Psychopharmacology

, Volume 209, Issue 2, pp 163–174 | Cite as

The serotonin 2C receptor potently modulates the head-twitch response in mice induced by a phenethylamine hallucinogen

  • Clinton E. Canal
  • Uade B. Olaghere da Silva
  • Paul J. Gresch
  • Erin E. Watt
  • Elaine Sanders-Bush
  • David C. Airey
Original Investigation

Abstract

Rationale

Hallucinogenic serotonin 2A (5-HT2A) receptor partial agonists, such as (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI), induce a frontal cortex-dependent head-twitch response (HTR) in rodents, a behavioral proxy of a hallucinogenic response that is blocked by 5-HT2A receptor antagonists. In addition to 5-HT2A receptors, DOI and most other serotonin-like hallucinogens have high affinity and potency as partial agonists at 5-HT2C receptors.

Objectives

We tested for involvement of 5-HT2C receptors in the HTR induced by DOI.

Results

Comparison of 5-HT2C receptor knockout and wild-type littermates revealed an approximately 50% reduction in DOI-induced HTR in knockout mice. Also, pretreatment with either the 5-HT2C receptor antagonist SB206553 or SB242084 eradicated a twofold difference in DOI-induced HTR between the standard inbred mouse strains C57BL/6J and DBA/2J, and decreased the DOI-induced HTR by at least 50% in both strains. None of several measures of 5-HT2A receptors in frontal cortex explained the strain difference, including 5-HT2A receptor density, Gαq or Gαi/o protein levels, phospholipase C activity, or DOI-induced expression of Egr1 and Egr2. 5-HT2C receptor density in the brains of C57BL/6J and DBA/2J was also equivalent, suggesting that 5-HT2C receptor-mediated intracellular signaling or other physiological modulators of the HTR may explain the strain difference in response to DOI.

Conclusions

We conclude that the HTR to DOI in mice is strongly modulated by 5-HT2C receptor activity. This novel finding invites reassessment of hallucinogenic mechanisms involving 5-HT2 receptors.

Keywords

Serotonin 2A receptor (5-HT2ASerotonin 2C receptor (5-HT2CHallucinogens Head-twitch response (HTR) Phospholipase C (PLC) Phospholipase A (PLA) 

