Psychopharmacology

, Volume 206, Issue 3, pp 345–354 | Cite as

The 5-HT7 receptor and disorders of the nervous system: an overview

Review

Abstract

Rationale

The 5-HT7 receptor is a more recently discovered G-protein-coupled receptor for serotonin. The functions and possible clinical relevance of this receptor are not yet fully understood.

Objective

The present paper reviews to what extent the use of animal models of human psychiatric and neurological disorders have implicated the 5-HT7 receptor in such disorders. The studies have used a combination of pharmacological and genetic tools targeting the receptor to evaluate effects on behavior.

Results

Models of anxiety and schizophrenia have yielded mixed results with no clear role for the 5-HT7 receptor described in these disorders. Some data are available for epilepsy, migraine, and pain but it is still very early to draw any definitive conclusions. There is a considerable amount of evidence supporting a role for the 5-HT7 receptor in depression. Both blockade and inactivation of the receptor have resulted in an antidepressant-like profile in models of depression. Supporting evidence has also been obtained in sleep studies. Especially interesting are the augmented effects achieved by combining antidepressants and 5-HT7 receptor antagonists. The antidepressant effect of amisulpride has been shown to most likely be mediated by the 5-HT7 receptor.

Conclusions

The use of pharmacological and genetic tools in preclinical animal models strongly supports a role for the 5-HT7 receptor in depression. Indirect evidence exists showing that 5-HT7 receptor antagonism is clinically useful in the treatment of depression. Available data also indicate a possible involvement of the 5-HT7 receptor in anxiety, epilepsy, pain, and schizophrenia.

Keywords

Anxiety Depression Epilepsy Migraine Pain Schizophrenia Sleep 

Notes

Acknowledgment

Our research has been supported by NIH grant MH73923.

