Psychopharmacology

, Volume 206, Issue 2, pp 223–232

Intracerebroventricular administration of cannabinoid CB1 receptor antagonists AM251 and AM4113 fails to alter food-reinforced behavior in rats

  • K. S. Sink
  • K. N. Segovia
  • E. J. Nunes
  • L. E. Collins
  • V. K. Vemuri
  • G. Thakur
  • A. Makriyannis
  • J. D. Salamone
Original Investigation

Abstract

Rationale

Drugs that interfere with cannabinoid CB1 transmission suppress food-motivated behaviors and may be useful as appetite suppressants, but there is uncertainty about the locus of action for the feeding-suppression effects of these drugs.

Objective

The present work was conducted to determine if two drugs that interfere with cannabinoid receptor transmission, AM251 and AM4113, have effects on food-reinforced behavior after administration into the lateral ventricle (intracerebroventricular (ICV)).

Results

Although systemic administration of both drugs can suppress food-reinforced behavior, neither AM251 (40, 80, and 160 μg) nor AM4113 (60, 120, and 240 μg) administered at various times prior to testing produced any suppression of food-reinforced operant responding on a fixed-ratio 5 schedule. Because the modulation of locomotion by drugs that act on CB1 receptors is hypothesized to be a forebrain effect, these drugs also were assessed for their ability to reverse the locomotor suppression produced by the CB1 agonist AM411. ICV administration of either AM251 or AM4113 reversed the locomotor suppression induced by the CB1 agonist AM411 in the same dose range that failed to produce any effects on feeding.

Conclusions

This indicates that both AM4113 and AM251, when administered ICV, can interact with forebrain CB1 receptors and are efficacious on forebrain-mediated functions unrelated to feeding. These results suggest that CB1 neutral antagonists or inverse agonists may not be affecting food-reinforced behavior via interactions with forebrain CB1 receptors located in nucleus accumbens or hypothalamus and that lower brainstem or peripheral receptors may be involved.

