, Volume 204, Issue 2, pp 241–250 | Cite as

Local administration of sarizotan into the subthalamic nucleus attenuates levodopa-induced dyskinesias in 6-OHDA-lesioned rats

  • C. Marin
  • E. Aguilar
  • M. C. Rodríguez-Oroz
  • G. D. Bartoszyk
  • J. A. Obeso
Original Investigation



Dyskinesia affects the majority of levodopa-treated parkinsonian patients within 5–10 years of treatment with levodopa. Clinical and preclinical observations suggest that an increase in serotoninergic transmission can contribute to the appearance of dyskinesias. It is thus conceivable that a modulation of synaptic dopamine (DA) levels induced by the inhibition of serotonin (5-HT) release, as a consequence of 5-HT1A agonists administration, might alleviate dyskinesias.


Since 5-HT1A receptors are expressed in the subthalamic nucleus (STN), the aim of the present study was to assess the effect of the intrasubthalamic administration of sarizotan, a compound with full 5-HT1A agonist properties, on levodopa-induced dyskinesias in the 6-hydroxydopamine (6-OHDA) model of parkinsonism.

Materials and methods

Male Sprague–Dawley rats received a unilateral 6-OHDA administration in the nigrostriatal pathway. A test of apomorphine was performed to evaluate dopamine depletion. One week later, a cannula was implanted in the STN. Animals were treated with levodopa (6 mg/kg, i.p., twice at day) for 22 consecutive days. On day 23, several doses (1 ng, 10 ng, or 1 μg) of sarizotan were administered through the cannula to the STN. The higher doses of sarizotan effectively attenuated all levodopa-induced dyskinesias including axial, limb, and orolingual subtypes.


These results suggest that the STN is a target structure for the antidyskinetic action of sarizotan and indicate that drug-mediated modulation of STN activity may be an alternative option for the treatment of levodopa-induced dyskinesias in Parkinson’s disease.


Parkinson’s disease Dopamine Levodopa Dyskinesia Subthalamic nucleus Serotonin Sarizotan 



This research was supported by an unrestricted grant from Merck KGaA (Darmstadt, Germany). Esther Aguilar is partially financed by the program: Ayudas para Contratos de Apoyo a la Investigación en el Sistema Nacional de Salud from the Ministerio de Sanidad y Consumo of the Spanish Government.