References

  1. Abbas A, Hedlund PB, Huang XP, Tran TB, Meltzer HY, Roth BL (2009) Amisulpride is a potent 5-HT7 antagonist: relevance for antidepressant actions in vivo. Psychopharmacology (Berl.) 205:119–128CrossRefGoogle Scholar
  2. Adriani W, Leo D, Greco D, Rea M, di Porzio U, Laviola G, Perrone-Capano C (2006) Methylphenidate administration to adolescent rats determines plastic changes on reward-related behavior and striatal gene expression. Neuropsychopharmacology 31:1946–1956PubMedCrossRefGoogle Scholar
  3. Antle MC, Ogilvie MD, Pickard GE, Mistlberger RE (2003) Response of the mouse circadian system to serotonin 1A/2/7 agonists in vivo: surprisingly little. J Biol Rhythms 18:145–148PubMedCrossRefGoogle Scholar
  4. Ballaz SJ, Akil H, Watson SJ (2007a) Analysis of 5-HT6 and 5-HT7 receptor gene expression in rats showing differences in novelty-seeking behavior. Neurosci 147:428–438CrossRefGoogle Scholar
  5. Ballaz SJ, Akil H, Watson SJ (2007b) The 5-HT7 receptor: role in novel object discrimination and relation to novelty-seeking behavior. Neurosci 149:192–202CrossRefGoogle Scholar
  6. Bard JA, Zgombick J, Adham N, Vaysse P, Branchek TA, Weinshank RL (1993) Cloning of a novel human serotonin receptor (5-HT7) positively linked to adenylate cyclase. J Biol Chem 268:23422–23426PubMedGoogle Scholar
  7. Beattie D, Smith J (2008) Serotonin pharmacology in the gastrointestinal tract: a review. Naunyn Schmiedebergs Arch Pharmacol 377:181–203PubMedCrossRefGoogle Scholar
  8. Belmaker R, Agam G (2008) Major depressive disorder. N Engl J Med 358:55–68PubMedCrossRefGoogle Scholar
  9. Berman RM, Fava M, Thase ME, Trivedi MH, Swanink R, McQuade RD, Carson WH, Adson D, Taylor L, Hazel J, Marcus RN (2009) Aripiprazole augmentation in major depressive disorder: a double-blind, placebo-controlled study in patients with inadequate response to antidepressants. CNS Spectr 14:197–206PubMedGoogle Scholar
  10. Bonaventure P, Nepomuceno D, Hein L, Sutcliffe JG, Lovenberg T, Hedlund PB (2004) Radioligand binding analysis of knockout mice reveals 5-hydroxytryptamine7 receptor distribution and uncovers 8-hydroxy-2-(di-n-propylamino)tetralin interaction with α2 adrenergic receptors. Neurosci 124:901–911CrossRefGoogle Scholar
  11. Bonaventure P, Kelly L, Aluisio L, Shelton J, Lord B, Galici R, Miller K, Atack J, Lovenberg TW, Dugovic C (2007) Selective blockade of 5-hydroxytryptamine (5-HT)7 receptors enhances 5-HT transmission, antidepressant-like behavior, and rapid eye movement sleep suppression induced by citalopram in rodents. J Pharmacol Exp Ther 321:690–698PubMedCrossRefGoogle Scholar
  12. Bosker FJ, Folgering JHA, Gladkevich AV, Schmidt A, Hart MCGVD, Sprouse J, Boer JAD, Westerink BHC, Cremers TIFH (2009) Antagonism of 5-HT1A receptors uncovers an excitatory effect of SSRIs on 5-HT neuronal activity, an action probably mediated by 5-HT7 receptors. J Neurochem 108:1126–1135PubMedCrossRefGoogle Scholar
  13. Bourson A, Kapps V, Zwingelstein C, Rudler A, Boess FG, Sleight AJ (1997) Correlation between 5-HT7 receptor affinity and protection against sound-induced seizures in DBA/2 J mice. Naunyn Schmiedebergs Arch Pharmacol 356:820–826PubMedCrossRefGoogle Scholar
  14. Brenchat A, Romero L, García M, Pujol M, Burgueño J, Torrens A, Hamon M, Baeyens JM, Buschmann H, Zamanillo D, Vela JM (2009) 5-HT7 receptor activation inhibits mechanical hypersensitivity secondary to capsaicin sensitization in mice. Pain 141:239–247PubMedCrossRefGoogle Scholar
