, Volume 209, Issue 2, pp 191–202 | Cite as

Dopaminergic augmentation of delta-9-tetrahydrocannabinol (THC) discrimination: possible involvement of D2-induced formation of anandamide

  • Marcello SolinasEmail author
  • Gianluigi Tanda
  • Carrie E. Wertheim
  • Steven R. Goldberg
Original Investigation



Although delta-9-tetreahydrocannabinol (THC)-induced elevations in accumbal dopamine levels are believed to play an important role in the abuse-related effects of cannabis, little direct evidence has been provided that the dopaminergic system is involved in the psychotropic effects of THC.


The objective of this study is to investigate whether drugs activating or blocking the dopaminergic system modulate the discriminative effects of THC.

Methods and results

In rats that had learned to discriminate 3 mg/kg of THC from vehicle injections, the indirect dopaminergic agonists cocaine and amphetamine, the D1-receptor agonist SKF-38393, and the D2-receptor agonists quinpirole and apomorphine did not produce significant THC-like discriminative effects. However, both cocaine and amphetamine and D2-, but not the D1-, receptor agonists, augmented THC discrimination. Neither the D1-receptor antagonist SCH-23390 nor the D2-receptor antagonist raclopride reduced the discriminative effects of THC, even at doses that significantly depressed baseline operant responding. However, the D2-, but not the D1-, antagonist counteracted the augmentation of THC’s discriminative effects produced by cocaine and amphetamine. We hypothesized that release of anandamide by activation of D2 receptors was responsible for the observed augmentation of THC discrimination. This hypothesis was supported by two findings. First, the cannabinoid CB1-receptor antagonist rimonabant blocked quinpirole-induced augmentation of THC discrimination. Second, inhibition of anandamide degradation by blockade of fatty acid amide hydrolase augmented the THC-like effects of quinpirole.


Dopamine does not play a major role in THC discrimination. However, activation of the dopaminergic system positively modulates the discriminative effects of THC, possibly through D2-induced elevations in brain levels of anandamide.


Cannabis THC Endocannabinoid Dopamine Behavior Psychostimulants Rats 



This research was supported by the Centre National de la Recherche Scientifique (CNRS) and the University of Poitiers, France, and the Intramural Research Program of the National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD, USA.