  1. Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375PubMedCrossRefGoogle Scholar
  2. Alonso-Frech F, Zamarbide I, Alegre M, Rodríguez-Oroz MC, Guridi J, Manrique M, Valencia M, Artieda J, Obeso JA (2006) Slow oscillatory activity and levodopa-induced dyskinesias in Parkinson’s disease. Brain 129:1748–1757PubMedCrossRefGoogle Scholar
  3. Andrade R, Nicoll RA (1987) Pharmacologically distinct actions of serotonin on single pyramidal neurones of the rat hippocampus recorded in vitro. J Physiol 394:99–124PubMedGoogle Scholar
  4. Antonelli T, Fuxe K, Tomasini MC, Bartoszyk GD, Seyfried CA, Tanganelli S, Ferraro J (2005) Effects of sarizotan on the corticostriatal glutamate pathways. Synapse 58:193–199PubMedCrossRefGoogle Scholar
  5. Arai R, Karasaw N, Geffard M, Nagatsu T, Nagatsu I (1994) Immunohistochemical evidence that central serotonin neurons produce dopamine from exogenous l-dopa in the rat, with reference to involvement of aromatic l-amino acid decarboxylase. Brain Res 667:295–299PubMedCrossRefGoogle Scholar
  6. Arai R, Karasawa N, Nagatsu I (1996) Dopamine produced form l-Dopa is degraded by endogenous monoamine oxidase in neurons of the dorsal raphe nucleus of the rat: an immunohistochemical study. Brain Res 722:181–184PubMedCrossRefGoogle Scholar
  7. Ba M, Kong M, Ma G, Yang H, Lu G, Chen S, Liu Z (2007) Cellular and behavioral effects of 5-HT1A receptor agonist 8-OH-DPAT in a rat model of levodopa-induced motor complications. Brain Res 1127:177–184PubMedCrossRefGoogle Scholar
  8. Bara-Jimenez W, Bibbiani F, Morris MJ, Dimitriva T, Sherzai A, Mouradian MM, Chase TN (2005) Effects of serotonin 5-HT1A agonist in advanced Parkinson’s disease. Mov Disord 20:932–936PubMedCrossRefGoogle Scholar
  9. Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38:1083–1152PubMedCrossRefGoogle Scholar
  10. Bartoszyk GD (2006) Mechanism of antidyskinetic action of sarizotan: a basal ganglia circuitry hypothesis. Mov Disord 21(Suppl 15):S572–573Google Scholar
  11. Bartoszyk GD, van Amsterdam C, Greiner HE, Rautenberg W, Russ H, Seyfried CA (2004) Sarizotan, a serotonin 5-HT1A receptor agonist and dopamine receptor ligand. 1. Neurochemical profile. J Neural Transm 111:113–126PubMedCrossRefGoogle Scholar
  12. Bartoszyk GD, Kuzhikandathil EV (2005) Receptor pharmacology of the antidyskinetic drug sarizotan. Parkinsonism Relat Disord 11(Suppl 2):241Google Scholar
  13. Bartoszyk GD, van den Buuse M, Gerlach M, Riederer P (2006) Mechanism of the antidyskinetic efficacy of sarizotan in hemiparkinsonian rats. Mov Disord 21(Suppl 15):S495Google Scholar
  14. Bedard PJ, Gregoire L, Samadi P, Bartoszyk GD, Di Paolo T (2006) Sarizotan reduces dyskinesia and maintains antiparkinsonian efficacy of levodopa in MPTP monkeys. Soc Neurosci Abstract no. 175.10Google Scholar
  15. Bergman H, Wichmann T, Karmon B, DeLong MR (1994) The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. J Neurophysiol 72:507–520PubMedGoogle Scholar
  16. Bezard E, Brotchie JM, Gross CE (2001) Pathophysiology of levodopa-induced dyskinesia: potential for new therapies. Nature Rev Neurosci 2:577–588CrossRefGoogle Scholar
  17. Bibbiani F, Oh JD, Chase TN (2001) Sarizotan 5-HT1A agonist improves motor complications in rodent and primate parkinsonian models. Neurology 57:1829–1834PubMedGoogle Scholar
  18. Bishop C, Taylor JL, Kuhn DM, Eskow KL, Park JY, Walker PD (2006) MDMA and fenfluramine reduce l-dopa-induced dyskinesia via indirect 5-HT1A receptor stimulation. Eur J Neurosci 23:2669–2676PubMedCrossRefGoogle Scholar
  19. Blier P, Pneyro G, El Mansari M, Bergeron R, De Montigny C (1998) Role of somatodendritic 5-HT autoreceptors in modulating 5-HT neurotransmission. Ann NY Acad Sci 861:204–216PubMedCrossRefGoogle Scholar
  20. Bobillier P, Seguin S, Petijean F, Salvert D, Touret M, Jouvet M (1976) The raphe nuclei of the cat brain stem: a topographical atlas of their efferent projections as revealed by autoradiography. Brain Res 113:449–486PubMedCrossRefGoogle Scholar