  15. Cohrs S (2008) Sleep disturbances in patients with schizophrenia: impact and effect of antipsychotics. CNS Drugs 22:939–962PubMedCrossRefGoogle Scholar
  16. Cryan JF, Holmes A (2005) The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev Drug Discov 4:775–790PubMedCrossRefGoogle Scholar
  17. Cryan JF, Markou A, Lucki I (2002) Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol Sci 23:238–245PubMedCrossRefGoogle Scholar
  18. Cuesta M, Clesse D, Pévet P, Challet E (2009) New light on the serotonergic paradox in the rat circadian system. J Neurochem 110:231–243PubMedCrossRefGoogle Scholar
  19. Dogrul A, Seyrek M (2009) Systemic morphine produce antinociception mediated by spinal 5-HT7, but not 5-HT1A and 5-HT2 receptors in the spinal cord. Br J Pharmacol 149:498–505CrossRefGoogle Scholar
  20. Dogrul A, Ossipov MH, Porreca F (2009) Differential mediation of descending pain facilitation and inhibition by spinal 5HT-3 and 5HT-7 receptors. Brain Res 1280:52–59PubMedCrossRefGoogle Scholar
  21. Doly S, Fischer J, Brisorgueil M, Verg D, Conrath M (2005) Pre- and postsynaptic localization of the 5-HT7 receptor in rat dorsal spinal cord: Immunocytochemical evidence. J Comp Neurol 490:256–269PubMedCrossRefGoogle Scholar
  22. Duncan MJ, Grear KE, Hoskins MA (2004) Aging and SB-269970-A, a selective 5-HT7 receptor antagonist, attenuate circadian phase advances induced by microinjections of serotonergic drugs in the hamster dorsal raphe nucleus. Brain Res 1008:40–48PubMedCrossRefGoogle Scholar
  23. East SZ, Burnet PWJ, Kerwin RW, Harrison PJ (2002) An RT-PCR study of 5-HT6 and 5-HT7 receptor mRNAs in the hippocampal formation and prefrontal cortex in schizophrenia. Schizophr Res 57:15–26PubMedCrossRefGoogle Scholar
  24. Ehlen JC, Grossman GH, Glass JD (2001) In vivo resetting of the hamster circadian clock by 5-HT7 receptors in the suprachiasmatic nucleus. J Neurosci 21:5351–5357PubMedGoogle Scholar
  25. Eriksson TM, Golkar A, Ekström JC, Svenningsson P, Ögren SO (2008) 5-HT7 receptor stimulation by 8-OH-DPAT counteracts the impairing effect of 5-HT1A receptor stimulation on contextual learning in mice. Eur J Pharmacol 596:107–110PubMedCrossRefGoogle Scholar
  26. Freitas RL, Ferreira CMDR, Urbina MAC, Mariño AU, Carvalho AD, Butera G, de Oliveira AM, Coimbra NC (2009) 5-HT1A/1B, 5-HT6, and 5-HT7 serotonergic receptors recruitment in tonic-clonic seizure-induced antinociception: role of dorsal raphe nucleus. Exp Neurol 217:16–24PubMedCrossRefGoogle Scholar
  27. Galici R, Boggs J, Miller K, Bonaventure P, Atack J (2008) Effects of SB-269970, a 5-HT7 receptor antagonist, in mouse models predictive of antipsychotic-like activity. Behav Pharmacol 19:153–159PubMedCrossRefGoogle Scholar
  28. Gasbarri A, Cifariello A, Pompili A, Meneses A (2008) Effect of 5-HT7 antagonist SB-269970 in the modulation of working and reference memory in the rat. Behav Brain Res 195:164–170PubMedCrossRefGoogle Scholar
  29. Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR (2001) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology (Berl.) 156:117–154CrossRefGoogle Scholar
  30. Glass JD, Grossman GH, Farnbauch L, DiNardo L (2003) Midbrain raphe modulation of nonphotic circadian clock resetting and 5-HT release in the mammalian suprachiasmatic nucleus. J Neurosci 23:7451–7460PubMedGoogle Scholar
