Advertisement

Psychopharmacology

, Volume 204, Issue 2, pp 375–378 | Cite as

MDMA: On the translation from rodent to human dosing

  • A. Richard GreenEmail author
  • Johan Gabrielsson
  • Charles A. Marsden
  • Kevin C. F. Fone
Commentary

The recent paper in this journal by Goni-Allo et al. (2008) was a welcome addition to the literature on the effects of MDMA in rodents because it examined functional changes and related them to the systemic exposure (e.g., plasma concentrations) of the drug. Such pharmacodynamic–pharmacokinetic (or quantitative pharmacology) studies are vital if we are to attempt to relate preclinical findings to the possible acute and long-term consequences of human ingestion of MDMA. The debate on whether preclinical findings on the serotonergic neurotoxicity induced by MDMA in the rodent brain can be extrapolated to human recreational usage has engaged scientists’ minds for around 20 years. Concerns have been raised as to whether the administered dose of MDMA typically used to cause neurotoxicity in rats allows any translational projections to be made as to the doses required to produce similar damage in the brains of humans following recreational use of the drug. These concerns are discussed in...

Keywords

Methamphetamine Peak Plasma Concentration Plasma Protein Binding Neurotoxicity MDMA 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Chu T, Kumagai Y, DiStefano EW, Cho AK (1996) Disposition of methylenedioxymethamphetamine and three metabolites in the brains of different rat strains and their possible roles in acute serotonin depletion. Biochem Pharmacol 51:789–796PubMedCrossRefGoogle Scholar
  2. Colado MI, Williams JL, Green AR (1995) The hyperthermic and neurotoxic effects of 'Ecstasy' (MDMA) and 3,4 methylenedioxyamphetamine (MDA) in the Dark Agouti (DA) rat, a model of the CYP2D6 poor metabolizer phenotype. Br J Pharmacol 115:1281–1289PubMedGoogle Scholar
  3. de la Torre R, Farré M (2004) Neurotoxicity of MDMA (ecstasy): the limitations of scaling from animals to humans. Trends Pharmacol Sci 25:505–508PubMedCrossRefGoogle Scholar
  4. de la Torre R, Farré M, Ortuno J, Mas M, Brenneisen R, Roset PN, Segura J, Cami J (2000) Non-linear pharmacokinetics of MDMA ('ecstasy') in humans. Br J Clin Pharmacol 49:104–109PubMedCrossRefGoogle Scholar
  5. de la Torre R, Farré M, Roset PN, Pizarro N, Abanandes S, Segura M, Segura J, Cami J (2004) Human pharmacology of MDMA, pharmacokinetics, metabolism and disposition. Ther Drug Monit 26:137–144PubMedCrossRefGoogle Scholar
  6. Easton N, Marsden CA (2006) Ecstasy: are animal data consistent between species and can they translate to humans? J Psychopharmacol 20:194–210PubMedCrossRefGoogle Scholar
  7. Esteban E, O’Shea E, Camarero J, Sanchez V, Green AR, Colado MI (2001) 3,4-methylenedioxymethamphetamine induces monoamine release but not toxicity when administered centrally at a concentration occurring following a peripherally injected neurotoxic dose. Psychopharmacology 154:251–260PubMedCrossRefGoogle Scholar
  8. Farré M, Abanades S, Roset PN, Peiro AM, Torrens M, O'Mathuna B, Segura M, de la Torre R (2007) Pharmacological interaction between 3,4-methylenedioxymethamphetamine (ecstasy) and paroxetine: pharmacological effects and pharmacokinetics. J Pharmacol Exp Ther 323:954–962PubMedCrossRefGoogle Scholar
  9. Garrett ER, Seyda K, Marroum P (1991) High performance liquid chromatography assays of the illicit designer drug “ecstasy”, a modified amphetamine, with applications to stability, partitioning and plasma protein binding. Acta Pharm Nord 3:9–14PubMedGoogle Scholar
  10. Goni-Allo B, Mathúna BÓ, Segura M, Puerta E, Lasheras B, de la Torre R, Aguirre N (2008) The relationship between core body temperature and 3,4-methylenedioxymethamphetamine metabolism in rats: implications for neurotoxicity. Psychopharmacology 197:263–278PubMedCrossRefGoogle Scholar
  11. Green AR, Mechan AO, Elliott JM, O’Shea E, Colado MI (2003) The pharmacology and clinical pharmacology of 3, 4-methylenedioxymethamphetamine (MDMA, “ecstasy”). Pharmacol Revs 55:463–508CrossRefGoogle Scholar
  12. Green AR, Sanchez V, O’Shea E, Saadat KS, Elliott JM, Colado MI (2004) Effect of ambient temperature and a prior neurotoxic dose of 3, 4-methylenedioxymethamphetamine (MDMA) on the hyperthermic response of rats to a single or repeated (‘binge’ ingestion) low dose of MDMA. Psychopharmacology 173:264–269PubMedCrossRefGoogle Scholar