  21. Breit S, Lessmann L, Unterbrink D, Popa RC, Gasser T, Schulz JB (2006) Lesion of the pedunculopontine nucleus reverses hyperactivity of the subthalamic nucleus and substantia nigra pars reticulata in a 6-hydroxydopamine rat model. Eur J Neurosci 24:2275–2282PubMedCrossRefGoogle Scholar
  22. Carlsson T, Carta M, Winkler C, Björklund A, Kirik D (2007) Serotonin neuron transplants exacerbate-dopa-induced dyskinesias in a rat model of Parkinson’s disease. Neurobiol Dis 27:8011–8022Google Scholar
  23. Carta M, Carlsson T, Kirik D, Björklund A (2007) Dopamine released from 5-HT terminals is the cause of l-dopa-induced dyskinesia in parkinsonian rats. Brain 130:1819–1833PubMedCrossRefGoogle Scholar
  24. Cenci MA, Lee CS, Bjöklund A (1998) l-Dopa-induced dyskinesia in the rat is associated with striatal overexpression of prodynophin-and glutamic acid decarboxylase mRNA. Eur J Neurosci 10:2694–2706PubMedCrossRefGoogle Scholar
  25. Cragg SJ, Baufreton J, Xue Y, Bolam JP, Bevan MD (2004) Restricted, synaptic release of dopamine in the subthalamic nucleus of the rat. Synaptic release of dopamine in the subthalamic nucleus. Eur J Neurosci 20:1788–1802PubMedCrossRefGoogle Scholar
  26. Davies MF, Deisz RA, Prince DA, Peroutka SJ (1987) Two distinct effects of 5-hydroxytryptamine on single cortical neurons. Brain Res 423:347–352PubMedCrossRefGoogle Scholar
  27. Dekundy A, Lundblad M, Danysz W, Cenci MA (2007) Modulation of l-dopa-induced abnormal involuntary movements by clinically tested compounds: further validation of the rat dyskinesia model. Behav Brain Res 179:76–89PubMedCrossRefGoogle Scholar
  28. DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285PubMedCrossRefGoogle Scholar
  29. DeLong MR, Crutcher MD, Georgopoulos AP (1985) Primate globus pallidus and subthalamic nucleus: functional organization. J Neurophysiol 53:530–543PubMedGoogle Scholar
  30. Dupre KB, Eskow KL, Negron G, Bishop C (2007) The differential effects of 5-HT1A receptor-stimulation on dopamine receptor-mediated abnormal involuntary movements and rotations in the primed hemiparkinsonian rat. Brain Res 1158:135–143PubMedCrossRefGoogle Scholar
  31. Dupre KB, Eskow KL, Steiniger A, Kiloueva A, Negron GE, Lormand L, Park JY, Bishop C (2008) Effects of coincident 5-HT1A receptor stimulation and NMDA receptor antagonism on l-dopa-induced dyskinesia and rotational behaviors in the hemi-parkinsonian rat. Psychopharmacology 199:99–108PubMedCrossRefGoogle Scholar
  32. Eskow KL, Gupta V, Alam S, Park JY, Bishop C (2007) The partial 5-HT1A agonist buspirone reduces the expression and development of l-dopa-induced dyskinesia in rats and improves L-dopa efficacy. Pharmacol Biochem Behav 87:306–314PubMedCrossRefGoogle Scholar
  33. Gerlach M, Bartoszyk GD, van den Buuse M, Schwarz J, Riederer P (2006a) Antidyskinetic efficacy of sarizotan. Mov Disord 21(Suppl. 13):S71–72Google Scholar
  34. Gerlach M, van den Buuse M, Bartoszyk G, Riederer P (2006b) Mechanism of the antidyskinetic efficacy of sarizotan in hemiparkinsonian rats. Int J Neuropsychopharmacol 9(Suppl 1):S121Google Scholar
  35. Gobert A, Lejeune F, Rivet JM, Audinot V, Newman-Tancredi A, Millan MJ (1995) Modulation of the activity of central serotoninergic neurons by novel serotonin 1A receptor agonists and antagonists: a comparison to adrenergic and dopaminergic neurons in rats. J Pharmacol Exp Ther 273:1032–1046PubMedGoogle Scholar
  36. Goetz XG, Poewe W, Rascol O, Sampaio C (2005) Evidence-based medical review update: pharmacological and surgical treatments of Parkinson’s disease: 2001–2004. Mov Disord 20:523–539PubMedCrossRefGoogle Scholar
  37. Hamani C, Saint-Cyr JA, Fraser J, Kaplitt M, Lozano AM (2004) The subthalamic nucleus in the context of movement disorders. Brain 127:4–20PubMedCrossRefGoogle Scholar
  38. Hassani OK, Francois C, Yelnik J, Feger J (1997) Evidence for a dopaminergic innervation of the subthalamic nucleus in the rat. Brain Res 749:88–94PubMedCrossRefGoogle Scholar
  39. Hernández A, Ibáñez-Sandoval O, Sierra A, Valdiosera R, Tapia D, Anaya V, Galarraga E, Bargas J, Aceves J (2006) Control of the subthalamic innervation of the rat globus pallidus by D2/3 and D4 dopamine receptors. J Neurophysiol 96:2877–2888PubMedCrossRefGoogle Scholar
