mL at 75 mg. Estimated ED50 was 76.8 mg of administration dose and 59.8 ng/mL of plasma concentration.

Conclusions

NET occupancy by nortriptyline corresponding to the administration dose of 10–75 mg or plasma concentration was observed from 16% to 41%.

Keywords

Norepinephrine transporter (S,S)-[18F]FMeNER-D2 Positron emission tomography Occupancy Nortriptyline 

References

  1. Arakawa R, Okumura M, Ito H, Seki C, Takahashi H, Takano H, Nakao R, Suzuki K, Okubo Y, Halldin C, Suhara T (2008) Quantitative analysis of norepinephrine transporter in the human brain using PET with (S, S)-[18F]FMeNER-D2. J Nucl Med 49:1270–1276CrossRefPubMedGoogle Scholar
  2. Asberg M, Cronholm B, Sjoqvist F, Tuck D (1971) Relationship between plasma level and therapeutic effect of nortriptyline. Br Med J 3:331–334CrossRefPubMedGoogle Scholar
  3. Cunningham VJ, Rabiner EA, Slifstein M, Laruelle M, Gunn RK (2010) Measuring drug occupancy in the absence of a reference region: the Lassen plot re-visited. J Cereb Blood Flow Metab 30:46–50CrossRefPubMedGoogle Scholar
  4. De Wilde JE, Mertens C, Wakelin JS (1983) Clinical trials of fluvoxamine vs chlorimipramine with single and three times daily dosing. Br J Clin Pharmacol 15(Suppl 3):427S–431SPubMedGoogle Scholar
  5. Dick P, Ferrero E (1983) A double-blind comparative study of the clinical efficacy of fluvoxamine and chlorimipramine. Br J Clin Pharmacol 15(Suppl 3):419S–425SPubMedGoogle Scholar
  6. Donnan GA, Kaczmarczyk SJ, Paxinos G, Chilco PJ, Kalnins RM, Woodhouse DG, Mendelsohn FA (1991) Distribution of catecholamine uptake sites in human brain as determined by quantitative [3H] mazindol autoradiography. J Comp Neurol 304:419–434CrossRefPubMedGoogle Scholar
  7. Guelfi JD, Dreyfus JF, Pichot P (1987) Fluvoxamine and imipramine: results of a long-term controlled trial. Int Clin Psychopharmacol 2:103–109CrossRefPubMedGoogle Scholar
  8. Harmer CJ, Shelley NC, Cowen PJ, Goodwin GM (2004) Increased positive versus negative affective perception and memory in healthy volunteers following selective serotonin and norepinephrine reuptake inhibition. Am J Psychiatry 161:1256–1263CrossRefPubMedGoogle Scholar
  9. Ichise M, Liow JS, Lu JQ, Takano A, Model K, Toyama H, Suhara T, Suzuki K, Innis RB, Carson RE (2003) Linearized reference tissue parametric imaging methods: application to [11C]DASB positron emission tomography studies of the serotonin transporter in human brain. J Cereb Blood Flow Metab 23:1096–1112CrossRefPubMedGoogle Scholar
  10. Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, Holden J, Houle S, Huang SC, Ichise M, Iida H, Ito H, Kimura Y, Koeppe RA, Knudsen GM, Knuuti J, Lammertsma AA, Laruelle M, Logan J, Maguire RP, Mintun MA, Morris ED, Parsey R, Price JC, Slifstein M, Sossi V, Suhara T, Votaw JR, Wong DF, Carson RE (2007) Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 27:1533–1539CrossRefPubMedGoogle Scholar
  11. Ito H, Hietala J, Blomqvist G, Halldin C, Farde L (1998) Comparison of the transient equilibrium and continuous infusion method for quantitative PET analysis of [11C]raclopride binding. J Cereb Blood Flow Metab 18:941–950CrossRefPubMedGoogle Scholar
  12. Kampf-Sherf O, Zlotogorski Z, Gilboa A, Speedie L, Lereya J, Rosca P, Shavit Y (2004) Neuropsychological functioning in major depression and responsiveness to selective serotonin reuptake inhibitors antidepressants. J Affect Disord 82:453–459PubMedGoogle Scholar
