Psychopharmacology

, 208:233 | Cite as

Acute dopamine and/or serotonin depletion does not modulate mismatch negativity (MMN) in healthy human participants

  • Sumie Leung
  • Rodney J. Croft
  • Valérie Guille
  • Kirsty Scholes
  • Barry V. O’Neill
  • K. Luan Phan
  • Pradeep J. Nathan
Original Investigation

Abstract

Rationale

Schizophrenia is commonly associated with impairments in pre-attentive change detection, as represented by reduced mismatch negativity (MMN). While the neurochemical basis of MMN has been linked to N-methyl-d-aspartic acid (NMDA) receptor function, the roles of the dopaminergic and/or the serotonergic systems are not fully explored in humans.

Objectives

The aim of the present study was to investigate the effects of acutely depleting dopamine (DA) and serotonin (5-hydroxytryptamine, 5-HT) alone or simultaneously by depleting their amino acid precursors on MMN in healthy participants.

Methods

Sixteen healthy male subjects participated in a double-blind, placebo-controlled, cross-over design in which each subject’s duration MMN was assessed under four acute treatment conditions separated by a 5-day washout period: balanced amino acid control (no depletion), tyrosine/phenylalanine depletion (to reduce DA neurotransmission), tryptophan depletion (to reduce 5-HT neurotransmission) and tryptophan/tyrosine/phenylalanine depletion (to reduce DA and 5-HT neurotransmission simultaneously).

Results

Acute depletion of either DA and 5-HT alone or simultaneously had no effect on MMN.

Conclusions

These findings suggest that modulation of the dopaminergic and serotonergic systems acutely does not lead to changes in MMN.

Keywords

Mismatch negativity MMN Dopamine Serotonin Schizophrenia Cognition Tryptophan depletion Tyrosine depletion Monoamine Change detection 