  40. Hornykiewicz O (1975) Monoamines and parkinsonism. Natl Inst Drug Abuse Res Monogr Ser 3:13–21PubMedGoogle Scholar
  41. Hoyer D, Hannon JP, Martin GR (2002) Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 71:533–554PubMedCrossRefGoogle Scholar
  42. Jankovic J (2005) Motor fluctuations and dyskinesias in Parkinson’s disease: clinical manifestations. Mov Disord 20(Suppl 11):S11–S16PubMedCrossRefGoogle Scholar
  43. Kannari K, Yamato H, Shen H, Tomiyama M, Suda T, Matsunaga M (2001) Activation of 5-HT1A, but not 5-HT1B receptors attenuates an increase in extracellular dopamine derived from exogenously administered l-dopa in the striatum with nigrostriatal denervation. J Neurochem 76:1346–1353PubMedCrossRefGoogle Scholar
  44. Kish SJ, Tong J, Hornykiewicz O, Rajput A, Chang LJ, Guttman M, Furukawa Y (2008) Preferential loss of serotonin markers in caudate versus putamen in Parkinson’s disease. Brain 131:120–131PubMedGoogle Scholar
  45. Kreiss DS, Lucki I (1994) Differential regulation of serotonin (5-HT) release in the striatum and hippocampus by 5-HT1A autoreceptors of the dorsal and median raphe nuclei. J Pharmacol Exp Ther 269:1268–1279PubMedGoogle Scholar
  46. Krösser S, Neugebauer R, Chassard D, Kovar A (2007) Investigation of the impact of sarizotan on the pharmacokinetics of levodopa. Biopharm Drug Dispos 28:339–347PubMedCrossRefGoogle Scholar
  47. Kuzhikandathil EV, Bartoszyk GD (2006) The novel antidyskinetic drug sarizotan elicits different functional responses at human D2-like dopamine receptors. Neuropharmacology 51:873–884PubMedCrossRefGoogle Scholar
  48. Lanciego JL, Gonzalo N, Castle M, Sanchez-Escobar C, Aymerich MS, Obeso JA (2004) Thalamic innervation of striatal and subthalamic neurons projecting to the rat entopeduncular nucleus. Eur J Neurosci 19:1267–1277PubMedCrossRefGoogle Scholar
  49. Lavoie B, Parent A (1990) Immunohistochemical study of the serotoninergic innervation of the basal ganglia in the squirrel monkey. J Comp Neurol 299:1–16PubMedCrossRefGoogle Scholar
  50. Levy R, Dostrovsky JO, Lang AE, Sime E, Hutchinson WD, Lozano AM (2001) Effects of apomorphine on subthalamic nucleus and globus pallidus pars interna in patients with Parkinson’s disease. J Neurophysiol 86:249–260PubMedGoogle Scholar
  51. Liu J, Chu YX, Zhang QJ, Wang S, Feng J, Li Q (2007) 5.7-Dihydroxytryptamine lesion of the dorsal raphe nucleus alters neuronal activity of the subthalamic nucleus in normal and 6-hydroxydopamine-lesioned rats. Brain Res 1149:216–222PubMedCrossRefGoogle Scholar
  52. Lunblad M, Usiello A, Carta M, Hakansson K, Fisone G, Cenci MA (2005) Pharmacological validation of a mouse model of l-dopa-induced dyskinesia. Exp Neurol 194:66–75CrossRefGoogle Scholar
  53. Maeda T, Nagata K, Yoshida Y, Kannari K (2005) Serotoninergic hyperinnervation into the dopaminergic denervated striatum compensates for dopamine conversion from exogenously administered l-dopa. Brain Res 1046:230–233PubMedCrossRefGoogle Scholar
  54. Marin C, Aguilar E, Obeso JA (2006) Coadministration of entacapone with levodopa attenuates the severity of dyskinesias in hemiparkinsnian rats. Mov Dis 21:646–653CrossRefGoogle Scholar
  55. Matsumara M, Kojima J, Gardiner TW, Hikosaka O (1992) Visual and oculomotor functions of monkey subthalamic nucleus. J Neurophysiol 67:1615–1632Google Scholar
  56. Mori S, Takino T, Yamada H, Sano Y (1985) Imunohistochemical demonstration of serotonin nerve fibers in the subthalamic nucleus of the rat, cat and monkey. Neurosci Lett 62:305–309PubMedCrossRefGoogle Scholar
  57. Nambu A, Tokuno H, Hamada I, Kita H, Imanishi M, Akazawa J, Ikeuchi Y, Hasegawa N (2000) Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. J Neurophysiol 84:289–300PubMedGoogle Scholar
  58. Ng KY, Chase TN, Colburn RW, Kopin IJ (1970) l-Dopa-induced release of cerebral monoamines. Science 170:76–77PubMedCrossRefGoogle Scholar
  59. Ng KY, Colburn RW, Kopin IJ (1971) Effects of L-dopa on efflux of cerebral monamines from synaptosomes. Nature 230:331–332PubMedCrossRefGoogle Scholar
