Advertisement

Psychopharmacology

, Volume 205, Issue 3, pp 369–377 | Cite as

Mood stabilizers increase prepulse inhibition in DBA/2NCrl mice

  • Dorothy G. FloodEmail author
  • Matthew Choinski
  • Michael J. Marino
  • Maciej Gasior
Original Investigation

Abstract

Rationale

Lithium and several antiepileptic drugs have mood-stabilizing effects in bipolar disorder and schizophrenia. Both disorders are characterized by deficits in prepulse inhibition (PPI) of the acoustic startle response.

Objectives

Using the DBA/2 model of naturally low PPI, which is reliably increased by antipsychotics, five mood stabilizers in clinical use were tested to determine whether they would also increase PPI in this model. All drugs were administered intraperitoneally (i.p.) 30 min before testing.

Results

Lithium chloride (30 mg/kg), topiramate (100 and 300 mg/kg), carbamazepine (30, 60, and 100 mg/kg), valproic acid (178 and 316 mg/kg), and lamotrigine (3, 10, and 30 mg/kg) increased percent PPI. The antiepileptic drugs carbamazepine, valproic acid, and lamotrigine at high doses also decreased no-stimulus amplitudes and increased startle amplitudes. At high doses of carbamazepine, valproic acid, and lamotrigine, increases in percent PPI were independent of the increases in startle amplitude.

Conclusions

The demonstrated efficacy of five mood stabilizers in the DBA/2 model of naturally low PPI points to the translational value of this model in predicting therapeutic activity in schizophrenia and bipolar disorder of compounds with diverse mechanisms of action.

Keywords

Prepulse inhibition Acoustic startle reflex Sensorimotor gating Mood stabilizers Antiepileptic drugs Lithium DBA/2NCrl mouse Bipolar disorder Schizophrenia 

Notes

Acknowledgments

Cephalon, Inc. employs the authors and sponsored this research. The experiments described in this manuscript comply with the current laws and regulations of the USA.