References

  1. Abi-Dargham A, Laruelle M, Aghajanian GK, Charney D, Krystal J (1997) The role of serotonin in the pathophysiology and treatment of schizophrenia. J Neuropsychiatry Clin Neurosci 9:1–17PubMedGoogle Scholar
  2. Baldeweg T, Klugman A, Gruzelier J, Hirsch SR (2004) Mismatch negativity potentials and cognitive impairment in schizophrenia. Schizophr Res 69:203–217CrossRefPubMedGoogle Scholar
  3. Benkelfat C, Ellenbogen MA, Dean P, Palmour RM, Young SN (1994) Mood-lowering effect of tryptophan depletion. Enhanced susceptibility in young men at genetic risk for major affective disorders. Arch Gen Psychiatry 51:687–697PubMedGoogle Scholar
  4. Bramon E, Croft RJ, McDonald C, Virdi GK, Gruzelier JG, Baldeweg T, Sham PC, Frangou S, Murray RM (2004) Mismatch negativity in schizophrenia: a family study. Schizophr Res 67:1–10CrossRefPubMedGoogle Scholar
  5. Breier A (1995) Serotonin, schizophrenia and antipsychotic drug action. Schizophr Res 14:187–202CrossRefPubMedGoogle Scholar
  6. Carpenter LL, Anderson GM, Pelton GH, Gudin JA, Kirwin PD, Price LH, Heninger GR, McDougle CJ (1998) Tryptophan depletion during continuous CSF sampling in healthy human subjects. Neuropsychopharmacology 19:26–35CrossRefPubMedGoogle Scholar
  7. Catts SV, Shelley AM, Ward PB, Lieber B, McConaghy N, Andrews S, Michie PT (1995) Brain potential evidence for an auditory sensory memory deficit in schizophrenia. Am J Psychiatry 152:213–219PubMedGoogle Scholar
  8. Checkley SA (1980) Neuroendocrine tests of monoamine function in man: a review of basic theory and its application to the study of depressive illness. Psychol Med 10:35–53CrossRefPubMedGoogle Scholar
  9. Davis KL, Kahn RS, Ko G, Davidson M (1991) Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry 148:1474–1486PubMedGoogle Scholar
  10. Di Matteo V, Di Giovanni G, Pierucci M, Esposito E (2008) Serotonin control of central dopaminergic function: focus on in vivo microdialysis studies. Prog Brain Res 172:7–44CrossRefPubMedGoogle Scholar
  11. Esposito E, Di Matteo V, Di Giovanni G (2008) Serotonin–dopamine interaction: an overview. Prog Brain Res 172:3–6CrossRefPubMedGoogle Scholar
  12. Giard MH, Lavikainen J, Reinikainen K, Perrin F, Bertrand O, Pernier J, Näätänen R (1995) Separate representation of stimulus frequency, intensity and duration in auditory sensory memory: an event-related potential and dipole-model analysis. J Cogn Neurosci 7:133–143CrossRefGoogle Scholar
  13. Grace AA (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41:1–24CrossRefPubMedGoogle Scholar
  14. Guiard BP, El Mansari M, Merali Z, Blier P (2008) Functional interactions between dopamine, serotonin and norepinephrine neurons: an in-vivo electrophysiological study in rats with monoaminergic lesions. Int J Neuropsychopharmacol 11(5):625–639CrossRefPubMedGoogle Scholar
  15. Harmer CJ, McTavish SF, Clark L, Goodwin GM, Cowen PJ (2001) Tyrosine depletion attenuates dopamine function in healthy volunteers. Psychopharmacology (Berl) 154:105–111CrossRefGoogle Scholar
  16. Harrison BJ, Olver JS, Norman TR, Burrows GD, Wesnes KA, Nathan PJ (2004) Selective effects of acute serotonin and catecholamine depletion on memory in healthy women. J Psychopharmacol 18:32–40CrossRefPubMedGoogle Scholar
  17. Hughes JM, Matrenza C, Kemp AH, Harrison BJ, Liley D, Nathan PJ (2004) Selective effects of simultaneous monoamine depletion on mood and emotional responsiveness. Int J Neuropsychopharmacol 7:9–17CrossRefPubMedGoogle Scholar
  18. Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148(10):1301–1308PubMedGoogle Scholar