  1. Aizman O, Brismar H, Uhlen P, Zettergren E, Levey AI, Forssberg H, Greengard P, Aperia A (2000) Anatomical and physiological evidence for D1 and D2 dopamine receptor colocalization in neostriatal neurons. Nat Neurosci 3:226–230CrossRefPubMedGoogle Scholar
  2. Aubert I, Ghorayeb I, Normand E, Bloch B (2000) Phenotypical characterization of the neurons expressing the D1 and D2 dopamine receptors in the monkey striatum. J Comp Neurol 418:22–32CrossRefPubMedGoogle Scholar
  3. Browne RG, Weissman A (1981) Discriminative stimulus properties of delta 9-tetrahydrocannabinol: mechanistic studies. J Clin Pharmacol 21:227S–234SPubMedGoogle Scholar
  4. Centonze D, Battista N, Rossi S, Mercuri NB, Finazzi-Agro A, Bernardi G, Calabresi P, Maccarrone M (2004) A critical interaction between dopamine D2 receptors and endocannabinoids mediates the effects of cocaine on striatal gabaergic transmission. Neuropsychopharmacology 29:1488–1497CrossRefPubMedGoogle Scholar
  5. Chen JP, Paredes W, Lowinson JH, Gardner EL (1991) Strain-specific facilitation of dopamine efflux by delta 9-tetrahydrocannabinol in the nucleus accumbens of rat: an in vivo microdialysis study. Neurosci Lett 129:136–180CrossRefPubMedGoogle Scholar
  6. Clapper JR, Mangieri RA, Piomelli D (2009) The endocannabinoid system as a target for the treatment of cannabis dependence. Neuropharmacology 56(Suppl 1):235–243CrossRefPubMedGoogle Scholar
  7. Costanza RM, Barber DJ, Terry P (2001) Antagonism of the discriminative stimulus effects of cocaine at two training doses by dopamine D2-like receptor antagonists. Psychopharmacology (Berl) 158:146–153CrossRefGoogle Scholar
  8. De Vries TJ, Shaham Y, Homberg JR, Crombag H, Schuurman K, Dieben J, Vanderschuren LJ, Schoffelmeer AN (2001) A cannabinoid mechanism in relapse to cocaine seeking. Nat Med 7:1151–1154CrossRefPubMedGoogle Scholar
  9. Diana M, Melis M, Gessa GL (1998) Increase in meso-prefrontal dopaminergic activity after stimulation of CB1 receptors by cannabinoids. Eur J NeuroSci 10:2825–2830CrossRefPubMedGoogle Scholar
  10. D’Souza DC, Braley G, Blaise R, Vendetti M, Oliver S, Pittman B, Ranganathan M, Bhakta S, Zimolo Z, Cooper T, Perry E (2008) Effects of haloperidol on the behavioral, subjective, cognitive, motor, and neuroendocrine effects of Delta-9-tetrahydrocannabinol in humans. Psychopharmacology (Berl) 198:587–603CrossRefGoogle Scholar
  11. Filip M, Przegalinski E (1997) The role of dopamine receptor subtypes in the discriminative stimulus effects of amphetamine and cocaine in rats. Pol J Pharmacol 49:21–30PubMedGoogle Scholar
  12. French ED (1997) delta9-Tetrahydrocannabinol excites rat VTA dopamine neurons through activation of cannabinoid CB1 but not opioid receptors. Neurosci Lett 226:159–162CrossRefPubMedGoogle Scholar
  13. French ED, Dillon K, Wu X (1997) Cannabinoids excite dopamine neurons in the ventral tegmentum and substantia nigra. NeuroReport 8:649–652CrossRefPubMedGoogle Scholar
  14. Gardner EL, Vorel SR (1998) Cannabinoid transmission and reward-related events. Neurobiol Dis 5:502–533CrossRefPubMedGoogle Scholar
  15. Giuffrida A, Parsons LH, Kerr TM, Rodriguez de Fonseca F, Navarro M, Piomelli D (1999) Dopamine activation of endogenous cannabinoid signaling in dorsal striatum. Nat Neurosci 2:358–363CrossRefPubMedGoogle Scholar
  16. Gobbi G, Bambico FR, Mangieri R, Bortolato M, Campolongo P, Solinas M, Cassano T, Morgese MG, Debonnel G, Duranti A, Tontini A, Tarzia G, Mor M, Trezza V, Goldberg SR, Cuomo V, Piomelli D (2005) Antidepressant-like activity and modulation of brain monoaminergic transmission by blockade of anandamide hydrolysis. Proc Natl Acad Sci USA 102:18620–18625CrossRefPubMedGoogle Scholar