  60. Obeso JA, Olanow CW, Nutt JG (2000) Levodopa motor complications in Parkinson’s disease. Trends Neurosci 23(10 Suppl):S2–S7PubMedCrossRefGoogle Scholar
  61. Olanow CW, Damier P, Goetz CG et al (2004) Multicenter, open-label, trial of sarizotan in Parkinson’s disease patients with levodopa-induced dyskinesias (the SPLENDID Study). Clin Neuropharmacol 27:58–62PubMedCrossRefGoogle Scholar
  62. Papa SM, Engber TM, Kask AM, Chase TN (1994) Motor fluctuations in levodopa-treated parkinsonian rats: relation to lesion extent and treatment duration. Brain Res 662:69–74PubMedCrossRefGoogle Scholar
  63. Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic, New YorkGoogle Scholar
  64. Pompeiano M, Palacios JM, Mengod G (1994) Distribution of the serotonin 5-HT2 receptor family mRNAs: comparison between 5-HT2A and 5-HT2c receptors. Mol Brain Res 23:163–178PubMedCrossRefGoogle Scholar
  65. Rabiner EA, Gunn RN, Wilkins R, Sedman E, Grasby PM (2002) Evaluation of EMD 128130 occupancy of the 5-HT1A and the D2 receptor: a human PET study with [11C]WAY-100635 and [11C]raclopride. J Psychopharmacol 16:195–199PubMedCrossRefGoogle Scholar
  66. Rascol O, Brooks DJ, Korczyn AD et al (2000) A five-year study of the incidence of dyskinesia in patients with early Parkinson’s disease who were treated with ropinirole or levodopa. 056 Study Group. N Engl J Med 342:1484–1491PubMedCrossRefGoogle Scholar
  67. Santiago M, Matarredona ER, Machado A, Cano J (1998) Influence of serotoninergic drugs on in vivo dopamine extracellular output in rat striatum. J Neurosci Re 52:591–598CrossRefGoogle Scholar
  68. Schrag A, Quinn N (2000) Dyskinesias and motor fluctuations in Parkinson’s disease: a community-based study. Brain 123:2297–2305PubMedCrossRefGoogle Scholar
  69. Standford IM, Kantaria MA, Chahal KC, Loucif CL (2005) 5-Hydroxytryptamine induced excitation and inhibition in the subthalamic nucleus: action at 5-HT2C, 5-HT4 and 5-HT1A receptors. Neuropharmacology 49:1228–1234CrossRefGoogle Scholar
  70. Tanaka H, Kannari K, Maeda T, Tomiyama M, Suda T, Matsunaga M (1999) Role of serotoninergic neurons in L-Dopa-derived extracellular dopamine in the striatum of 6-OHDA-lesioned rats. Neuroreport 10:631–634PubMedGoogle Scholar
  71. Vitek JL, Giroux M (2000) Physiology of hypokinetic and hyperkinetic movement disorders: model for dyskinesia. Ann Neurol 47:S131–S140PubMedGoogle Scholar
  72. Wichmann T, DeLong MR (1996) Functional and pathophysiological models of the basal ganglia. Curr Opin Neurobiol 6:751–758CrossRefGoogle Scholar
  73. Wichmann T, DeLong MR (2003) Pathophysiology of Parkinson’s disease: the MPTP primate model of the huma disorder. Ann NY Acad Sci 991:199–213PubMedCrossRefGoogle Scholar
  74. Winkler Ch, Kirik D, Björklund A Cenci A (2002) l-Dopa-induced dyskinesia in the intrastriatal 6-hydroxydopamine model of Parkinson’s disease: relation to motor and cellular parameters of nigrostriatal function. Neurobiol Dis 10:165–186PubMedCrossRefGoogle Scholar
  75. Wright DE, Seroogy KB, Lundgren KH, Davis BM, Jennes L (1995) Comparative localization of serotonin 1 A, 1C, and 2 receptor subtype mRNAs in rat brain. J Comp Neurol 351:357–373PubMedCrossRefGoogle Scholar
  76. Xiang Z, Kitai ST (2005) Modulation of spontaneous firing in rat subthalamic neurons by 5-HT receptor subtypes. J Neurophysiol 93:1145–1157PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • C. Marin
    • 1
    • 3
    • 5
  • E. Aguilar
    • 1
  • M. C. Rodríguez-Oroz
    • 2
    • 3
  • G. D. Bartoszyk
    • 4
  • J. A. Obeso
    • 2
    • 3
  1. 1.Laboratori de Neurologia ExperimentalInstitut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
  2. 2.Department of Neurology and Neurosurgery, Neuroscience Center, Clínica Universitaria and Medical SchoolUniversity of Navarra and CIMAPamplonaSpain
  3. 3.Centro de Investigación en Redes sobre Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
  4. 4.Preclinical ResearchMerck SeronoDarmstadtGermany
  5. 5.Laboratori de Neurologia, Servei de NeurologiaHospital ClínicBarcelonaSpain

Personalised recommendations