  31. Graf M, Jakus R, Kantor S, Levay G, Bagdy G (2004) Selective 5-HT(1A) and 5-HT(7) antagonists decrease epileptic activity in the WAG/Rij rat model of absence epilepsy. Neurosci Lett 359:45–48PubMedCrossRefGoogle Scholar
  32. Graveleau C, Paust HJ, Schmidt-Grimminger D, Mukhopadhyay AK (2000) Presence of a 5-HT7 receptor positively coupled to adenylate cyclase activation in human granulosa-lutein cells. J Clin Endocrin Met 85:1277–1286CrossRefGoogle Scholar
  33. Guscott M, Bristow LJ, Hadingham K, Rosahl TW, Beer MS, Stanton JA, Bromidge F, Owens AP, Huscroft I, Myers J, Rupniak NM, Patel S, Whiting PJ, Hutson PH, Fone KC, Biello SM, Kulagowski JJ, McAllister G (2005) Genetic knockout and pharmacological blockade studies of the 5-HT7 receptor suggest therapeutic potential in depression. Neuropharmacology 48:492–502PubMedCrossRefGoogle Scholar
  34. Hagan JJ, Price GW, Jeffrey P, Deeks NJ, Stean T, Piper D, Smith MI, Upton N, Medhurst AD, Middlemiss DN, Riley GJ, Lovell PJ, Bromidge SM, Thomas DR (2000) Characterization of SB-269970-A, a selective 5-HT7 receptor antagonist. Br J Pharmacol 130:539–548PubMedCrossRefGoogle Scholar
  35. Harte SE, Kender RG, Borszcz GS (2005) Activation of 5-HT(1A) and 5-HT(7) receptors in the parafascicular nucleus suppresses the affective reaction of rats to noxious stimulation. Pain 113:405–415PubMedCrossRefGoogle Scholar
  36. Hedlund PB, Sutcliffe JG (2004) Functional, molecular and pharmacological advances in 5-HT7 receptor research. Trends Pharmacol Sci 25:481–486PubMedCrossRefGoogle Scholar
  37. Hedlund PB, Sutcliffe JG (2007) The 5-HT7 receptor influences stereotypic behavior in a model of obsessive-compulsive disorder. Neurosci Lett 414:247–251PubMedCrossRefGoogle Scholar
  38. Hedlund PB, Danielson PE, Thomas EA, Slanina K, Carson MJ, Sutcliffe JG (2003) No hypothermic response to serotonin in 5-HT7 receptor knockout mice. Proc Natl Acad Sci USA 100:1375–1380PubMedCrossRefGoogle Scholar
  39. Hedlund PB, Huitron-Resendiz S, Henriksen SJ, Sutcliffe JG (2005) 5-HT7 receptor inhibition and inactivation induce antidepressantlike behavior and sleep pattern. Biol Psychiatry 58:831–837PubMedCrossRefGoogle Scholar
  40. Hedlund PB, Kelly L, Mazur C, Lovenberg T, Sutcliffe JG, Bonaventure P (2004) 8-OH-DPAT acts on both 5-HT1A and 5-HT7 receptors to induce hypothermia in rodents. Eur J Pharmacol 487:125–132PubMedCrossRefGoogle Scholar
  41. Heyman I, Mataix-Cols D, Fineberg NA (2006) Obsessive-compulsive disorder. BMJ 333:424–429PubMedCrossRefGoogle Scholar
  42. Hjorth S, Carlsson A, Lindberg P, Sanchez D, Wikström H, Arvidsson LE, Hacksell U, Nilsson JLG (1982) 8-Hydroxy-2-(di-n-propylamino)tetralin, 8-OH-DPAT, a potent and selective simplified ergot congener with central 5-HT-receptor stimulating activity. J Neural Transm 55:169–188CrossRefGoogle Scholar
  43. Ikeda M, Iwata N, Kitajima T, Suzuki T, Yamanouchi Y, Kinoshita Y, Ozaki N (2006) Positive association of the serotonin 5-HT7 receptor gene with schizophrenia in a Japanese population. Neuropsychopharmacology 31:866–871PubMedCrossRefGoogle Scholar
  44. Ishine T, Bouchelet I, Hamel E, Lee TJF (2000) Serotonin 5-HT7 receptors mediate relaxation of porcine pial veins. Am J Physiol Heart Circ Physiol 278:H907–H912PubMedGoogle Scholar
  45. Jørgensen HS (2007) Studies on the neuroendocrine role of serotonin. Dan Med Bull 54:266–288PubMedGoogle Scholar
  46. Kikuchi C, Nagaso H, Hiranuma T, Koyama M (1999) Tetrahydrobenzindoles: selective antagonists of the 5-HT7 receptor. J Med Chem 42:533–535PubMedCrossRefGoogle Scholar
