, 204:103

The adenosine A2A antagonist MSX-3 reverses the effects of the dopamine antagonist haloperidol on effort-related decision making in a T-maze cost/benefit procedure

  • Allison M. Mott
  • Eric J. Nunes
  • Lyndsey E. Collins
  • Russell G. Port
  • Kelly S. Sink
  • Jörg Hockemeyer
  • Christa E. Müller
  • John D. Salamone
Original Investigation



Mesolimbic dopamine (DA) is a critical component of the brain circuitry regulating behavioral activation and effort-related processes. Research involving choice tasks has shown that rats with impaired DA transmission reallocate their instrumental behavior away from food-reinforced tasks with high response requirements and instead select less effortful food-seeking behaviors.


Previous work showed that adenosine A2A antagonism can reverse the effects of the DA antagonist haloperidol in an operant task that assesses effort-related choice. The present work used a T-maze choice procedure to assess the effects of adenosine A2A and A1 antagonism.

Materials and methods

With this task, the two arms of the maze have different reinforcement densities (four vs. two food pellets), and a vertical 44 cm barrier is positioned in the arm with the higher density, presenting the animal with an effort-related challenge. Untreated rats strongly prefer the arm with the high density of food reward and climb the barrier in order to obtain the food.


Haloperidol produced a dose-related (0.05–0.15 mg/kg i.p.) reduction in the number of trials in which the rats chose the high-barrier arm. Co-administration of the adenosine A2A receptor antagonist MSX-3 (0.75, 1.5, and 3.0 mg/kg i.p.), but not the A1 antagonist 8-cyclopentyl-1,3-dipropylxanthine (0.75, 1.5, and 3.0 mg/kg i.p.), reversed the effects of haloperidol on effort-related choice and latency.


Adenosine A2A and D2 receptors interact to regulate effort-related decision making, which may have implications for the treatment of psychiatric symptoms such as psychomotor slowing or anergia that can be observed in depression, parkinsonism, and other disorders.


Reinforcement Motivation Behavioral economics Reward A1 receptor Activation DPCPX Psychomotor slowing Anergia 