  13. Kragh-Sorensen P, Hansen CE, Baastrup PC, Hvidberg EF (1976) Self-inhibiting action of nortriptylin's antidepressive effect at high plasma levels: a randomized double-blind study controlled by plasma concentrations in patients with endogenous depression. Psychopharmacologia 45:305–312CrossRefPubMedGoogle Scholar
  14. Lammertsma AA, Hume SP (1996) Simplified reference tissue model for PET receptor studies. Neuroimage 4:153–158CrossRefPubMedGoogle Scholar
  15. Logan J, Wang GJ, Telang F, Fowler JS, Alexoff D, Zabroski J, Jayne M, Hubbard B, King P, Carter P, Shea C, Xu Y, Muench L, Schlyer D, Learned-Coughlin S, Cosson V, Volkow ND, Ding YS (2007) Imaging the norepinephrine transporter in humans with (S, S)-[11C]O-methyl reboxetine and PET: problems and progress. Nucl Med Biol 34:667–679CrossRefPubMedGoogle Scholar
  16. Martin AJ, Tebbs VM, Ashford JJ (1987) Affective disorders in general practice. Treatment of 6000 patients with fluvoxamine. Pharmatherapeutica 5:40–49PubMedGoogle Scholar
  17. Meyer JH, Wilson AA, Ginovart N, Goulding V, Hussey D, Hood K, Houle S (2001) Occupancy of serotonin transporters by paroxetine and citalopram during treatment of depression: a [11C]DASB PET imaging study. Am J Psychiatry 158:1843–1849CrossRefPubMedGoogle Scholar
  18. Meyer JH, Wilson AA, Sagrati S, Hussey D, Carella A, Potter WZ, Ginovart N, Spencer EP, Cheok A, Houle S (2004) Serotonin transporter occupancy of five selective serotonin reuptake inhibitors at different doses: an [11C]DASB positron emission tomography study. Am J Psychiatry 161:826–835CrossRefPubMedGoogle Scholar
  19. Nordin C, Bertilsson L, Dahl ML, Resul B, Toresson G, Sjoqvist F (1991) Treatment of depression with E-10-hydroxynortriptyline—a pilot study on biochemical effects and pharmacokinetics. Psychopharmacology (Berl) 103:287–290CrossRefGoogle Scholar
  20. Nutt DJ (2006) The role of dopamine and norepinephrine in depression and antidepressant treatment. J Clin Psychiatry 67(Suppl 6):3–8PubMedGoogle Scholar
  21. Papakostas GI, Thase ME, Fava M, Nelson JC, Shelton RC (2007) Are antidepressant drugs that combine serotonergic and noradrenergic mechanisms of action more effective than the selective serotonin reuptake inhibitors in treating major depressive disorder? A meta-analysis of studies of newer agents. Biol Psychiatry 62:1217–1227CrossRefPubMedGoogle Scholar
  22. Sadock B, Sadock V (2007) Kaplan & Sadock's synopsis of psychiatry: behavioral sciences/clinical psychiatry. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  23. Schou M, Halldin C, Sovago J, Pike VW, Hall H, Gulyas B, Mozley PD, Dobson D, Shchukin E, Innis RB, Farde L (2004) PET evaluation of novel radiofluorinated reboxetine analogs as norepinephrine transporter probes in the monkey brain. Synapse 53:57–67CrossRefPubMedGoogle Scholar
  24. Schou M, Halldin C, Pike VW, Mozley PD, Dobson D, Innis RB, Farde L, Hall H (2005) Post-mortem human brain autoradiography of the norepinephrine transporter using (S, S)-[18F]FMeNER-D2. Eur Neuropsychopharmacol 15:517–520CrossRefPubMedGoogle Scholar