Keywords

Feeding Motivation Appetite Rimonabant Food intake Brain 

References

  1. 7TM Pharma. 7TM Pharma announces the selection of a new pre-clinical development candidate, TM38837, for treatment of obesity and Type 2 diabetes. http://www.7tm.com/News.aspx?M=News&PID=42&NewsID=33 Accessed September 20, 2008
  2. Abel EL (1971) Effects of marihuana on the solution of anagrams, memory and appetite. Nature 231:260–261PubMedCrossRefGoogle Scholar
  3. Anderson-Baker WC, McLaughlin CL, Baile CA (1979) Oral and hypothalamic injections of barbiturates, benzodiazepines and cannabinoids and food intake in rats. Pharmacol Biochem Behav 11:487–491PubMedCrossRefGoogle Scholar
  4. Bensaid M, Gary-Bobo M, Esclangon A, Maffrand JP, Le Fur G, Oury-Donat F, Soubrie P (2003) The cannabinoid CB1 receptor antagonist SR141716 increases Acrp30 mRNA expression in adipose tissue of obese fa/fa rats and in cultured adipocyte cells. Mol Pharmacol 63:908–914PubMedCrossRefGoogle Scholar
  5. Blevins JE, Schwartz MW, Baskin DG (2004) Evidence that paraventricular nucleus oxytocin neurons link hypothalamic leptin action to caudal brain stem nuclei controlling meal size. Am J Physiol Regul Integr Comp Physiol 287:R87–96PubMedGoogle Scholar
  6. Brown JE, Kassouny M, Cross JK (1977) Kinetic studies of food intake and sucrose solution preference by rats treated with low doses of delta9-tetrahydrocannabinol. Behav Biol 20:104–110PubMedCrossRefGoogle Scholar
  7. Burdyga G, Lal S, Varro A, Dimaline R, Thompson DG, Dockray GJ (2004) Expression of cannabinoid CB1 receptors by vagal afferent neurons is inhibited by cholecystokinin. J Neurosci 24:2708–2715PubMedCrossRefGoogle Scholar
  8. Burdyga G, Varro A, Dimaline R, Thompson DG, Dockray GJ (2006) Ghrelin receptors in rat and human nodose ganglia: putative role in regulating CB-1 and MCH receptor abundance. Am J Physiol Gastrointest Liver Physiol 290:G1289–97PubMedCrossRefGoogle Scholar
  9. Chambers AP, Sharkey KA, Koopmans HS (2004) Cannabinoid (CB)1 receptor antagonist, AM 251, causes a sustained reduction of daily food intake in the rat. Physiol Behav 82:863–869PubMedGoogle Scholar
  10. Chambers AP, Vemuri VK, Peng Y, Wood JT, Olzewska T, Pittman QJ, Makriyannis A, Sharkey K (2007) A neutral CB1 receptor antagonist reduces weight gain in rat. Am J Physiol Regul Integr Comp Physiol 293:R2185–2193PubMedGoogle Scholar
  11. Chen RZ, Huang RR, Shen CP, MacNeil DJ, Fong TM (2004) Synergistic effects of cannabinoid inverse agonist AM251 and opioid antagonist nalmefene on food intake in mice. Brain Res 999:227–230PubMedCrossRefGoogle Scholar
  12. Chen RZ, Frassetto A, Lao JZ, Huang RR, Xiao JC, Clements MJ, Walsh TF, Hale JJ, Wang J, Tong X, Fong TM (2008) Pharmacological evaluation of LH-21, a newly discovered molecule that binds to cannabinoid CB1 receptor. Eur J Pharmacol 584:338–342PubMedCrossRefGoogle Scholar
  13. Christensen R, Kristensen PK, Bartels EM, Bliddal H, Astrup A (2007) Efficacy and safety of the weight-loss drug rimonabant: a meta-analysis of randomised trials. Lancet 370:1706–1713PubMedCrossRefGoogle Scholar
  14. Colombo G, Agabio R, Diaz G, Lobina C, Reali R, Gessa GL (1998) Appetite suppression and weight loss after the cannabinoid antagonist SR 141716. Life Sci 63:PL113–PL117PubMedCrossRefGoogle Scholar
  15. Cota D, Marsicano G, Tschop M, Grubler Y, Flachskamm C, Schubert M, Auer D, Yassouridis A, Thone-Reineke C, Ortmann S, Tomassoni F, Cervino C, Nisoli E, Linthorst AC, Pasquali R, Lutz B, Stalla GK, Pagotto U (2003) The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J Clin Invest 112:423–431PubMedGoogle Scholar