  1. Aubel B, Kayser V, Farré A, Hamon M, Bourgoin S (2007) Evidence for adenosine- and serotonin-mediated antihyperalgesic effects of cizolirtine in rats suffering from diabetic neuropathy. Neuropharmacology 52:487–496, doi:10.1016/j.neuropharm.2006.08.017 PubMedCrossRefGoogle Scholar
  2. Baldo BA, Kelley AE (2007) Discrete neurochemical coding of distinguishable motivational processes: insights from nucleus accumbens control of feeding. Psychopharmacology (Berl) 191:439–459, doi:10-1007/s00213-007-0741-z CrossRefGoogle Scholar
  3. Barbano MF, Cador M (2007) Opioids for hedonic experience and dopamine to get ready for it. Psychopharmacology 191:497–506, doi:10.1007/s00213-006-0521-1 PubMedCrossRefGoogle Scholar
  4. Capuron L, Pagnoni G, Demetrashvili MF, Lawson DH, Fornwalt FB, Woolwine B, Berns GS, Gregory S, Nemeroff CB, Miller AH (2007) Basal ganglia hypermetabolism and symptoms of fatigue during interferon-alpha therapy. Neuropsychopharmacology 32:2384–2392, doi:10.1038/sj.npp.1301362 PubMedCrossRefGoogle Scholar
  5. Correa M, Carlson BB, Wisniecki A, Salamone JD (2002) Nucleus accumbens dopamine and work requirements on interval schedules. Behav Brain Res 137:179–187, doi:10.1016/S0166-4328(02)00292-9 PubMedCrossRefGoogle Scholar
  6. Correa M, Wisniecki A, Betz A, Dobson DR, O'Neill MF, O'Neill MJ, Salamone JD (2004) The adenosine A2A antagonist KF17837 reverses the locomotor suppression and tremulous jaw movements induced by haloperidol in rats: possible relevance to parkinsonism. Behav Brain Res 148:47–54, doi:10.1016/S0166-4328(03)00178-5 PubMedCrossRefGoogle Scholar
  7. Cousins MS, Sokolowski JD, Salamone JD (1993) Different effects of nucleus accumbens and ventrolateral striatal dopamine depletions on instrumental response selection in the rat. Pharmacol Biochem Behav 46:953–951, doi:10.1016/0091-3057(93)90226-J CrossRefGoogle Scholar
  8. Cousins MS, Wei W, Salamone JD (1994) Pharmacological characterization of performance on a concurrent lever pressing/feeding choice procedure: effects of dopamine antagonist, cholinomimetic, sedative and stimulant drugs. Psychopharmacology 116:529–537, doi:10.1007/BF02247489 PubMedCrossRefGoogle Scholar
  9. Cousins MS, Atherton A, Turner L, Salamone JD (1996) Nucleus accumbens dopamine depletions alter relative response allocation in a T-maze cost/benefit task. Behav Brain Res 74:189–197, doi:10.1016/0166-4328(95)00151-4 PubMedCrossRefGoogle Scholar
  10. DeMet EM, Chicz-DeMet A (2002) Localization of adenosine A2A-receptors in rat brain with [3H]ZM-241385. Naunyn Schmiedebergs Arch Pharmacol 366:478–481, doi:10.1007/s00210-002-0613-3 PubMedCrossRefGoogle Scholar
  11. Demyttenaere K, De Fruyt J, Stahl SM (2005) The many faces of fatigue in major depressive disorder. Int J Neuropsychopharmacol 8:93–105, doi:10.1017/S1461145704004729 PubMedCrossRefGoogle Scholar
  12. Denk F, Walton ME, Jennings KA, Sharp T, Rushworth MF, Bannerman DM (2005) Differential involvement of serotonin and dopamine systems in cost–enefit decisions about delay or effort. Psychopharmacology 179:587–596, doi:10.1007/s00213-004-2059-4 PubMedCrossRefGoogle Scholar
  13. Farrar AM, Pereira M, Velasco F, Hockemeyer J, Muller CE, Salamone JD (2007) Adenosine A(2A) receptor antagonism reverses the effects of dopamine receptor antagonism on instrumental output and effort-related choice in the rat: implications for studies of psychomotor slowing. Psychopharmacology 191:579–586, doi:10.1007/s00213-006-0554-5 PubMedCrossRefGoogle Scholar
  14. Farrar AM, Font L, Pereira M, Mingote SM, Bunce JG, Chrobak JJ, Salamone JD (2008) Forebrain circuitry involved in effort-related choice: injections of the GABAA agonist muscimol into ventral pallidum alters response allocation in food-seeking behavior. Neuroscience 152:321–330, doi:10.1016/j.neuroscience.2007.12.034 PubMedCrossRefGoogle Scholar
  15. Ferré S (1997) Adenosine-dopamine interactions in the ventral striatum. Implications for the treatment of schizophrenia. Psychopharmacology 133:107–120, doi:10.1007/s002130050380 PubMedCrossRefGoogle Scholar