  47. Kogan HA, Marsden CA, Fone KCF (2002) DR4004, a putative 5-HT7 receptor antagonist, also has functional activity at the dopamine D2 receptor. Eur J Pharmacol 449:105–111PubMedCrossRefGoogle Scholar
  48. Lawler CP, Prioleau C, Lewis MM, Mak C, Jiang D, Schetz JA, Gonzalez AM, Sibley DR, Mailman RB (1999) Interactions of the novel antipsychotic aripiprazole (OPC-14597) with dopamine and serotonin receptor subtypes. Neuropsychopharmacology 20:612–627PubMedCrossRefGoogle Scholar
  49. Lecrubier Y, Boyer P, Turjanski S, Rein W (1997) Amisulpride versus imipramine and placebo in dysthymia and major depression. J Affect Disord 43:95–103PubMedCrossRefGoogle Scholar
  50. Leo D, Adriani W, Cavaliere C, Cirillo G, Marco EM, Romano E, Porzio UD, Papa M, Perrone-Capano C, Laviola G (2009) Methylphenidate to adolescent rats drives enduring changes of accumbal Htr7 expression: implications for impulsive behavior and neuronal morphology. Genes Brain Behav 8:356–368PubMedCrossRefGoogle Scholar
  51. Li Y, Wang F, Pan Y, Qiang L, Cheng G, Zhang W, Kong L (2009) Antidepressant-like effects of curcumin on serotonergic receptor-coupled AC-cAMP pathway in chronic unpredictable mild stress of rats. Prog Neuropsychopharmacol Biol Psychiatry 33:435–449PubMedCrossRefGoogle Scholar
  52. Lovell PJ, Bromidge SM, Dabbs S, Duckworth DM, Forbes IT, Jennings AJ, King FD, Middlemiss DN, Rahman SK, Saunders DV, Collin LL, Hagan JJ, Riley GJ, Thomas DR (2000) A novel, potent, and selective 5-HT7 antagonist: (R)-3-(2-(2-(4-methylpiperidin-1-yl)ethyl)pyrrolidine-1-sulfonyl)phenol (SB-269970). J Med Chem 43:342–345PubMedCrossRefGoogle Scholar
  53. Lovenberg TW, Baron BM, de Lecea L, Miller JD, Prosser RA, Rea MA, Foye PE, Racke M, Slone AL, Siegel BW, Danielson PE, Sutcliffe JG, Erlander MG (1993) A novel adenylyl cyclase-activating serotonin receptor (5-HT7) implicated in the regulation of mammalian circadian rhythms. Neuron 11:449–458PubMedCrossRefGoogle Scholar
  54. Martínez-García E, García-Iglesias B, Terrón JA (2009) Effect of central serotonin depletion on 5-HT receptor-mediated vasomotor responses in the middle meningeal artery of anaesthetized rats. Autonom Autacoid Pharmacol 29:43–50CrossRefGoogle Scholar
  55. Monsma FJ, Shen Y, Ward RP, Hamblin MW, Sibley DR (1993) Cloning and expression of a novel serotonin receptor with high affinity for tricyclic psychotropic drugs. Mol Pharmacol 43:320–327PubMedGoogle Scholar
  56. Mullins UL, Gianutsos G, Eison AS (1999) Effects of antidepressants on 5-HT7 receptor regulation in the rat hypothalamus. Neuropsychopharmacology 21:352–367PubMedCrossRefGoogle Scholar
  57. Nicolas LB, Kolb Y, Prinssen EP (2006) A combined marble burying-locomotor activity test in mice: a practical screening test with sensitivity to different classes of anxiolytics and antidepressants. Eur J Pharmacol 547:106–115PubMedCrossRefGoogle Scholar
  58. Pouzet B, Didriksen M, Arnt J (2002) Effects of the 5-HT7 receptor antagonist SB-258741 in animal models for schizophrenia. Pharmacol Biochem Behav 71:655–665PubMedCrossRefGoogle Scholar
  59. Read KE, Sanger GJ, Ramage AG (2003) Evidence for the involvement of central 5-HT7 receptors in the micturition reflex in anaesthetized female rats. Br J Pharmacol 140:53–60PubMedCrossRefGoogle Scholar