  19. Javitt DC, Doneshka P, Zylberman I, Ritter W, Vaughan HG Jr (1993) Impairment of early cortical processing in schizophrenia: an event-related potential confirmation study. Biol Psychiatry 33:513–519CrossRefPubMedGoogle Scholar
  20. Javitt DC, Steinschneider M, Schroeder CE, Arezzo JC (1996) Role of cortical N-methyl-D-aspartate receptors in auditory sensory memory and mismatch negativity generation: implications for schizophrenia. Proc Natl Acad Sci USA 93:11962–11967CrossRefPubMedGoogle Scholar
  21. Kähkönen S, Ahveninen J, Jaaskelainen IP, Kaakkola S, Naatanen R, Huttunen J, Pekkonen E (2001) Effects of haloperidol on selective attention: a combined whole-head MEG and high-resolution EEG study. Neuropsychopharmacology 25:498–504CrossRefPubMedGoogle Scholar
  22. Kähkönen S, Ahveninen J, Pekkonen E, Kaakkola S, Huttunen J, Ilmoniemi RJ, Jääskeläinen IP (2002) Dopamine modulates involuntary attention shifting and reorienting: an electromagnetic study. Clin Neurophysiol 113:1894–1902CrossRefPubMedGoogle Scholar
  23. Kähkönen S, Makinen V, Jaaskelainen IP, Pennanen S, Liesivuori J, Ahveninen J (2005) Serotonergic modulation of mismatch negativity. Psychiatry Res 138:61–74CrossRefPubMedGoogle Scholar
  24. Kapur S, Remington G (1996) Serotonin-dopamine interaction and its relevance to schizophrenia. Am J Psychiatry 153:466–476PubMedGoogle Scholar
  25. Kapur S, Seeman P (2002) NMDA receptor antagonists ketamine and PCP have direct effects on the dopamine D(2) and serotonin 5-HT(2)receptors—implications for models of schizophrenia. Mol Psychiatry 7:837–844CrossRefPubMedGoogle Scholar
  26. Knott VJ, Howson AL, Perugini M, Ravindran AV, Young SN (1999) The effect of acute tryptophan depletion and fenfluramine on quantitative EEG and mood in healthy male subjects. Biol Psychiatry 46:229–238CrossRefPubMedGoogle Scholar
  27. Korostenskaja M, Nikulin VV, Kicic D, Nikulina AV, Kahkonen S (2007) Effects of NMDA receptor antagonist memantine on mismatch negativity. Brain Res Bull 72:275–283CrossRefPubMedGoogle Scholar
  28. Korostenskaja M, Kicić D, Kähkönen S (2008) The effect of methylphenidate on auditory information processing in healthy volunteers: a combined EEG/MEG study. Psychopharmacology (Berl) 197:475–486CrossRefGoogle Scholar
  29. Kreitschmann-Andermahr I, Rosburg T, Demme U, Gaser E, Nowak H, Sauer H (2001) Effect of ketamine on the neuromagnetic mismatch field in healthy humans. Brain Res Cogn Brain Res 12:109–116CrossRefPubMedGoogle Scholar
  30. Leung S, Croft RJ, Baldeweg T, Nathan PJ (2007) Acute dopamine D(1) and D(2) receptor stimulation does not modulate mismatch negativity (MMN) in healthy human subjects. Psychopharmacology (Berl) 194:443–451CrossRefGoogle Scholar
  31. Leung S, Croft RJ, O’Neill BV, Nathan PJ (2008) Acute high-dose glycine attenuates mismatch negativity (MMN) in healthy human controls. Psychopharmacology (Berl) 196:451–460CrossRefGoogle Scholar
  32. Leyton M, Pun VK, Benkelfat C, Young SN (2003) A new method for rapidly and simultaneously decreasing serotonin and catecholamine synthesis in humans. J Psychiatry Neurosci 28:464–467PubMedGoogle Scholar
  33. Leyton M, Dagher A, Boileau I, Casey K, Baker GB, Diksic M, Gunn R, Young SN, Benkelfat C (2004) Decreasing amphetamine-induced dopamine release by acute phenylalanine/tyrosine depletion: a PET/[11C]raclopride study in healthy men. Neuropsychopharmacology 29:427–432PubMedGoogle Scholar
  34. Light GA, Braff DL (2005a) Mismatch negativity deficits are associated with poor functioning in schizophrenia patients. Arch Gen Psychiatry 62:127–136CrossRefGoogle Scholar