References

  1. Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Int 11(7):36–42Google Scholar
  2. Beique JC, Imad M, Mladenovic L, Gingrich JA, Andrade R (2007) Mechanism of the 5-hydroxytryptamine 2A receptor-mediated facilitation of synaptic activity in prefrontal cortex. Proc Natl Acad Sci USA 104:9870–9875CrossRefPubMedGoogle Scholar
  3. Benedetti F, Barbini B, Bernasconi A, Fulgosi MC, Colombo C, Dallaspezia S, Gavinelli C, Marino E, Pirovano A, Radaelli D, Smeraldi E (2008) Serotonin 5-HT2A receptor gene variants influence antidepressant response to repeated total sleep deprivation in bipolar depression. Prog Neuropsychopharmacol Biol Psychiatry 32:1863–1866CrossRefPubMedGoogle Scholar
  4. Benneyworth MA, Smith RL, Barrett RJ, Sanders-Bush E (2005) Complex discriminative stimulus properties of (+)lysergic acid diethylamide (LSD) in C57Bl/6J mice. Psychopharmacology (Berl) 179:854–862CrossRefGoogle Scholar
  5. Berendsen HH, Broekkamp CL (1990) Behavioural evidence for functional interactions between 5-HT-receptor subtypes in rats and mice. Br J Pharmacol 101:667–673PubMedGoogle Scholar
  6. Berg KA, Clarke WP, Cunningham KA, Spampinato U (2008) Fine-tuning serotonin2c receptor function in the brain: molecular and functional implications. Neuropharmacology 55:969–976CrossRefPubMedGoogle Scholar
  7. Burns CM, Chu H, Rueter SM, Hutchinson LK, Canton H, Sanders-Bush E, Emeson RB (1997) Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature 387:303–308CrossRefPubMedGoogle Scholar
  8. Burris KD, Breeding M, Sanders-Bush E (1991) (+)Lysergic acid diethylamide, but not its nonhallucinogenic congeners, is a potent serotonin 5HT1C receptor agonist. J Pharmacol Exp Ther 258:891–896PubMedGoogle Scholar
  9. Cohen S (1953) The toxic psychoses and allied states. Am J Med 15:813–828CrossRefPubMedGoogle Scholar
  10. Cussac D, Newman-Tancredi A, Duqueyroix D, Pasteau V, Millan MJ (2002) Differential activation of Gq/11 and Gi(3) proteins at 5-hydroxytryptamine(2C) receptors revealed by antibody capture assays: influence of receptor reserve and relationship to agonist-directed trafficking. Mol Pharmacol 62:578–589CrossRefPubMedGoogle Scholar
  11. Cussac D, Boutet-Robinet E, Ailhaud MC, Newman-Tancredi A, Martel JC, Danty N, Rauly-Lestienne I (2008) Agonist-directed trafficking of signalling at serotonin 5-HT2A, 5-HT2B and 5-HT2C -VSV receptors mediated Gq/11 activation and calcium mobilisation in CHO cells. Eur J Pharmacol 594:32–38CrossRefPubMedGoogle Scholar
  12. Damjanoska KJ, Heidenreich BA, Kindel GH, D'Souza DN, Zhang Y, Garcia F, Battaglia G, Wolf WA, Van de Kar LD, Muma NA (2004) Agonist-induced serotonin 2A receptor desensitization in the rat frontal cortex and hypothalamus. J Pharmacol Exp Ther 309:1043–1050CrossRefPubMedGoogle Scholar
  13. De Deurwaerdere P, Navailles S, Berg KA, Clarke WP, Spampinato U (2004) Constitutive activity of the serotonin2C receptor inhibits in vivo dopamine release in the rat striatum and nucleus accumbens. J Neurosci 24:3235–3241CrossRefPubMedGoogle Scholar
  14. Dunlop J, Lock T, Jow B, Sitzia F, Grauer S, Jow F, Kramer A, Bowlby MR, Randall A, Kowal D, Gilbert A, Comery TA, Larocque J, Soloveva V, Brown J, Roncarati R (2009) Old and new pharmacology: positive allosteric modulation of the alpha7 nicotinic acetylcholine receptor by the 5-hydroxytryptamine(2B/C) receptor antagonist SB-206553 (3, 5-dihydro-5-methyl-N-3-pyridinylbenzo[1, 2-b:4, 5-b']di pyrrole-1(2H)-carboxamide). J Pharmacol Exp Ther 328:766–776CrossRefPubMedGoogle Scholar