  60. Recio P, Barahona MV, Orensanz LM, Bustamante S, Martínez AC, Benedito S, García-Sacristán A, Prieto D, Hernández M (2009) 5-hydroxytryptamine induced relaxation in the pig urinary bladder neck. Br J Pharmacol 157:271–280PubMedCrossRefGoogle Scholar
  61. Roberts AJ, Krucker T, Levy CL, Slanina KA, Sutcliffe JG, Hedlund PB (2004) Mice lacking 5-HT7 receptors show specific impairments in contextual learning. Eur J Neurosci 19:1913–1922PubMedCrossRefGoogle Scholar
  62. Rocha-González HI, Meneses A, Carlton SM, Granados-Soto V (2005) Pronociceptive role of peripheral and spinal 5-HT7 receptors in the formalin test. Pain 117:182–192PubMedCrossRefGoogle Scholar
  63. Roth B, Craigo S, Choudhary M, Uluer A, Monsma FJ, Shen Y, Meltzer H, Sibley D (1994) Binding of typical and atypical antipsychotic agents to 5-hydroxytryptamine-6 and 5-hydroxytryptamine-7 receptors. J Pharmacol Exp Ther 268:1403–1410PubMedGoogle Scholar
  64. Ruat M, Traiffort E, Leurs R, Tardivel-Lacombe J, Diaz J, Arrang JM, Schwartz JC (1993) Molecular cloning, characterization, and localization of a high-affinity serotonin receptor (5-HT7) activating cAMP formation. Proc Natl Acad Sci USA 90:8547–8551PubMedCrossRefGoogle Scholar
  65. Sarkisyan G, Hedlund PB (2009) The 5-HT7 receptor is involved in allocentric spatial memory information processing. Behav Brain Res 202:26–31PubMedCrossRefGoogle Scholar
  66. Saxena PR, Ferrari MD (1989) 5-HT1-like receptor agonists and the pathophysiology of migraine. Trends Pharmacol Sci 10:200–204PubMedCrossRefGoogle Scholar
  67. Semenova S, Geyer MA, Sutcliffe JG, Markou A, Hedlund PB (2008) Inactivation of the 5-HT7 receptor partially blocks PCP-induced disruption of prepulse inhibition. Biol Psychiatry 63:98–105PubMedCrossRefGoogle Scholar
  68. Shapiro DA, Renock S, Arrington E, Chiodo LA, Liu L, Sibley DR, Roth BL, Mailman R (2003) Aripiprazole, a novel atypical antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacology 28:1400–1411PubMedCrossRefGoogle Scholar
  69. Shelton J, Bonaventure P, Li X, Yun S, Lovenberg T, Dugovic C (2009) 5-HT7 receptor deletion enhances REM sleep suppression induced by selective serotonin reuptake inhibitors, but not by direct stimulation of 5-HT1A receptor. Neuropharmacology 56:448–454PubMedCrossRefGoogle Scholar
  70. Shen Y, Monsma FJ, Metcalf MA, Jose PA, Hamblin MW, Sibley DR (1993) Molecular cloning and expression of a 5-hydroxytryptamine7 serotonin receptor subtype. J Biol Chem 268:18200–18204PubMedGoogle Scholar
  71. Shireman BT, Bonaventure P, Carruthers NI (2008) Chapter 2. Recent advances on the 5-HT5A, 5-HT6 and 5-HT7 receptors. In Annual Reports in Medicinal Chemistry. Academic, New York, pp. 25–42.Google Scholar
  72. Smeraldi E (1998) Amisulpride versus fluoxetine in patients with dysthymia or major depression in partial remission: a double-blind, comparative study. J Affect Disord 48:47–56PubMedCrossRefGoogle Scholar
  73. Sprouse J, Reynolds L, Li X, Braselton J, Schmidt A (2004) 8-OH-DPAT as a 5-HT7 agonist: phase shifts of the circadian biological clock through increases in cAMP production. Neuropharmacology 46:52–62PubMedCrossRefGoogle Scholar
  74. Sprouse J, Li X, Stock J, McNeish J, Reynolds L (2005) Circadian rhythm phenotype of 5-HT7 receptor knockout mice: 5-HT and 8-OH-DPAT-induced phase advances of SCN neuronal firing. J Biol Rhythms 20:122–131PubMedCrossRefGoogle Scholar
  75. Terrón JA, Falcón-Neri A (1999) Pharmacological evidence for the 5-HT7 receptor mediating smooth muscle relaxation in canine cerebral artery. Br J Pharmacol 127:609–616PubMedCrossRefGoogle Scholar