  16. Curioni C, Andre C (2006) Rimonabant for overweight or obesity. Cochrane Database Syst Rev 4:CD006162PubMedGoogle Scholar
  17. Despres JP, Golay A, Sjostrom L, Rimonabant in Obesity-Lipids Study Group (2005) Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N Engl J Med 353:2121–2134PubMedCrossRefGoogle Scholar
  18. DiPatrizio NV, Simansky KJ (2008) Activating parabrachial cannabinoid CB1 receptors selectively stimulates feeding of palatable foods in rats. J Neurosci 28:9702–9709PubMedCrossRefGoogle Scholar
  19. Fan W, Ellacott KL, Halatchev IG, Takahashi K, Yu P, Cone RD (2004) Cholecystokinin-mediated suppression of feeding involves the brainstem melanocortin system. Nat Neurosci 7:335–336PubMedCrossRefGoogle Scholar
  20. Foltin RW, Brady JV, Fischman MW (1986) Behavioral analysis of marijuana effects on food intake in humans. Pharmacol Biochem Behav 25:577–582PubMedCrossRefGoogle Scholar
  21. Gardner A, Mallet PE (2006) Suppression of feeding, drinking, and locomotion by a putative cannabinoid receptor 'silent antagonist'. Eur J Pharmacol 530:103–106PubMedCrossRefGoogle Scholar
  22. Gatley SJ, Gifford AN, Volkow ND, Lan R, Makriyannis A (1996) 123I-labeled AM251: a radioiodinated ligand which binds in vivo to mouse brain cannabinoid CB1 receptors. Eur J Pharmacol 307:331–338PubMedCrossRefGoogle Scholar
  23. Gomez R, Navarro M, Ferrer B, Trigo JM, Bilbao A, Del Arco I, Cippitelli A, Nava F, Piomelli D, Rodriguez de Fonseca F (2002) A peripheral mechanism for CB1 cannabinoid receptor-dependent modulation of feeding. J Neurosci 22:9612–9617PubMedGoogle Scholar
  24. Hajos N, Ledent C, Freund TF (2001) Novel cannabinoid-sensitive receptor mediates inhibition of glutamatergic synaptic transmission in the hippocampus. Neuroscience 106:1–4PubMedCrossRefGoogle Scholar
  25. Haller J, Bakos N, Szirmay M, Ledent C, Freund TF (2002) The effects of genetic and pharmacological blockade of the CB1 cannabinoid receptor on anxiety. Eur J Neurosci 16:1395–1398PubMedCrossRefGoogle Scholar
  26. Haller J, Varga B, Ledent C, Freund TF (2004) CB1 cannabinoid receptors mediate anxiolytic effects: convergent genetic and pharmacological evidence with CB1-specific agents. Behav Pharmacol 15:299–304PubMedCrossRefGoogle Scholar
  27. Herling AW, Kilp S, Elvert R, Haschke G, Kramer W (2008) Increased energy expenditure contributes more to the body weight-reducing effect of rimonabant than reduced food intake in candy-fed Wistar rats. Endocrinology 149:2557–2566PubMedCrossRefGoogle Scholar
  28. Hollister LE (1971) Hunger and appetite after single doses of marihuana, alcohol, and dextroamphetamine. Clin Pharmacol Ther 12:44–49PubMedGoogle Scholar
  29. Jamshidi N, Taylor DA (2001) Anandamide administration into the ventromedial hypothalamus stimulates appetite in rats. Br J Pharmacol 134:1151–1154PubMedCrossRefGoogle Scholar
  30. Jbilo O, Ravinet-Trillou C, Arnone M, Buisson I, Bribes E, Peleraux A, Penarier G, Soubrie P, Le Fur G, Galiegue S, Casellas P (2005) The CB1 receptor antagonist rimonabant reverses the diet-induced obesity phenotype through the regulation of lipolysis and energy balance. FASEB J 19:1567–1569PubMedGoogle Scholar
  31. Keppel G (1982) Design and analysis: a researcher’s handbook. Prentice-Hall, Englewood CliffsGoogle Scholar
  32. Lauckner JE, Jensen JB, Chen HY, Lu HC, Hille B, Mackie K (2008) GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proc Natl Acad Sci U S A 105:2699–2704PubMedCrossRefGoogle Scholar
  33. Mattes RD, Engelman K, Shaw LM, Elsohly MA (1994) Cannabinoids and appetite stimulation. Pharmacol Biochem Behav 49:187–195PubMedCrossRefGoogle Scholar