  17. Jarbe TU, Li C, Liu Q, Makriyannis A (2009) Discriminative stimulus functions in rats of AM1346, a high-affinity CB1R selective anandamide analog. Psychopharmacology (Berl) 203:229–239CrossRefGoogle Scholar
  18. Justinova Z, Mangieri RA, Bortolato M, Chefer SI, Mukhin AG, Clapper JR, King AR, Redhi GH, Yasar S, Piomelli D, Goldberg SR (2008) Fatty acid amide hydrolase inhibition heightens anandamide signaling without producing reinforcing effects in primates. Biol Psychiatry 64:930–937CrossRefPubMedGoogle Scholar
  19. Kathuria S, Gaetani S, Fegley D, Valino F, Duranti A, Tontini A, Mor M, Tarzia G, La Rana G, Calignano A, Giustino A, Tattoli M, Palmery M, Cuomo V, Piomelli D (2003) Modulation of anxiety through blockade of anandamide hydrolysis. Nat Med 9:76–81CrossRefPubMedGoogle Scholar
  20. Kreitzer AC, Malenka RC (2007) Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson’s disease models. Nature 445:643–647CrossRefPubMedGoogle Scholar
  21. Lile JA, Kelly TH, Pinsky DJ, Hays LR (2009) Substitution profile of delta9-tetrahydrocannabinol, triazolam, hydromorphone, and methylphenidate in humans discriminating delta9-tetrahydrocannabinol. Psychopharmacology (Berl) 203:241–250CrossRefGoogle Scholar
  22. Marcellino D, Carriba P, Filip M, Borgkvist A, Frankowska M, Bellido I, Tanganelli S, Muller CE, Fisone G, Lluis C, Agnati LF, Franco R, Fuxe K (2008) Antagonistic cannabinoid CB1/dopamine D2 receptor interactions in striatal CB1/D2 heteromers. A combined neurochemical and behavioral analysis. Neuropharmacology 54:815–823CrossRefPubMedGoogle Scholar
  23. Scherma M, Panlilio LV, Fadda P, Fattore L, Gamaleddin I, Le Foll B, Justinova Z, Mikics E, Haller J, Medalie J, Stroik J, Barnes C, Yasar S, Tanda G, Piomelli D, Fratta W, Goldberg SR (2008) Inhibition of anandamide hydrolysis by cyclohexyl carbamic acid 3′-carbamoyl-3-yl ester (URB597) reverses abuse-related behavioral and neurochemical effects of nicotine in rats. J Pharmacol Exp Ther 327:482–490CrossRefPubMedGoogle Scholar
  24. Sealfon SC, Olanow CW (2000) Dopamine receptors: from structure to behavior. Trends Neurosci 23:S34–S40CrossRefPubMedGoogle Scholar
  25. Self DW (2004) Regulation of drug-taking and -seeking behaviors by neuroadaptations in the mesolimbic dopamine system. Neuropharmacology 47(Suppl 1):242–255CrossRefPubMedGoogle Scholar
  26. Solinas M, Goldberg SR (2005) Involvement of mu-, delta- and kappa-opioid receptor subtypes in the discriminative-stimulus effects of delta-9-tetrahydrocannabinol (THC) in rats. Psychopharmacology (Berl) 179:804–812CrossRefGoogle Scholar
  27. Solinas M, Panlilio LV, Antoniou K, Pappas LA, Goldberg SR (2003) The cannabinoid CB1 antagonist N-piperidinyl-5-(4-chlorophenyl)-1-(2, 4-dichlorophenyl) -4-methylpyrazole-3-carboxamide (SR-141716A) differentially alters the reinforcing effects of heroin under continuous reinforcement, fixed ratio, and progressive ratio schedules of drug self-administration in rats. J Pharmacol Exp Ther 306:93–102CrossRefPubMedGoogle Scholar
  28. Solinas M, Zangen A, Thiriet N, Goldberg SR (2004) Beta-endorphin elevations in the ventral tegmental area regulate the discriminative effects of delta-9-tetrahydrocannabinol. Eur J NeuroSci 19:3183–3192CrossRefPubMedGoogle Scholar
  29. Solinas M, Justinova Z, Goldberg SR, Tanda G (2006a) Anandamide administration alone and after inhibition of fatty acid amide hydrolase (FAAH) increases dopamine levels in the nucleus accumbens shell in rats. J Neurochem 98:408–419CrossRefPubMedGoogle Scholar