  16. Ferré S, Fredholm BB, Morelli M, Popoli P, Fuxe K (1997) Adenosine–dopamine receptor–receptor interactions as an integrative mechanism in the basal ganglia. Trends Neurosci 20:482–487, doi:10.1016/S0166-2236(97)01096-5 PubMedCrossRefGoogle Scholar
  17. Ferré S, Popoli P, Giménez-Llort L, Rimondini R, Müller CE, Strömberg I, Ögren SO, Fuxe K (2001) Adenosine/dopamine interaction: implications for the treatment of Parkinson's disease. Parkinsonism Relat Disord 7(3):235–241, doi:10.1016/S1353-8020(00)00063-8 PubMedCrossRefGoogle Scholar
  18. Ferré S, Ciruela F, Canals M, Marcellino D, Burgueno J, Casado V, Hillion J, Torvinen M, Fanelli F, Benedetti Pd P, Goldberg SR, Bouvier M, Fuxe K, Agnati LF, Lluis C, Franco R, Woods A (2004) Adenosine A2A-dopamine D2 receptor-receptor heteromers. Targets for neuro-psychiatric disorders. Parkinsonism Relat Disord 10:265–271, doi:10.1016/j.parkreldis.2004.02.014 PubMedCrossRefGoogle Scholar
  19. Ferre S, Ciruela F, Borycz J, Solinas M, Quarta D, Antoniou K, Quiroz C, Justinova Z, Lluis C, Franco R, Goldberg SR (2008) Adenosine A1–A2A receptor heteromers: new targets for caffeine in the brain. Front Biosci 13:2391–2399, doi:10.2741/2852 PubMedCrossRefGoogle Scholar
  20. Fink JS, Weaver DR, Rivkees SA, Peterfreund RA, Pollack AE, Adler EM, Reppert SM (1992) Molecular cloning of the rat A2A adenosine receptor: selective co-expression with D2 dopamine receptors in rat striatum. Brain Res Mol Brain Res 14:186–195, doi:10.1016/0169-328X(92)90173-9 PubMedCrossRefGoogle Scholar
  21. Floresco SB, Ghods-Sharifi S (2007) Amygdala-prefrontal cortical circuitry regulates effort-based decision making. Cereb Cortex 17:251–260, doi:10.1093/cercor/bhj143 PubMedCrossRefGoogle Scholar
  22. Font L, Mingote S, Farrar AM, Pereira M, Worden L, Stopper C, Port RG, Salamone JD (2008) Intra-accumbens injections of the adenosine A(2A) agonist CGS 21680 affect effort-related choice behavior in rats. Psychopharmacology 199:515–526, doi:10.1007/s00213-008-1174-z PubMedCrossRefGoogle Scholar
  23. Fredholm BB, Lindström K (1999) Autoradiographic comparison of the potency of several structurally unrelated adenosine receptor antagonists at adenosine A1 and A(2A) receptors. Eur J Pharmacol 380:197–202PubMedCrossRefGoogle Scholar
  24. Fuxe K, Agnati LF, Jacobsen K, Hillion J, Canals M, Torvinen M, Tinner-Staines B, Staines W, Rosin D, Terasmaa A, Popoli P, Leo G, Vergoni V, Lluis C, Ciruela F, Franco R, Ferré S (2003) Receptor heteromerization in adenosine A2A receptor signaling: relevance for striatal function and Parkinson’s disease. Neurology 61:S19–S23PubMedGoogle Scholar
  25. Hauber W, Munkel M (1997) Motor depressant effects mediated by dopamine D2 and adenosine A2A receptors in the nucleus accumbens and the caudate-putamen. Eur J Pharmacol 323:127–131, doi:10.1016/S0014-2999(97)00040-X PubMedCrossRefGoogle Scholar
  26. Hauber W, Neuscheler P, Nagel J, Müller CE (2001) Catalepsy induced by a blockade of dopamine D1 or D2 receptors was reversed by a concomitant blockade of adenosine A2A receptors in the caudate putamen of rats. Eur J Neurosci 14:1287–1293, doi:10.1046/j.0953-816x.2001.01759.x PubMedCrossRefGoogle Scholar
  27. Hillion J, Canals M, Torvinen M, Casado V, Scott R, Terasmaa A, Hansson A, Watson S, Olah ME, Mallol J, Canela EI, Zoli M, Agnati LF, Ibanez CF, Lluis C, Franco R, Ferré S, Fuxe K (2002) Coaggregation, cointernalization, and codesensitization of adenosine A2A receptors and dopamine D2 receptors. J Biol Chem 277:18091–18097, doi:10.1074/jbc.M107731200 PubMedCrossRefGoogle Scholar
  28. Hockemeyer J, Burbiel JC, Müller CE (2004) Multigram-scale syntheses, stability, and photoreactions of A2A adenosine receptor antagonists with 8-styrylxanthine structure: potential drugs for Parkinson’s disease. J Org Chem 69:3308–3318, doi:10.1021/jo0358574 PubMedCrossRefGoogle Scholar