  34. McLaughlin PJ, Winston K, Swezey L, Wisniecki A, Aberman J, Tardif DJ, Betz AJ, Ishiwari K, Makriyannis A, Salamone JD (2003) The cannabinoid CB1 antagonists SR 141716A and AM 251 suppress food intake and food-reinforced behavior in a variety of tasks in rats. Behav Pharmacol 14:583–588PubMedCrossRefGoogle Scholar
  35. McLaughlin PJ, Winston KM, Limebeer CL, Parker LA, Makriyannis A, Salamone JD (2005) The cannabinoid CB1 antagonist AM 251 produces food avoidance and behaviors associated with nausea but does not impair feeding efficiency in rats. Psychopharmacology (Berl) 180:286–293CrossRefGoogle Scholar
  36. McLaughlin PJ, Qian L, Wood JT, Wisniecki A, Winston KM, Swezey LA, Ishiwari K, Betz AJ, Pandarinathan L, Xu W, Makriyannis A, Salamone JD (2006) Suppression of food intake and food-reinforced behavior produced by the novel CB1 receptor antagonist/inverse agonist AM 1387. Pharmacol Biochem Behav 83:396–402PubMedCrossRefGoogle Scholar
  37. Osei-Hyiaman D, DePetrillo M, Pacher P, Liu J, Radaeva S, Batkai S, Harvey-White J, Mackie K, Offertaler L, Wang L, Kunos G (2005) Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity. J Clin Invest 115:1298–1305PubMedGoogle Scholar
  38. Partosoedarso ER, Abrahams TP, Scullion RT, Moerschbaecher JM, Hornby PJ (2003) Cannabinoid1 receptor in the dorsal vagal complex modulates lower oesophageal sphincter relaxation in ferrets. J Physiol 550:149–158PubMedCrossRefGoogle Scholar
  39. Pavon FJ, Bilbao A, Hernandez-Folgado L, Cippitelli A, Jagerovic N, Abellan G, Rodriguez-Franco MA, Serrano A, Macias M, Gomez R, Navarro M, Goya P, Rodriguez de Fonseca F (2006) Antiobesity effects of the novel in vivo neutral cannabinoid receptor antagonist 5-(4-chlorophenyl)-1-(2, 4-dichlorophenyl)-3-hexyl-1H-1, 2, 4-triazole-LH 21. Neuropharmacology 51:358–366PubMedCrossRefGoogle Scholar
  40. Pavón FJ, Serrano A, Pérez-Valero V, Jagerovic N, Hernández-Folgado L, Bermúdez-Silva FJ, Macías M, Goya P, de Fonseca FR (2008) Central versus peripheral antagonism of cannabinoid CB1 receptor in obesity: effects of LH-21, a peripherally acting neutral cannabinoid receptor antagonist, in Zucker rats. J Neuroendocrinol 20(suppl 1):116–123PubMedCrossRefGoogle Scholar
  41. Pi-Sunyer FX, Aronne LJ, Heshmati HM, Devin J, Rosenstock J, RIO-North America Study Group (2006) Effect of rimonabant, a cannabinoid-1 receptor blocker, on weight and cardiometabolic risk factors in overweight or obese patients: RIO-North America: a randomized controlled trial. JAMA 295:761–775PubMedCrossRefGoogle Scholar
  42. Ravinet Trillou C, Arnone M, Delgorge C, Gonalons N, Keane P, Maffrand JP, Soubrie P (2003) Anti-obesity effect of SR141716, a CB1 receptor antagonist, in diet-induced obese mice. Am J Physiol Regul Integr Comp Physiol 284:R345–53PubMedGoogle Scholar
  43. Ryberg E, Larsson N, Sjogren S, Hjorth S, Hermansson NO, Leonova J, Elebring T, Nilsson K, Drmota T, Greasley PJ (2007) The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol 152:1092–1101PubMedCrossRefGoogle Scholar
  44. Salamone JD, McLaughlin PJ, Sink K, Makriyannis A, Parker LA (2007) Cannabinoid CB1 receptor inverse agonists and neutral antagonists: effects on food intake, food-reinforced behavior and food aversions. Physiol Behav 91:383–388PubMedCrossRefGoogle Scholar
  45. Salamone JD, Randall P, Hosmer S, Sink KS, Segovia KN, Stopper CM, Port RG, Vemuri VK, Wood J, Thakur G, Makriyannis A (2009) Central vs. peripheral effects of cannabinoid CB1 antagonists/inverse agonists on food-reinforced operant responding: Effects of the peripherally active CB1 antagonist AM6545. 2009 Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience, 2009. (in press)Google Scholar