  76. Terrón JA, Martínez-García E (2007) 5-HT7 receptor-mediated dilatation in the middle meningeal artery of anesthetized rats. Eur J Pharmacol 560:56–60PubMedCrossRefGoogle Scholar
  77. Thomas DR, Hagan JJ (2004) 5-HT7 receptors. Curr Drug Target CNS Neurol Disord 3:81–90CrossRefGoogle Scholar
  78. Thomas DR, Melotto S, Massagrande M, Gribble AD, Jeffrey P, Stevens AJ, Deeks NJ, Eddershaw PJ, Fenwick SH, Riley G, Stean T, Scott CM, Hill MJ, Middlemiss DN, Hagan JJ, Price GW, Forbes IT (2003) SB-656104-A, a novel selective 5-HT7 receptor antagonist, modulates REM sleep in rats. Br J Pharmacol 139:705–714PubMedCrossRefGoogle Scholar
  79. Villalon CM, Centurion D, Lujan-Estrada M, Terron JA, Sanchez-Lopez A (1997) Mediation of 5-HT-induced external carotid vasodilatation in GR 127935-pretreated vagosympathectomized dogs by the putative 5-HT7 receptor. Br J Pharmacol 120:1319–1327PubMedCrossRefGoogle Scholar
  80. Wei Z, Wang L, Xuan J, Che R, Du J, Qin S, Xing Y, Gu B, Yang L, Li H, Li J, Feng G, He L, Xing Q (2009) Association analysis of serotonin receptor 7 gene (HTR7) and risperidone response in Chinese schizophrenia patients. Prog Neuropsychopharmacol Biol Psychiatry 33:547–551PubMedCrossRefGoogle Scholar
  81. Wesolowska A, Kowalska M (2008) Influence of serotonin 5-HT7 receptor blockade on the behavioral and neurochemical effects of imipramine in rats. Pharmacol Rep 60:464–474PubMedGoogle Scholar
  82. Wesolowska A, Nikiforuk A, Stachowicz K, Tatarczynska E (2006a) Effect of the selective 5-HT(7) receptor antagonist SB 269970 in animal models of anxiety and depression. Neuropharmacology 51:578–586PubMedCrossRefGoogle Scholar
  83. Wesolowska A, Nikiforuk A, Stachowicz K (2006b) Potential anxiolytic and antidepressant effects of the selective 5-HT7 receptor antagonist SB 269970 after intrahippocampal administration to rats. Eur J Pharmacol 553:185–190PubMedCrossRefGoogle Scholar
  84. Wesolowska A, Tatarczynska E, Nikiforuk A, Chojnacka-Wojcik E (2007) Enhancement of the anti-immobility action of antidepressants by a selective 5-HT7 receptor antagonist in the forced swimming test in mice. Eur J Pharmacol 555:43–47PubMedCrossRefGoogle Scholar
  85. Willner P, Muscat R, Papp M (1992) Chronic mild stress-induced anhedonia: a realistic animal model of depression. Neurosci Biobehav Rev 16:525–534PubMedCrossRefGoogle Scholar
  86. Witkin JM, Baez M, Yu J, Barton ME, Shannon HE (2007) Constitutive deletion of the serotonin-7 (5-HT(7)) receptor decreases electrical and chemical seizure thresholds. Epilepsy Res 75:39–45PubMedCrossRefGoogle Scholar
  87. Yadid G, Nakash R, Deri I, Tamar G, Kinor N, Gispan I, Zangen A (2000) Elucidation of the neurobiology of depression: insights from a novel genetic animal model. Prog Neurobiol 62:353–378PubMedCrossRefGoogle Scholar
  88. Ying SW, Rusak B (1997) 5-HT7 receptors mediate serotonergic effects on light-sensitive suprachiasmatic nucleus neurons. Brain Res 755:246–254PubMedCrossRefGoogle Scholar
  89. Yu GD, Liu YL, Jiang XH, Guo SY, Zhang HQ, Yin QZ, Hisamitsu T (2001) The inhibitory effect of serotonin on the spontaneous discharge of suprachiasmatic neurons in hypothalamic slice is mediated by 5-HT(7) receptor. Brain Res Bull 54:395–398PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of Molecular Biology, MB10The Scripps Research InstituteLa JollaUSA

Personalised recommendations