  29. Ishiwari K, Madson LJ, Farrar AM, Mingote SM, Valenta JP, DiGianvittorio MD, Frank LE, Correa M, Hockemeyer J, Muller C, Salamone JD (2007) Injections of the selective adenosine A2A antagonist MSX-3 into the nucleus accumbens core attenuate the locomotor suppression induced by haloperidol in rats. Behav Brain Res 178:190–199, doi:10.1016/j.bbr.2006.12.020 PubMedCrossRefGoogle Scholar
  30. Kelley AE, Baldo BA, Pratt WE, Will MJ (2005) Corticostriatal-hypothalamic circuitry and food motivation: integration of energy, action and reward. Physiol Behav 86:773–795, doi:10.1016/j.physbeh.2005.08.066 PubMedCrossRefGoogle Scholar
  31. Keppel G (1991) Design and analysis: a researcher’s handbook. Prentice-Hall, Englewood Cliffs, NJGoogle Scholar
  32. Koch M, Schmid A, Schnitzler HU (2000) Role of muscles accumbens dopamine D1 and D2 receptors in instrumental and Pavlovian paradigms of conditioned reward. Psychopharmacology 152:67–73, doi:10.1007/s002130000505 PubMedCrossRefGoogle Scholar
  33. Lobato KR, Binfaré RW, Budni J, Rosa AO, Santos AR, Rodrigues AL (2008) Involvement of the adenosine A1 and A2A receptors in the antidepressant-like effect of zinc in the forced swimming test. Prog Neuropsychopharmacol Biol Psychiatry 32:994–999, doi:10.1016/j.pnpbp.2008.01.012 PubMedCrossRefGoogle Scholar
  34. Maione S, de Novellis V, Cappellacci L, Palazzo E, Vita D, Luongo L, Stella L, Franchetti P, Marabese I, Rossi F, Grifantini M (2007) The antinociceptive effect of 2-chloro-2′-C-methyl-N6-cyclopentyladenosine (2′-Me-CCPA), a highly selective adenosine A1 receptor agonist, in the rat. Pain 131:281–292, doi:10.1016/j.pain.2007.01.013 PubMedCrossRefGoogle Scholar
  35. Majer M, Welberg LA, Capuron L, Pagnoni G, Raison CL, Miller AH (2008) IFN-alpha-induced motor slowing is associated with increased depression and fatigue in patients with chronic hepatitis C. Brain Behav Immun 22:870–880, doi:10.1016/j.bbi.2007.12.009 PubMedCrossRefGoogle Scholar
  36. Mandryk M, Fidecka S, Poleszak E, Malec D (2005) Participation of adenosine system in the ketamine-induced motor activity in mice. Pharmacol Reports 57:55–60Google Scholar
  37. Marston HM, Finlayson K, Maemoto T, Olverman HJ, Akahane A, Sharkey J, Butcher SP (1998) Pharmacological characterization of a simple behavioral response mediated selectively by central adenosine A1 receptors, using in vivo and in vitro techniques. J Pharmacol Exp Ther 285:1023–1030PubMedGoogle Scholar
  38. Martin-Iverson MT, Wilke D, Fibiger HC (1987) Effect of haloperidol and d-amphetamine on perceived quantity of food and tones. Psychopharmacology 93:374–381PubMedCrossRefGoogle Scholar
  39. Mingote S, Weber SM, Ishiwari K, Correa M, Salamone JD (2005) Ratio and time requirements on operant schedules: effort-related effects of nucleus accumbens dopamine depletions. Eur J Neurosci 21:1749–1757PubMedCrossRefGoogle Scholar
  40. Mingote S, Font L, Farrar AM, Vontell R, Worden L, Stopper CM, Port RG, Sink KS, Bunce JG, Chrobak JJ, Salamone JD (2008) Nucleus accumbens adenosine A2A receptors regulate exertion of effort by acting on the ventral striatopallidal pathway. J Neurosci 28:9037–9046PubMedCrossRefGoogle Scholar
  41. Morelli M, Pinna A (2002) Interaction between dopamine and adenosine A2A receptors as a basis for the treatment of Parkinson’s disease. Neurol Sci 22:71–72, doi:10.1007/s100720170052 CrossRefGoogle Scholar
  42. Nowend KL, Arizzi M, Carlson BB, Salamone JD (2001) D1 or D2 antagonism in nucleus accumbens core or dorsomedial shell suppresses lever pressing for food but leads to compensatory increases in chow consumption. Pharmacol Biochem Behav 69:373–382, doi:10.1016/S0091-3057(01)00524-X PubMedCrossRefGoogle Scholar
  43. O'Neill M, Brown VJ (2006) The effect of the adenosine A2A antagonist KW-6002 on motor and motivational processes in the rat. Psychopharmacology 184:46–55, doi:10.1007/s00213-005-0240-z PubMedCrossRefGoogle Scholar