  35. Light GA, Braff DL (2005b) Stability of mismatch negativity deficits and their relationship to functional impairments in chronic schizophrenia. Am J Psychiatry 162:1741–1743CrossRefGoogle Scholar
  36. Mann C, Croft RJ, Scholes KE, Dunne A, O’Neill BV, Leung S, Copolov D, Phan KL, Nathan PJ (2008) Differential effects of acute serotonin and dopamine depletion on prepulse inhibition and p50 suppression measures of sensorimotor and sensory gating in humans. Neuropsychopharmacology 33:1653–1666CrossRefPubMedGoogle Scholar
  37. Matrenza C, Hughes JM, Kemp AH, Wesnes KA, Harrison BJ, Nathan PJ (2004) Simultaneous depletion of serotonin and catecholamines impairs sustained attention in healthy female subjects without affecting learning and memory. J Psychopharmacol 18:21–31CrossRefPubMedGoogle Scholar
  38. McTavish SF, Callado L, Cowen PJ, Sharp T (1999a) Comparison of the effects of alpha-methyl-p-tyrosine and a tyrosine-free amino acid load on extracellular noradrenaline in the rat hippocampus in vivo. J Psychopharmacol 13:379–384CrossRefGoogle Scholar
  39. McTavish SF, Cowen PJ, Sharp T (1999b) Effect of a tyrosine-free amino acid mixture on regional brain catecholamine synthesis and release. Psychopharmacology (Berl) 141:182–188CrossRefGoogle Scholar
  40. McTavish SF, McPherson MH, Harmer CH, Clark L, Sharp T, Goodwin GM, Cowen PJ (2001a) Antidopaminergic effects of dietary tyrosine depletion in healthy subjects and patients with manic illness. Br J Psychiatry 179:356–360CrossRefGoogle Scholar
  41. McTavish SF, Raumann B, Cowen PJ, Sharp T (2001b) Tyrosine depletion attenuates the behavioural stimulant effects of amphetamine and cocaine in rats. Eur J Pharmacol 424:115–119CrossRefGoogle Scholar
  42. Mehta MA, Gumaste D, Montgomery AJ, McTavish SF, Grasby PM (2005) The effects of acute tyrosine and phenylalanine depletion on spatial working memory and planning in healthy volunteers are predicted by changes in striatal dopamine levels. Psychopharmacology (Berl) 180:654–663CrossRefGoogle Scholar
  43. Michie PT, Budd TW, Todd J, Rock D, Wichmann H, Box J, Jablensky AV (2000) Duration and frequency mismatch negativity in schizophrenia. Clin Neurophysiol 111:1054–1065CrossRefPubMedGoogle Scholar
  44. Moja E, Stoff D, Gessa G, Castoldi D, Assereto R, Tofanetti O (1988) Decrease in plasma tryptophan after tryptophan-free amino acid mixtures in man. Life Sci 42(16):1551–1556CrossRefPubMedGoogle Scholar
  45. Montgomery AJ, McTavish SF, Cowen PJ, Grasby PM (2003) Reduction of brain dopamine concentration with dietary tyrosine plus phenylalanine depletion: an [11C]raclopride PET study. Am J Psychiatry 160:1887–1889CrossRefPubMedGoogle Scholar
  46. Näätänen R (1992) Attention and brain function. Lawrence Erlbaum Associates, HillsdaleGoogle Scholar
  47. Näätänen R (2000) Mismatch negativity (MMN): perspectives for application. Int J Psychophysiol 37:3–10CrossRefPubMedGoogle Scholar
  48. Näätänen R, Michie PT (1979) Early selective-attention effects on the evoked potential: a critical review and reinterpretation. Biol Psychol 8:81–136CrossRefPubMedGoogle Scholar
  49. Näätänen R, Winkler I (1999) The concept of auditory stimulus representation in cognitive neuroscience. Psychol Bull 125:826–859CrossRefPubMedGoogle Scholar
  50. Nathan PJ, Hughes JM, McInerney B, Harrison BJ (2004) Simultaneous depletion of tryptophan, tyrosine and phenylalanine as an experimental method to probe brain monoamine function in humans. Int J Neuropsychopharmacol 7:171–176CrossRefPubMedGoogle Scholar