References

  1. Braff DL, Geyer MA, Swerdlow NR (2001) Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology 156:234–258PubMedCrossRefGoogle Scholar
  2. Brody SA, Geyer MA, Large CH (2003) Lamotrigine prevents ketamine but not amphetamine-induced deficits in prepulse inhibition in mice. Psychopharmacology 169:240–246PubMedCrossRefGoogle Scholar
  3. Browman KE, Komater VA, Curzon P, Rueter LE, Hancock AA, Decker MW, Fox GB (2004) Enhancement of prepulse inhibition of startle in mice by the H3 receptor antagonists thioperamide and ciproxifan. Behav Brain Res 153:69–76PubMedCrossRefGoogle Scholar
  4. Coyle JT (2006) Glutamate and schizophrenia: beyond the dopamine hypothesis. Cell Mol Neurobiol 26:365–384PubMedCrossRefGoogle Scholar
  5. Depoortère R, Dargazanli G, Estenne-Bouhtou G, Coste A, Lanneau C, Desvignes C, Poncelet M, Heaulme M, Santucci V, Decobert M, Cudennec A, Voltz C, Boulay D, Terranova JP, Stemmelin J, Roger P, Marabout B, Sevrin M, Vigé X, Biton B, Steinberg R, Françon D, Alonso R, Avenet P, Oury-Donat F, Perrault G, Griebel G, George P, Soubrié P, Scatton B (2005) Neurochemical, electrophysiological and pharmacological profiles of the selective inhibitor of the glycine transporter-1 SSR504734, a potential new type of antipsychotic. Neuropsychopharmacology 30:1963–1985PubMedCrossRefGoogle Scholar
  6. Donato Di Paola E, Gareri P, Davoli A, Gratteri S, Scicchitano F, Naccari C, De Sarro G (2007) Influence of levetiracetam on the anticonvulsant efficacy of conventional antiepileptic drugs against audiogenic seizures in DBA/2 mice. Epilepsy Res 75:112–121PubMedCrossRefGoogle Scholar
  7. Fisher RS (1989) Animal models of the epilepsies. Brain Res Rev 14:245–278PubMedCrossRefGoogle Scholar
  8. Flood DG, Gasior M, Marino MJ (2007) Variables affecting prepulse inhibition of the startle reflex and the response to antipsychotics in DBA/2NCrl mice. Psychopharmacology 195:203–211PubMedCrossRefGoogle Scholar
  9. Fox GB, Esbenshade TA, Pan JB, Radek RJ, Krueger KM, Yao BB, Browman KE, Buckley MJ, Ballard ME, Komater VA, Miner H, Zhang M, Faghih R, Rueter LE, Bitner RS, Drescher KU, Wetter J, Marsh K, Lemaire M, Porsolt RD, Bennani YL, Sullivan JP, Cowart MD, Decker MW, Hancock AA (2005) Pharmacological properties of ABT-239 [4-(2-{2-[(2R)-2-methylpyrrolidinyl]ethyl}-benzofuran-5-yl) benzonitrile]: II. neurophysiological characterization and broad preclinical efficacy in cognition and schizophrenia of a potent and selective histamine H3 receptor antagonist. J Pharmacol Exp Ther 313:176–190PubMedCrossRefGoogle Scholar
  10. Frau R, Orrù M, Fà M, Casti A, Manunta M, Fais N, Mereu G, Gessa G, Bortolato M (2007) Effects of topiramate on the prepulse inhibition of the acoustic startle in rats. Neuropsychopharmacology 32:320–331PubMedCrossRefGoogle Scholar
  11. Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR (2001) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology 156:117–154PubMedCrossRefGoogle Scholar
  12. Grunze HCR (2008) The effectiveness of anticonvulsants in psychiatric disorders. Dialogues Clin Neurosci 10:77–89PubMedGoogle Scholar
  13. Kato T (2008) Molecular biology of bipolar disorder: a disease of ‘mood-stabilizing neurons’? Trends Neurosci 31:495–503PubMedCrossRefGoogle Scholar
  14. Kinney GG, Sur C, Burno M, Mallorga PJ, Williams JB, Figueroa DJ, Wittmann M, Lemaire W, Conn PJ (2003) The glycine transporter type 1 inhibitor N-[3-(4′-fluorophenyl)-3-(4′-phenylphenoxy) propyl]sarcosine potentiates NMDA receptor-mediated responses in vivo and produces an antipsychotic profile in rodent behavior. J Neurosci 23:7586–7591PubMedGoogle Scholar
  15. Ligneau X, Landais L, Perrin D, Piriou J, Uguen M, Denis E, Robert P, Parmentier R, Anaclet C, Lin J-S, Burban A, Arrang J-M, Schwartz JC (2007) Brain histamine and schizophrenia: potential therapeutic applications of H3-receptor inverse agonists studied with BF2.649. Biochem Pharmacol 73:1215–1224PubMedCrossRefGoogle Scholar