  25. Seneca N, Gulyas B, Varrone A, Schou M, Airaksinen A, Tauscher J, Vandenhende F, Kielbasa W, Farde L, Innis RB, Halldin C (2006) Atomoxetine occupies the norepinephrine transporter in a dose-dependent fashion: a PET study in nonhuman primate brain using (S, S)-[18F]FMeNER-D2. Psychopharmacology (Berl) 188:119–127CrossRefGoogle Scholar
  26. Southwick SM, Davis M, Horner B, Cahill L, Morgan CA 3rd, Gold PE, Bremner JD, Charney DC (2002) Relationship of enhanced norepinephrine activity during memory consolidation to enhanced long-term memory in humans. Am J Psychiatry 159:1420–1422CrossRefPubMedGoogle Scholar
  27. Stokes PE (1993) Fluoxetine: a five-year review. Clin Ther 15:216–243, discussion 215PubMedGoogle Scholar
  28. Strange BA, Hurlemann R, Dolan RJ (2003) An emotion-induced retrograde amnesia in humans is amygdala- and beta-adrenergic-dependent. Proc Natl Acad Sci U S A 100:13626–13631CrossRefPubMedGoogle Scholar
  29. Suhara T, Takano A, Sudo Y, Ichimiya T, Inoue M, Yasuno F, Ikoma Y, Okubo Y (2003) High levels of serotonin transporter occupancy with low-dose clomipramine in comparative occupancy study with fluvoxamine using positron emission tomography. Arch Gen Psychiatry 60:386–391CrossRefPubMedGoogle Scholar
  30. Takano A, Suzuki K, Kosaka J, Ota M, Nozaki S, Ikoma Y, Tanada S, Suhara T (2006) A dose-finding study of duloxetine based on serotonin transporter occupancy. Psychopharmacology (Berl) 185:395–399CrossRefGoogle Scholar
  31. Takano A, Gulyas B, Varrone A, Karlsson P, Schou M, Airaksinen AJ, Vandenhende F, Tauscher J, Halldin C (2008a) Imaging the norepinephrine transporter with positron emission tomography: initial human studies with (S, S)-[18F]FMeNER-D2. Eur J Nucl Med Mol Imaging 35:153–157CrossRefPubMedGoogle Scholar
  32. Takano A, Varrone A, Gulyas B, Karlsson P, Tauscher J, Halldin C (2008b) Mapping of the norepinephrine transporter in the human brain using PET with (S, S)-[18F]FMeNER-D2. Neuroimage 42:474–482CrossRefPubMedGoogle Scholar
  33. Takano A, Gulyas B, Varrone A, Maguire RP, Halldin C (2009) Saturated norepinephrine transporter occupancy by atomoxetine relevant to clinical doses: a rhesus monkey study with (S, S)-[18F]FMeNER-D2. Eur J Nucl Med Mol Imaging 36:1308–1314CrossRefPubMedGoogle Scholar
  34. Thase ME, Pritchett YL, Ossanna MJ, Swindle RW, Xu J, Detke MJ (2007) Efficacy of duloxetine and selective serotonin reuptake inhibitors: comparisons as assessed by remission rates in patients with major depressive disorder. J Clin Psychopharmacol 27:672–676CrossRefPubMedGoogle Scholar
  35. Vaishnavi SN, Nemeroff CB, Plott SJ, Rao SG, Kranzler J, Owens MJ (2004) Milnacipran: a comparative analysis of human monoamine uptake and transporter binding affinity. Biol Psychiatry 55:320–322CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Mizuho Sekine
    • 1
    • 2
  • Ryosuke Arakawa
    • 1
    • 2
  • Hiroshi Ito
    • 1
  • Masaki Okumura
    • 1
    • 2
  • Takeshi Sasaki
    • 1
  • Hidehiko Takahashi
    • 1
  • Harumasa Takano
    • 1
  • Yoshiro Okubo
    • 2
  • Christer Halldin
    • 3
  • Tetsuya Suhara
    • 1
  1. 1.Molecular Neuroimaging Group, Molecular Imaging CenterNational Institute of Radiological SciencesChibaJapan
  2. 2.Department of NeuropsychiatryNippon Medical SchoolTokyoJapan
  3. 3.Department of Clinical NeurosciencePsychiatry Section, Karolinska Institutet, Karolinska HospitalStockholmSweden

Personalised recommendations