  51. Neuhaus AH, Goldberg TE, Hassoun Y, Bates JA, Nassauer KW, Sevy S, Opgen-Rhein C, Malhotra AK (2009) Acute dopamine depletion with branched chain amino acids decreases auditory top-down event-related potentials in healthy subjects. Schizophr Res 111(1–3):167–173CrossRefPubMedGoogle Scholar
  52. Nishizawa S, Benkelfat C, Young SN, Leyton M, Mzengeza S, De Montigny C, Blier P, Diksic M (1997) Differences between males and females in rates of serotonin synthesis in human brain. Proc Natl Acad Sci USA 94:5308–5313CrossRefPubMedGoogle Scholar
  53. O’Neill BV, Guille V, Croft RJ, Leung S, Scholes KE, Phan K, Nathan PJ (2008) Effects of selective and combined serotonin and dopamine depletion on the loudness dependence of the auditory evoked potential (LDAEP) in humans. Hum Psychopharmacol 23:301–312CrossRefPubMedGoogle Scholar
  54. Oranje B, van Bercekl BNM, Kemner C, van Ree JM, Kahn RS, Verbaten MN (2000) The effects of a sub-anaesthetic dose of ketamine on human selective attention. Neuropsychopharmacology 22:293–302CrossRefPubMedGoogle Scholar
  55. Oranje B, Jensen K, Wienberg M, Glenthoj BY (2008) Divergent effects of increased serotonergic activity on psychophysiological parameters of human attention. Int J Neuropsychopharmacol 11:453–463CrossRefPubMedGoogle Scholar
  56. Pang EW, Fowler B (1999) Dissociation of the mismatch negativity and processing negativity attentional waveforms with nitrous oxide. Psychophysiology 36:552–558CrossRefPubMedGoogle Scholar
  57. Pekkonen E, Hirvonen J, Ahveninen J, Kähkönen S, Kaakkola S, Huttunen J, Jääskeläinen IP (2002) Memory-based comparison process not attenuated by Haloperidol: a combined MEG and EEG study. NeuroReport 13:177–181CrossRefGoogle Scholar
  58. Rinne T, Alho K, Ilmoniemi RJ, Virtanen J, Näätänen R (2000) Separate time behaviors of the temporal and frontal mismatch negativity sources. Neuroimage 12:14–19CrossRefPubMedGoogle Scholar
  59. Roccatagliata G, Albano C, Cocito L, Maffini M (1979) Interactions between central monoaminergic systems: dopamine–serotonin. J Neurol Neurosurg Psychiatry 42:1159–1162CrossRefPubMedGoogle Scholar
  60. Sambeth A, Blokland A, Harmer CJ, Kilkens TO, Nathan PJ, Porter RJ, Schmitt JA, Scholtissen B, Sobcza S, Young AH, Riedel WJ (2007) Sex differences in the effect of acute tryptophan depletion on declarative episodic memory: a pooled analysis of nine studies. Neurosci Biobehavl Rev 31:516–529CrossRefGoogle Scholar
  61. Schirmer A, Escoffier N, Li QY, Li H, Strafford-Wilson J, Wi L (2008) What grabs his attention but not hers? Estrogen correlates with neurophysiological measures of vocal change detection. Psychoneuroendocrinology. 33(6):718–727CrossRefPubMedGoogle Scholar
  62. Scholes KE, Harrison BJ, O’Neill BV, Leung S, Croft RJ, Pipingas A, Phan KL, Nathan PJ (2007) Acute serotonin and dopamine depletion improves attentional control: findings from the stroop task. Neuropsychopharmacology 32:1600–1610CrossRefPubMedGoogle Scholar
  63. Shelley AM, Ward PB, Catt SV, Michie PT, Andrews S, McConaghy N (1991) Mismatch negativity: an index of a preattentive processing deficit in schizophrenia. Biol Psychiatry 30:1059–1062CrossRefPubMedGoogle Scholar
  64. Sinkkonen J, Tervaniemi M (2000) Towards optimal recording and analysis of the mismatch negativity. Audiol Neurootol 5:235–246CrossRefPubMedGoogle Scholar
  65. Spitzer RL, Williams JB, Kroenke K, Linzer M, deGruy FV 3rd, Hahn SR, Brody D, Johnson JG (1994) Utility of a new procedure for diagnosing mental disorders in primary care. The PRIME-MD 1000 study. JAMA 272:1749–1756CrossRefPubMedGoogle Scholar