  16. Marino MJ, Conn PJ (2002) Direct and indirect modulation of the N-methyl D-aspartate receptor: potential for the development of novel antipsychotic therapies. Curr Drug Targets CNS Neurol Disord 1:1–16PubMedCrossRefGoogle Scholar
  17. McCaughran J Jr, Mahjubi E, Decena E, Hitzemann R (1997) Genetics, haloperidol-induced catalepsy and haloperidol-induced changes in acoustic startle and prepulse inhibition. Psychopharmacology 134:131–139PubMedCrossRefGoogle Scholar
  18. Olivier B, Leahy C, Mullen T, Paylor R, Groppi VE, Sarnyai Z, Brunner D (2001) The DBA/2J strain and prepulse inhibition of startle: a model system to test antipsychotics? Psychopharmacology 156:284–290PubMedCrossRefGoogle Scholar
  19. Ong JC, Brody SA, Large CH, Geyer MA (2005) An investigation of the efficacy of mood stabilizers in rodent models of prepulse inhibition. J Pharmacol Exp Therap 315:1163–1171CrossRefGoogle Scholar
  20. Paylor R, Crawley JN (1997) Inbred strain differences in prepulse inhibition of the mouse startle response. Psychopharmacology 132:169–180PubMedCrossRefGoogle Scholar
  21. Perry W, Minassian A, Feifel D, Braff DL (2001) Sensorimotor gating deficits in bipolar disorder patients with acute psychotic mania. Biol Psychiatry 50:418–424PubMedCrossRefGoogle Scholar
  22. Rogawski MA, Löscher W (2004a) The neurobiology of antiepileptic drugs. Nat Rev Neurosci 5:553–563PubMedCrossRefGoogle Scholar
  23. Rogawski MA, Löscher W (2004b) The neurobiology of antiepileptic drugs for the treatment of nonepileptic conditions. Nat Med 10:685–692PubMedCrossRefGoogle Scholar
  24. Rosenberg JM, Salzman C (2007) Update: new uses for lithium and anticonvulsants. CNS Spectr 12:831–841PubMedGoogle Scholar
  25. Sanacora G, Zarate CA, Krystal JH, Manji HK (2008) Targeting the glutamatergic system to develop novel, improved therapeutics for mood disorders. Nat Rev Drug Discov 7:426–437PubMedCrossRefGoogle Scholar
  26. Swerdlow NR, Braff DL, Geyer MA (2000) Animal models of deficient sensorimotor gating: what we know, what we think we know, and what we hope to know soon. Behav Pharmacol 11:185–204PubMedGoogle Scholar
  27. Swerdlow NR, Braff DL, Taaid N, Geyer MA (1994) Assessing the validity of an animal model of deficient sensorimotor gating in schizophrenic patients. Arch Gen Psychiatry 51:139–154PubMedGoogle Scholar
  28. Swerdlow NR, Platten A, Shoemaker J, Pitcher L, Auerbach P (2001) Effects of pergolide on sensorimotor gating of the startle reflex in rats. Psychopharmacology 158:230–240PubMedCrossRefGoogle Scholar
  29. Swerdlow NR, Shoemaker JM, Bongiovanni MJ, Neary AC, Tochen LS, Saint Marie RL (2007) Strain differences in the disruption of prepulse inhibition of startle after systemic and intra-accumbens amphetamine administration. Pharmacol Biochem Behav 87:1–10PubMedCrossRefGoogle Scholar
  30. Swerdlow NR, Weber M, Qu Y, Light GA, Braff DL (2008) Realistic expectations of prepulse inhibition in translational models for schizophrenia research. Psychopharmacology 199:331–388PubMedCrossRefGoogle Scholar
  31. Thase ME, Denko T (2008) Pharmacotherapy of mood disorders. Annu Rev Clin Psychol 4:53–91PubMedCrossRefGoogle Scholar
  32. Umeda K, Suemaru K, Todo N, Egashira N, Mishima K, Iwasaki K, Fujiwara M, Araki H (2006) Effects of mood stabilizers on the disruption of prepulse inhibition induced by apomorphine or dizocilpine in mice. Eur J Pharmacol 553:157–162PubMedCrossRefGoogle Scholar
  33. Yamada S, Harano M, Annoh N, Nakamura K, Tanaka M (1999) Involvement of serotonin 2A receptors in phencyclidine-induced disruption of prepulse inhibition of the acoustic startle in rats. Biol Psychiatry 46:832–838PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Dorothy G. Flood
    • 1
    Email author
  • Matthew Choinski
    • 1
  • Michael J. Marino
    • 1
  • Maciej Gasior
    • 1
  1. 1.CNS Biology, Worldwide Discovery ResearchCephalon, Inc.West ChesterUSA

Personalised recommendations