  15. Fiorella D, Helsley S, Lorrain DS, Rabin RA, Winter JC (1995a) The role of the 5-HT2A and 5-HT2C receptors in the stimulus effects of hallucinogenic drugs. III: the mechanistic basis for supersensitivity to the LSD stimulus following serotonin depletion. Psychopharmacology (Berl) 121:364–372CrossRefGoogle Scholar
  16. Fiorella D, Rabin RA, Winter JC (1995b) Role of 5-HT2A and 5-HT2C receptors in the stimulus effects of hallucinogenic drugs. II: reassessment of LSD false positives. Psychopharmacology (Berl) 121:357–363CrossRefGoogle Scholar
  17. Fischer R, Georgi F, Weber R (1951) Psychophysical correlations. VIII. Experimental tests in schizophrenia: lysergic acid diethylamide and mescaline. Schweiz Med Wochenschr 81:817–819, contdPubMedGoogle Scholar
  18. Fitzgerald LW, Conklin DS, Krause CM, Marshall AP, Patterson JP, Tran DP, Iyer G, Kostich WA, Largent BL, Hartig PR (1999) High-affinity agonist binding correlates with efficacy (intrinsic activity) at the human serotonin 5-HT2A and 5-HT2C receptors: evidence favoring the ternary complex and two-state models of agonist action. J Neurochem 72:2127–2134CrossRefPubMedGoogle Scholar
  19. Fletcher PJ, Tampakeras M, Sinyard J, Slassi A, Isaac M, Higgins GA (2009) Characterizing the effects of 5-HT(2C) receptor ligands on motor activity and feeding behaviour in 5-HT(2C) receptor knockout mice. Neuropharmacology 57(3):259–267CrossRefPubMedGoogle Scholar
  20. Freedman DX (1986) “Hallucinogenic drug research--if so, who what?: Symposium summary and Commentary”. Pharmacol Biochem Behav 24:407–415CrossRefGoogle Scholar
  21. Freedman DX, Boggan WO (1982) Biochemical pharmacology of psychotomimetics. Springer-Verlag, BerlinGoogle Scholar
  22. Garcia EE, Smith RL, Sanders-Bush E (2007) Role of G(q) protein in behavioral effects of the hallucinogenic drug 1-(2, 5-dimethoxy-4-iodophenyl)-2-aminopropane. Neuropharmacology 52:1671–1677CrossRefPubMedGoogle Scholar
  23. Gobert A, Millan MJ (1999) Serotonin (5-HT)2A receptor activation enhances dialysate levels of dopamine and noradrenaline, but not 5-HT, in the frontal cortex of freely-moving rats. Neuropharmacology 38:315–317CrossRefPubMedGoogle Scholar
  24. Gobert A, Rivet JM, Lejeune F, Newman-Tancredi A, Adhumeau-Auclair A, Nicolas JP, Cistarelli L, Melon C, Millan MJ (2000) Serotonin(2C) receptors tonically suppress the activity of mesocortical dopaminergic and adrenergic, but not serotonergic, pathways: a combined dialysis and electrophysiological analysis in the rat. Synapse 36:205–221CrossRefPubMedGoogle Scholar
  25. Gonzalez-Measo J, Sealfon SC (2009) Agonist-trafficking and hallucinogens. Curr Med Chem 16(8):1017–1027CrossRefGoogle Scholar
  26. Gonzalez-Maeso J, Weisstaub NV, Zhou M, Chan P, Ivic L, Ang R, Lira A, Bradley-Moore M, Ge Y, Zhou Q, Sealfon SC, Gingrich JA (2007) Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior. Neuron 53:439–452CrossRefPubMedGoogle Scholar
  27. Halberstadt AL, van der Heijden I, Ruderman MA, Risbrough VB, Gingrich JA, Geyer MA, Powell SB (2009) 5-HT(2A) and 5-HT(2C) receptors exert opposing effects on locomotor activity in mice. Neuropsychopharmacology 34:1958–1967CrossRefPubMedGoogle Scholar
  28. Herrick-Davis K, Grinde E, Teitler M (2000) Inverse agonist activity of atypical antipsychotic drugs at human 5-hydroxytryptamine2C receptors. J Pharmacol Exp Ther 295:226–232PubMedGoogle Scholar