  30. Solinas M, Panlilio LV, Justinova Z, Yasar S, Goldberg SR (2006b) Using drug-discrimination techniques to study the abuse-related effects of psychoactive drugs in rats. Nat Protoc 1:1194–1206CrossRefPubMedGoogle Scholar
  31. Solinas M, Scherma M, Fattore L, Stroik J, Wertheim C, Tanda G, Fratta W, Goldberg SR (2007a) Nicotinic alpha 7 receptors as a new target for treatment of cannabis abuse. J Neurosci 27:5615–5620CrossRefPubMedGoogle Scholar
  32. Solinas M, Scherma M, Tanda G, Wertheim CE, Fratta W, Goldberg SR (2007b) Nicotinic facilitation of delta9-tetrahydrocannabinol discrimination involves endogenous anandamide. J Pharmacol Exp Ther 321:1127–1134CrossRefPubMedGoogle Scholar
  33. Solinas M, Tanda G, Justinova Z, Wertheim CE, Yasar S, Piomelli D, Vadivel SK, Makriyannis A, Goldberg SR (2007c) The endogenous cannabinoid anandamide produces delta-9-tetrahydrocannabinol-like discriminative and neurochemical effects that are enhanced by inhibition of fatty acid amide hydrolase but not by inhibition of anandamide transport. J Pharmacol Exp Ther 321:370–380CrossRefPubMedGoogle Scholar
  34. Solinas M, Yasar S, Goldberg SR (2007d) Endocannabinoid system involvement in brain reward processes related to drug abuse. Pharmacol Res 56:393–405CrossRefPubMedGoogle Scholar
  35. Solinas M, Goldberg SR, Piomelli D (2008) The endocannabinoid system in brain reward processes. Br J Pharmacol 154:369–383CrossRefPubMedGoogle Scholar
  36. Soria G, Mendizabal V, Tourino C, Robledo P, Ledent C, Parmentier M, Maldonado R, Valverde O (2005) Lack of CB1 cannabinoid receptor impairs cocaine self-administration. Neuropsychopharmacology 30:1670–1680CrossRefPubMedGoogle Scholar
  37. Steiner H, Gerfen CR (1998) Role of dynorphin and enkephalin in the regulation of striatal output pathways and behavior. Exp Brain Res 123:60–76CrossRefPubMedGoogle Scholar
  38. Tanda G, Goldberg SR (2003) Cannabinoids: reward, dependence, and underlying neurochemical mechanisms—a review of recent preclinical data. Psychopharmacology (Berl) 169:115–134CrossRefGoogle Scholar
  39. Tanda G, Pontieri FE, Di Chiara G (1997) Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common mu1 opioid receptor mechanism. Science 276:2048–2050CrossRefPubMedGoogle Scholar
  40. van der Stelt M, Di Marzo V (2003) The endocannabinoid system in the basal ganglia and in the mesolimbic reward system: implications for neurological and psychiatric disorders. Eur J Pharmacol 480:133–150CrossRefPubMedGoogle Scholar
  41. Vinklerova J, Novakova J, Sulcova A (2002) Inhibition of methamphetamine self-administration in rats by cannabinoid receptor antagonist AM 251. J Psychopharmacol 16:139–143CrossRefPubMedGoogle Scholar
  42. Wiley JL (1999) Cannabis: discrimination of “internal bliss”? Pharmacol Biochem Behav 64:257–260CrossRefPubMedGoogle Scholar
  43. Zangen A, Solinas M, Ikemoto S, Goldberg SR, Wise RA (2006) Two brain sites for cannabinoid reward. J Neurosci 26:4901–4907CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Marcello Solinas
    • 1
    Email author
  • Gianluigi Tanda
    • 2
  • Carrie E. Wertheim
    • 3
  • Steven R. Goldberg
    • 3
  1. 1.Laboratoire de Biologie et Physiologie Cellulaires, CNRS-6187University of PoitiersPoitiersFrance
  2. 2.Psychobiology Section, Medications Discovery Research Branch, Department of Health and Human ServicesNational Institute on Drug Abuse, Intramural Research Program, National Institutes of HealthBaltimoreUSA
  3. 3.Preclinical Pharmacology Section, Behavioral Neuroscience Branch, Department of Health and Human ServicesNational Institute on Drug Abuse, Intramural Research Program, National Institutes of HealthBaltimoreUSA

Personalised recommendations