  46. Sanudo-Pena MC, Walker JM (1998) A novel neurotransmitter system involved in the control of motor behavior by the basal ganglia. Ann N Y Acad Sci 860:475–479PubMedCrossRefGoogle Scholar
  47. Sanudo-Pena MC, Tsou K, Walker JM (1999) Motor actions of cannabinoids in the basal ganglia output nuclei. Life Sci 65:703–713PubMedCrossRefGoogle Scholar
  48. Shearman LP, Rosko KM, Fleischer R, Wang J, Xu S, Tong XS, Rocha BA (2003) Antidepressant-like and anorectic effects of the cannabinoid CB1 receptor inverse agonist AM251 in mice. Behav Pharmacol 14:573–582PubMedCrossRefGoogle Scholar
  49. Sink KS, McLaughlin PJ, Wood JA, Brown C, Fan P, Vemuri VK, Pang Y, Olzewska T, Thakur GA, Makriyannis A, Parker LA, Salamone JD (2008) The novel cannabinoid CB(1) receptor neutral antagonist AM4113 suppresses food intake and food-reinforced behavior but does not induce signs of nausea in rats. Neuropsychopharmacology 33:946–966PubMedCrossRefGoogle Scholar
  50. Sink KS, Vemuri VK, Wood J, Makriyannis A, Salamone JD (2009) Oral bioavailability of the novel cannabinoid CB1 antagonist AM6527: effects on food-reinforced behavior and comparisons with AM4113. Pharmacol Biochem Behav 91:303–306PubMedCrossRefGoogle Scholar
  51. Soria-Gomez E, Matias I, Rueda-Orozco PE, Cisneros M, Petrosino S, Navarro L, Di Marzo V, Prospero-Garcia O (2007) Pharmacological enhancement of the endocannabinoid system in the nucleus accumbens shell stimulates food intake and increases c-fos expression in the hypothalamus. Br J Pharmacol 151:1109–1116PubMedCrossRefGoogle Scholar
  52. Van Gaal LF, Rissanen AM, Scheen AJ, Ziegler O, Rossner S, RIO-Europe Study Group (2005) Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet 365:1389–1397PubMedCrossRefGoogle Scholar
  53. Verty AN, McFarlane JR, McGregor IS, Mallet PE (2004a) Evidence for an interaction between CB1 cannabinoid and oxytocin receptors in food and water intake. Neuropharmacology 47:593–603PubMedCrossRefGoogle Scholar
  54. Verty AN, McFarlane JR, McGregor IS, Mallet PE (2004b) Evidence for an interaction between CB1 cannabinoid and melanocortin MCR-4 receptors in regulating food intake. Endocrinology 145:3224–3231PubMedCrossRefGoogle Scholar
  55. Verty AN, Mallet PE (2005) Paraventricular hypothalamic CB1 cannabinoid receptors are involved in the feeding stimulatory effects of delta9-tetrahydrocannabinol. Neuropharmacology 49:1101–1109PubMedCrossRefGoogle Scholar
  56. Werner NA, Koch JE (2003) Effects of the cannabinoid antagonists AM281 and AM630 on deprivation-induced intake in lewis rats. Brain Res 967:290–292PubMedCrossRefGoogle Scholar
  57. Williams CM, Kirkham TC (1999) Anandamide induces overeating: mediation by central cannabinoid (CB1) receptors. Psychopharmacology (Berl) 143:315–317CrossRefGoogle Scholar
  58. Williams CM, Kirkham TC (2002) Reversal of delta 9-THC hyperphagia by SR141716 and naloxone but not dexfenfluramine. Pharmacol Biochem Behav 71:333–340PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • K. S. Sink
    • 1
    • 3
  • K. N. Segovia
    • 1
  • E. J. Nunes
    • 1
  • L. E. Collins
    • 1
  • V. K. Vemuri
    • 2
  • G. Thakur
    • 2
  • A. Makriyannis
    • 2
  • J. D. Salamone
    • 1
  1. 1.Department of PsychologyUniversity of ConnecticutStorrsUSA
  2. 2.Center for Drug DiscoveryNortheastern UniversityBostonUSA
  3. 3.Yerkes National Primate Center and the Center for Behavioral NeuroscienceEmory UniversityAtlantaUSA

Personalised recommendations