  29. Herrmann WM, Horowski R, Dannehl K, Kramer U, Lurati K (1977) Clinical effectiveness of lisuride hydrogen maleate: a double-blind trial versus methysergide. Headache 17:54–60CrossRefPubMedGoogle Scholar
  30. Hollister LE (1964) Chemical psychoses. Annu Rev Med 15:203–214CrossRefPubMedGoogle Scholar
  31. Jennings KA, Sheward WJ, Harmar AJ, Sharp T (2008) Evidence that genetic variation in 5-HT transporter expression is linked to changes in 5-HT2A receptor function. Neuropharmacology 54:776–783CrossRefPubMedGoogle Scholar
  32. Kang K, Huang XF, Wang Q, Deng C (2009) Decreased density of serotonin 2A receptors in the superior temporal gyrus in schizophrenia-a postmortem study. Prog Neuropsychopharmacol Biol Psychiatry 33:867–871CrossRefPubMedGoogle Scholar
  33. Kettle CJ, Cheetham SC, Martin KF, Prow MR, Heal DJ (1999) The effects of the peptide-coupling agent, EEDQ, on 5-HT2A receptor binding and function in rat frontal cortex. Neuropharmacology 38:1421–1430CrossRefPubMedGoogle Scholar
  34. Knight AR, Misra A, Quirk K, Benwell K, Revell D, Kennett G, Bickerdike M (2004) Pharmacological characterisation of the agonist radioligand binding site of 5-HT(2A), 5-HT(2B) and 5-HT(2C) receptors. Naunyn Schmiedebergs Arch Pharmacol 370:114–123CrossRefPubMedGoogle Scholar
  35. Krall CM, Richards JB, Rabin RA, Winter JC (2008) Marked decrease of LSD-induced stimulus control in serotonin transporter knockout mice. Pharmacol Biochem Behav 88:349–357CrossRefPubMedGoogle Scholar
  36. Leggio GM, Cathala A, Moison D, Cunningham KA, Piazza PV, Spampinato U (2009) Serotonin2C receptors in the medial prefrontal cortex facilitate cocaine-induced dopamine release in the rat nucleus accumbens. Neuropharmacology 56:507–513CrossRefPubMedGoogle Scholar
  37. Lopez-Gimenez JF, Mengod G, Palacios JM, Vilaro MT (1997) Selective visualization of rat brain 5-HT2A receptors by autoradiography with [3H]MDL 100, 907. Naunyn Schmiedebergs Arch Pharmacol 356:446–454CrossRefPubMedGoogle Scholar
  38. Lopez-Gimenez JF, Vilaro MT, Palacios JM, Mengod G (2001) Mapping of 5-HT2A receptors and their mRNA in monkey brain: [3H]MDL100, 907 autoradiography and in situ hybridization studies. J Comp Neurol 429:571–589CrossRefPubMedGoogle Scholar
  39. Lopez-Gimenez JF, Tecott LH, Palacios JM, Mengod G, Vilaro MT (2002) Serotonin 5- HT (2C) receptor knockout mice: autoradiographic analysis of multiple serotonin receptors. J Neurosci Res 67:69–85CrossRefPubMedGoogle Scholar
  40. Marek GJ, Aghajanian GK (1996) LSD and the phenethylamine hallucinogen DOI are potent partial agonists at 5-HT2A receptors on interneurons in rat piriform cortex. J Pharmacol Exp Ther 278:1373–1382PubMedGoogle Scholar
  41. Millan MJ (2005) Serotonin 5-HT2C receptors as a target for the treatment of depressive and anxious states: focus on novel therapeutic strategies. Therapie 60:441–460PubMedGoogle Scholar
  42. Millan MJ, Dekeyne A, Gobert A (1998) Serotonin (5-HT)2C receptors tonically inhibit dopamine (DA) and noradrenaline (NA), but not 5-HT, release in the frontal cortex in vivo. Neuropharmacology 37:953–955CrossRefPubMedGoogle Scholar
  43. Nichols DE (2004) Hallucinogens. Pharmacol Ther 101:131–181CrossRefPubMedGoogle Scholar
  44. Paxinos G, Watson KBJ (2004) The mouse brain in stereotaxic coordinates, 2nd edn. Elsevier Academic Press, Amsterdam, BostonGoogle Scholar