  66. Tabachnick BG, Fidell LS (2001) Using multivariate statistics. Allyn and Bacon, BostonGoogle Scholar
  67. Tsai G, Coyle JT (2002) Glutamatergic mechanisms in schizophrenia. Annu Rev Pharmacol Toxicol 42:165–179CrossRefPubMedGoogle Scholar
  68. Umbricht D, Krljes S (2005) Mismatch negativity in schizophrenia: a meta-analysis. Schizophr Res 76:1–23CrossRefPubMedGoogle Scholar
  69. Umbricht D, Javitt D, Novak G, Bates J, Pollack S, Lieberman J, Kane J (1998) Effects of clozapine on auditory event-related potentials in schizophrenia. Biol Psychiatry 44:716–725CrossRefPubMedGoogle Scholar
  70. Umbricht D, Javitt D, Novak G, Bates J, Pollack S, Lieberman J, Kane J (1999) Effects of risperidone on auditory event-related potentials in schizophrenia. Int J Neuropsychopharmacol 2:299–304CrossRefPubMedGoogle Scholar
  71. Umbricht D, Schmid L, Koller R, Vollenweider FX, Hell D, Javitt DC (2000) Ketamine-induced deficits in auditory and visual context-dependent processing in healthy volunteers: implications for models of cognitive deficits in schizophrenia. Arch Gen Psychiatry 57:1139–1147CrossRefPubMedGoogle Scholar
  72. Umbricht D, Koller R, Vollenweider FX, Schmid L (2002) Mismatch negativity predicts psychotic experiences induced by NMDA receptor antagonist in healthy volunteers. Biol Psychiatry 51:400–406CrossRefPubMedGoogle Scholar
  73. Umbricht D, Vollenweider FX, Schmid L, Grübel C, Skrabo A, Huber T, Koller R (2003) Effects of the 5-HT2A agonist psilocybin on mismatch negativity generation and AX-continuous performance task: implications for the neuropharmacology of cognitive deficits in schizophrenia. Neuropsychopharmacology 28:170–181CrossRefPubMedGoogle Scholar
  74. Wienberg M, Glenthoj B, Jensen K, Oranje B (2009) A single high dose of escitalopram increases mismatch negativity without affecting processing negativity or P300 amplitude in healthy volunteers. J Psychopharmacol. doi:10.1177/0269881109102606
  75. Williams WA, Shoaf SE, Hommer D, Rawlings R, Linnoila M (1999) Effects of acute tryptophan depletion on plasma and cerebrospinal fluid tryptophan and 5-hydroxyindoleacetic acid in normal volunteers. J Neurochem 72:1641–1647CrossRefPubMedGoogle Scholar
  76. Winkler I (2007) Interpreting the mismatch negativity. J Psychophys 21:147–163CrossRefGoogle Scholar
  77. Winterer G (2006) Cortical microcircuits in schizophrenia—the dopamine hypothesis revisited. Pharmacopsychiatry 39(Suppl 1):S68–S71CrossRefPubMedGoogle Scholar
  78. Winterer G, Weinberger DR (2004) Genes, dopamine and cortical signal-to-noise ratio in schizophrenia. Trends Neurosci 27:683–690CrossRefPubMedGoogle Scholar
  79. Young SN, Smith SE, Pihl RO, Ervin FR (1985) Tryptophan depletion causes a rapid lowering of mood in normal males. Psychopharmacology (Berl) 87:173–177CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Sumie Leung
    • 1
  • Rodney J. Croft
    • 1
    • 2
  • Valérie Guille
    • 1
  • Kirsty Scholes
    • 1
  • Barry V. O’Neill
    • 1
  • K. Luan Phan
    • 3
  • Pradeep J. Nathan
    • 4
    • 5
    • 6
  1. 1.Brain Sciences Institute, Faculty of Life and Social SciencesSwinburne University of TechnologyMelbourneAustralia
  2. 2.Department of Psychology, Faculty of Health and Behavioural SciencesUniversity of WollongongWollongongAustralia
  3. 3.Department of PsychiatryUniversity of MichiganAnn ArborUSA
  4. 4.Brain Mapping Unit, Department of PsychiatryUniversity of CambridgeCambridgeUK
  5. 5.School of Psychology, Psychiatry and Psychological MedicineMonash UniversityClaytonAustralia
  6. 6.Clinical Unit CambridgeGlaxoSmithKlineLondonUK

Personalised recommendations