  44. Phillips PE, Walton ME, Jhou TC (2007) Calculating utility: preclinical evidence for cost–benefit analysis by mesolimbic dopamine. Psychopharmacology 191:483–495, doi:10.1007/s00213-006-0626-6 PubMedCrossRefGoogle Scholar
  45. Pinna A, Wardas J, Cozzolino A, Morelli M (1999) Involvement of adenosine A2A receptors in the induction of c-fos expression by clozapine and haloperidol. Neuropsychopharmacol 20:44–51, doi:10.1016/S0893-133X(98)00051-7 CrossRefGoogle Scholar
  46. Pinna A, Wardas J, Simola N, Morelli M (2005) New therapies for the treatment of Parkinson’s disease: adenosine A2A receptor antagonists. Life Sci 77:3259–3267, doi:10.1016/j.lfs.2005.04.029 PubMedCrossRefGoogle Scholar
  47. Prediger RD, Takahashi RN (2005) Modulation of short-term social memory in rats by adenosine A1 and A(2A) receptors. Neurosci Lett 376:160–165, doi:10.1016/j.neulet.2004.11.049 PubMedCrossRefGoogle Scholar
  48. Prediger RD, Fernandes D, Takahashi RN (2005) Blockade of adenosine A2A receptors reverses short-term social memory impairments in spontaneously hypertensive rats. Behav Brain Res 159:197–205, doi:10.1016/j.bbr.2004.10.017 PubMedCrossRefGoogle Scholar
  49. Robbins TW, Everitt BJ (2007) A role for mesencephalic dopamine in activation: commentary on Berridge (2006). Psychopharmacology 191:433–437, doi:10.1007/s00213-006-0528-7 PubMedCrossRefGoogle Scholar
  50. Salamone JD, Correa M (2002) Motivational views of reinforcement: implications for understanding the behavioral functions of nucleus accumbens dopamine. Behav Brain Res 137:3–25, doi:10.1016/S0166-4328(02)00282-6 PubMedCrossRefGoogle Scholar
  51. Salamone JD, Steinpreis RE, McCullough LD, Smith P, Grebel D, Mahan K (1991) Haloperidol and nucleus accumbens dopamine depletion suppress lever pressing for food but increase free food consumption in a novel food choice procedure. Psychopharmacology 104:515–521, doi:10.1007/BF02245659 PubMedCrossRefGoogle Scholar
  52. Salamone JD, Cousins MS, Bucher S (1994) Anhedonia or anergia? Effects of haloperidol and nucleus accumbens dopamine depletion on instrumental response selection in a T-maze cost/benefit procedure. Behav Brain Res 65:221–229, doi:10.1016/0166-4328(94)90108-2 PubMedCrossRefGoogle Scholar
  53. Salamone JD, Cousins MS, Snyder BJ (1997) Behavioral functions of nucleus accumbens dopamine: empirical and conceptual problems with the anhedonia hypothesis. Neurosci Biobehav Rev 21:341–359, doi:10.1016/S0149-7634(96)00017-6 PubMedCrossRefGoogle Scholar
  54. Salamone JD, Arizzi M, Sandoval MD, Cervone KM, Aberman JE (2002) Dopamine antagonsts alter response allocation but do not suppress appetite for food in rats: Contrast between the effects of SKF 83566, raclopride and fenfluramine on a concurrent choice task. Psychopharmacology 160:371–380, doi:10.1007/s00213-001-0994-x PubMedCrossRefGoogle Scholar
  55. Salamone JD, Correa M, Mingote SM, Weber SM (2005) Beyond the reward hypothesis: alternative functions of nucleus accumbens dopamine. Curr Opin Pharmacol 5:34–41, doi:10.1016/j.coph.2004.09.004 PubMedCrossRefGoogle Scholar
  56. Salamone JD, Correa M, Mingote SM, Weber SM, Farrar AM (2006) Nucleus accumbens dopamine and the forebrain circuitry involved in behavioral activation and effort-related decision making: implications for understanding anergia and psychomotor slowing in depression. Curr Psychiatr Rev 2:267–280, doi:10.2174/157340006776875914 CrossRefGoogle Scholar
  57. Salamone JD, Correa M, Farrar A, Mingote SM (2007) Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology 191:461–482, doi:10.1007/s00213-006-0668-9 PubMedCrossRefGoogle Scholar
  58. Salamone JD, Betz AJ, Ishiwari K, Felsted J, Madson L, Mirante B, Clark K, Font L, Korbey S, Sager TN, Hockemeyer J, Muller CE (2008a) Tremorolytic effects of adenosine A2A antagonists: implications for parkinsonism. Front Biosci 13:3594–3605, doi:10.2741/2952 PubMedCrossRefGoogle Scholar
  59. Salamone JD, Ishiwari K, Betz AJ, Farrar AM, Mingote SM, Font L, Hockemeyer J, Müller CE, Correa M (2008b) Dopamine/adenosine interactions related to locomotion and tremor in animal models: Possible relevance to parkinsonism. Parkinsonism Relat Disord 14:S130–S134, doi:10.1016/j.parkreldis.2008.04.017 PubMedCrossRefGoogle Scholar