  45. Quednow BB, Schmechtig A, Ettinger U, Petrovsky N, Collier DA, Vollenweider FX, Wagner M, Kumari V (2009) Sensorimotor gating depends on polymorphisms of the serotonin-2A receptor and catechol-o-methyltransferase, but not on neuregulin-1 Arg38Gln genotype: a replication study. Biol Psychiatry 66(6):614–620CrossRefPubMedGoogle Scholar
  46. Roth BL, Ciaranello RD, Meltzer HY (1992) Binding of typical and atypical antipsychotic agents to transiently expressed 5-HT1C receptors. J Pharmacol Exp Ther 260:1361–1365PubMedGoogle Scholar
  47. Sanders-Bush E, Breeding M (1991) Choroid plexus epithelial cells in primary culture: a model of 5HT1C receptor activation by hallucinogenic drugs. Psychopharmacology (Berl) 105:340–346CrossRefGoogle Scholar
  48. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108CrossRefPubMedGoogle Scholar
  49. Schreiber R, Brocco M, Millan MJ (1994) Lockade of the discriminative stimulus effects of DOI by MDL 100,907 and the ‘atypical’ antipsychotics, clozapine and risperidone. Eur J Pharmacol 264:99–102CrossRefPubMedGoogle Scholar
  50. Smith RL, Barrett RJ, Sanders-Bush E (2003) Discriminative stimulus properties of 1-(2, 5-dimethoxy-4-iodophenyl)-2-aminopropane [(+/−)DOI] in C57BL/6J mice. Psychopharmacology (Berl) 166:61–68Google Scholar
  51. Tecott LH, Sun LM, Akana SF, Strack AM, Lowenstein DH, Dallman MF, Julius D (1995) Eating disorder and epilepsy in mice lacking 5-HT2C serotonin receptors. Nature 374:542–546CrossRefPubMedGoogle Scholar
  52. Vickers SP, Easton N, Malcolm CS, Allen NH, Porter RH, Bickerdike MJ, Kennett GA (2001) Modulation of 5-HT(2A) receptor-mediated head-twitch behaviour in the rat by 5-HT(2C) receptor agonists. Pharmacol Biochem Behav 69:643–652CrossRefPubMedGoogle Scholar
  53. Vollenweider FX, Leenders KL, Scharfetter C, Maguire P, Stadelmann O, Angst J (1997) Positron emission tomography and fluorodeoxyglucose studies of metabolic hyperfrontality and psychopathology in the psilocybin model of psychosis. Neuropsychopharmacology 16:357–372CrossRefPubMedGoogle Scholar
  54. Vollenweider FX, Vollenweider-Scherpenhuyzen MF, Babler A, Vogel H, Hell D (1998) Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action. NeuroReport 9:3897–3902CrossRefPubMedGoogle Scholar
  55. Weisstaub NV, Zhou M, Lira A, Lambe E, Gonzalez-Maeso J, Hornung JP, Sibille E, Underwood M, Itohara S, Dauer WT, Ansorge MS, Morelli E, Mann JJ, Toth M, Aghajanian G, Sealfon SC, Hen R, Gingrich JA (2006) Cortical 5-HT2A receptor signaling modulates anxiety-like behaviors in mice. Science 313:536–540CrossRefPubMedGoogle Scholar
  56. Willins DL, Meltzer HY (1997) Direct injection of 5-HT2A receptor agonists into the medial prefrontal cortex produces a head-twitch response in rats. J Pharmacol Exp Ther 282:699–706PubMedGoogle Scholar
  57. Winter JC (2009) Hallucinogens as discriminative stimuli in animals: LSD, phenethylamines, and tryptamines. Psychopharmacology (Berl) 203:251–263CrossRefGoogle Scholar
  58. Wolf WA, Schutz LJ (1997) The serotonin 5-HT2C receptor is a prominent serotonin receptor in basal ganglia: evidence from functional studies on serotonin-mediated phosphoinositide hydrolysis. J Neurochem 69:1449–1458PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Clinton E. Canal
    • 1
    • 2
  • Uade B. Olaghere da Silva
    • 1
  • Paul J. Gresch
    • 1
  • Erin E. Watt
    • 1
  • Elaine Sanders-Bush
    • 1
  • David C. Airey
    • 1
  1. 1.Department of PharmacologyVanderbilt University School of MedicineNashvilleUSA
  2. 2.Department of Medicinal ChemistryUniversity of Florida College of PharmacyGainesvilleUSA

Personalised recommendations