  13. Green AR, Marsden CA, Fone KCF (2008) MDMA as a clinical tool: a note of caution. A response to Sessa and Nutt. J Psychopharmacol 22:929–931PubMedCrossRefGoogle Scholar
  14. Greene SL, Dargan PI, O’Connor N, Jones AL, Kerins M (2003) Multiple toxicity from 3,4-methylenedioxymethamphetamine (“ecstasy”). Am J Emerg Med 21:121–124PubMedCrossRefGoogle Scholar
  15. Hernandez-Lopez C, Farré M, Roset PN, Menoyo E, Pizarro N, Ortuno J, Torrens M, Cami J, de La Torre R (2002) 3,4-Methylenedioxymethamphetamine (ecstasy) and alcohol interactions in humans: psychomotor performance, subjective effects, and pharmacokinetics. J Pharmacol Exp Ther 300:236–244PubMedCrossRefGoogle Scholar
  16. Hiramatsu M, DiStefano E, Chang AS, Cho AK (1991) A pharmacokinetic analysis of 3,4-methylenedioxymethamphetamine effects on monoamine concentrations in brain dialysates. Eur J Pharmacol 204:135–140PubMedCrossRefGoogle Scholar
  17. Kolbrich EA Goodwin RS, Gorelick DA, Hayes RJ, Stein EA, Huestis MA (2008) Plasma pharmacokinetics of 3,4-methylenedioxymethamphetamine after controlled oral administration to young adults. Ther Drug Monit 30:320–332CrossRefGoogle Scholar
  18. Mas M, Farré M, de la Torre R, Roset PN, Ortuno J, Segura J, Cami J (1999) Cardiovascular and neuroendocrine effects and pharmacokinetics of 3, 4-methylenedioxymethamphetamine in humans. J Pharmacol Exp Ther 290:136–145PubMedGoogle Scholar
  19. Mathúna BÓ, Farré M, Rastami-Hodjegan A, Yang J, Cuyas E, Torrens M, Pardo R, Abanades S, Maluf S, Tucker GT, de la Torre R (2008) The consequences of 3,4-methylenedioxymethamphetamine induced CYP 2D6 inhibition in humans. J Clin Psychopharmacol 28:523–531CrossRefGoogle Scholar
  20. McCann UD, Ricaurte GA (2001) Caveat emptor: editors beware. Neuropsychopharmacology 24:333–336PubMedCrossRefGoogle Scholar
  21. Mordenti J, Chappell W (1989) The use of interspecies scaling in toxicokinetics. In: Yacogi A, Kelly J, Batra V (eds) Toxicokinetics and new drug development. Pergamon, New York, pp 42–96Google Scholar
  22. Morley-Fletcher S, Puopolo M, Gentili S, Gerara G, Macchia T, Laviola G (2004) Prenatal stress affects 3,4-methylenedioxymethamphetamine pharmacokinetics and drug induced motor alterations in adolescent female rats. Eur J Pharmacol 489:89–92PubMedCrossRefGoogle Scholar
  23. O’Shea E, Esteban B, Camarero J, Green AR, Colado MI (2001) Effect of GBR12909 and fluoxetine on the acute and long term changes induced by MDMA (“ecstasy”) on the 5-HT and dopamine concentrations in mouse brain. Neuropharmacology 40:65–71PubMedCrossRefGoogle Scholar
  24. Ricaurte GA, Yuan J, Hatzidimitriou G, Cord BJ, McCann UD (2002) Severe dopaminergic neurotoxicity in primates after a common recreational dose regimen of MDMA (“ecstasy”). Science 297:2260–2263PubMedCrossRefGoogle Scholar
  25. Ricaurte GA, Yuan J, Hatzidimitriou G, Cord BJ, McCann UD (2003) Retraction. Science 301:1479PubMedCrossRefGoogle Scholar
  26. Sessa B, Nutt DJ (2007) MDMA, politics and medical research: have we thrown out the baby with the bathwater? J Psychopharmacol 21:787–791PubMedCrossRefGoogle Scholar
  27. Sessa B, Nutt DJ (2008) Reply to letter by Green Marsden and Fone (2007) about Sessa and Nutt’s editorial (MDMA: baby with the bathwater). J Psychopharmacol 22:457–458PubMedCrossRefGoogle Scholar
  28. Upreti VV, Eddington ND (2007) Fluoxetine pretreatment effects pharmacokinetics of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) in rat. J Pharmaceut Sci 97:1593–1605CrossRefGoogle Scholar
  29. Valtier S, Phelix CF, Cody JT (2007) Analysis of MDMA and its metabolites in urine and plasma following a neurotoxic dose of MDMA. J Analyt Toxicol 31:138–143Google Scholar
  30. Yang J, Jamei M, Heydari A, Yeo KR, de la Torre R, Farré M, Tucker GT, Rostami-Hodjegan A (2006) Implications of mechanism-based inhibition of CYP2D6 for the pharmacokinetics and toxicity of MDMA. J Psychopharmacol 20:842–849PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • A. Richard Green
    • 1
    Email author
  • Johan Gabrielsson
    • 2
  • Charles A. Marsden
    • 1
  • Kevin C. F. Fone
    • 1
  1. 1.Institute of Neuroscience, School of Biomedical Sciences, Queen’s Medical CenterUniversity of NottinghamNottinghamUK
  2. 2.Discovery DMPK and BACAstraZeneca R and D MölndalMölndalSweden

Personalised recommendations