  60. Schiffmann SN, Jacobs O, Vanderhaeghen JJ (1991) Striatal restricted adenosine A2A receptor (RDC8) is expressed by enkephalin but not by substance P neurons: an in situ hybridization histochemistry study. J Neurochem 57:1062–1071, doi:10.1111/j.1471-4159.1991.tb08257.x PubMedCrossRefGoogle Scholar
  61. Schweimer J, Saft S, Hauber W (2005) Involvement of catecholamine neurotransmission in the rat anterior cingulate in effort-related decision making. Behav Neurosci 119:1687–1692, doi:10.1037/0735-7044.119.6.1687 PubMedCrossRefGoogle Scholar
  62. Sink KS, Vemuri VK, Olszewska T, Makriyannis A, Salamone JD (2008) Cannabinoid CB1 antagonists and dopamine antagonists produce different effects on a task involving response allocation and effort-related choice in food-seeking behavior. Psychopharmacology 196:565–574, doi:10.1007/s00213-007-0988-4 PubMedCrossRefGoogle Scholar
  63. Sokolowski JD, Salamone JD (1998) The role of nucleus accumbens dopamine in lever pressing and response allocation: Effects of 6-OHDA injected into core and dorsomedial shell. Pharmacol Biochem Behav 59:557–566, doi:10.1016/S0091-3057(97)00544-3 PubMedCrossRefGoogle Scholar
  64. Solinas M, Ferré S, Antoniou K, Quarta D, Justinova Z, Hockemeyer J, Pappas LA, Segal PN, Wertheim C, Müller CE, Goldberg SR (2005) Involvement of adenosine A1 receptors in the discriminative-stimulus effects of caffeine in rats. Psychopharmacology 179:576–586PubMedCrossRefGoogle Scholar
  65. Svenningsson P, Le Moine C, Fisone G, Fredholm BB (1999) Distribution, biochemistry and function of striatal adenosine A2A receptors. Prog Neurobiol 59:355–396, doi:10.1016/S0301-0082(99)00011-8 PubMedCrossRefGoogle Scholar
  66. Takahashi RN, Pamplona FA, Prediger RD (2008) Adenosine receptor antagonists for cognitive dysfunction: a review of animal studies. Front Biosci 13:2614–2632, doi:10.2741/2870 PubMedCrossRefGoogle Scholar
  67. Van den Bos R, van der Harst J, Jonkman S, Schilders M, Spruijt B (2006) Rats assess costs and benefits according to an internal standard. Behav Brain Res 171:350–354, doi:10.1016/j.bbr.2006.03.035 PubMedCrossRefGoogle Scholar
  68. Walton ME, Bannerman DM, Alterescu K, Rushworth MF (2003) Functional specialization within medial frontal cortex of the anterior cingulate for evaluating effort-related decisions. J Neurosci 23:6475–6479PubMedGoogle Scholar
  69. Walton ME, Kennerley SW, Bannerman DM, Phillips PE, Rushworth MF (2006) Weighing up the benefits of work: behavioral and neural analyses of effort-related decision making. Neural Netw 19:1302–1314, doi:10.1016/j.neunet.2006.03.005 PubMedCrossRefGoogle Scholar
  70. Wardas J, Konieczny J, Lorenc-Koci E (2001) SCH 58261, an A2A adenosine receptor antagonist, counteracts parkinsonian-like muscle rigidity in rats. Synapse 41:160–171, doi:10.1002/syn.1070 PubMedCrossRefGoogle Scholar
  71. Worden LT, Shariari M, Farrar AM, Sink KS, Hockemeyer J, Muller C, Salamone JD (2009) The adenosine A2A antagonist MSX-3 reverses the effort-related effects of dopamine blockade: differential interaction with D1 and D2 family antagonists. Psychopharmacology (in press)Google Scholar
  72. Yurgelun-Todd DA, Sava S, Dahlgren MK (2007) Mood disorders. Neuroimaging Clin N Am 17:511–521, doi:10.1016/j.nic.2007.08.001 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Allison M. Mott
    • 1
  • Eric J. Nunes
    • 1
  • Lyndsey E. Collins
    • 1
  • Russell G. Port
    • 1
  • Kelly S. Sink
    • 1
  • Jörg Hockemeyer
    • 2
  • Christa E. Müller
    • 2
  • John D. Salamone
    • 1
    • 3
  1. 1.Department of PsychologyUniversity of ConnecticutStorrsUSA
  2. 2.Pharmazeutisches Institut, Pharmazeutische Chemie IUniversität BonnBonnGermany
  3. 3.Division of Behavioral Neuroscience, Department of PsychologyUniversity of ConnecticutStorrsUSA

Personalised recommendations