Advertisement

Psychopharmacology

, 202:53 | Cite as

Methylthioninium chloride reverses cognitive deficits induced by scopolamine: comparison with rivastigmine

  • Serena Deiana
  • Charles R. Harrington
  • Claude M. Wischik
  • Gernot RiedelEmail author
Original Investigation

Abstract

Rationale

The cholinergic system is involved in cognition as well as in age-related cognitive decline and Alzheimer disease (AD). Cholinergic enhancers ameliorate AD symptoms and represent the main current therapy for AD. MTC (Methylthioninium chloride), an antioxidant with metabolism-enhancing properties may be a novel candidate with pro-cognitive capacities.

Objectives

This study was performed: (1) to assess the pro-cognitive efficacy of MTC and establish its dose-response; (2) to compare the efficacy of MTC with rivastigmine and (3) to determine the potential for combination therapy by co-administration of MTC and rivastigmine.

Methods

Spatial cognition of female NMRI mice was tested in a reference memory water maze task. Subjects received intra-peritoneal injections of scopolamine (0.5 mg/kg) followed by vehicle, and/or MTC and/or rivastigmine (0.15–4 mg/kg MTC; 0.1–0.5 mg/kg rivastigmine) in mono or combination treatment.

Results

Scopolamine treatment prevented spatial learning in NMRI female mice and the deficit was reversed by both rivastigmine and MTC in a dose-dependent manner. Mono-therapy with high doses of rivastigmine (>0.5 mg/kg) caused severe side effects but MTC was safe up to 4 mg/kg. Co-administration of sub-effective doses of both drugs acted synergistically in reversing learning deficits and scopolamine-induced memory impairments.

Conclusions

In our model, MTC reversed the spatial learning impairment. When combined with the ChEI rivastigmine, the effect of MTC appeared to be amplified indicating that combination therapy could potentially improve not only symptoms but also contribute beneficially to neuronal metabolism by minimising side effects at lower doses.

Keywords

Methylthioninium chloride Methylene blue Rivastigmine Scopolamine Water maze Amnesia Combination study Synergy Acetylcholine receptor Spatial learning NMRI mouse Cognitive enhancer 

Notes

Acknowledgement

This work was supported by TauRx Therapeutics Ltd., Singapore.

References

  1. AD2000 Collaborative Group (2004) Long-term donepezil treatment in 565 patients with Alzheimer’s disease (AD2000): randomised double-blind trial. Lancet 363:2105–2115CrossRefGoogle Scholar
  2. Arnaiz E, Jelic V, Almkvist O, Wahlund LO, Winblad B, Valind S, Nordberg A (2001) Impaired cerebral glucose metabolism and cognitive functioning predict deterioration in mild cognitive impairment. Neuroreport 12:851–855PubMedCrossRefGoogle Scholar
  3. Ballard TM, McAllister KH (1999) The acetylcholinesterase inhibitor, ENA 713 (Exelon), attenuates the working memory impairment induced by scopolamine in an operant DNMTP task in rats. Psychopharmacology (Berl) 146(1):10–18CrossRefGoogle Scholar
  4. Bartus RT, Dean RL 3rd, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217(4558):408–414PubMedCrossRefGoogle Scholar
  5. Beglinger LJ, Gaydos BL, Kareken DA, Tangphao-Daniels O, Siemers ER, Mohs RC (2004) Neuropsychological test performance in healthy volunteers before and after donepezil administration. J Psychopharmacolar 18(1):102–108CrossRefGoogle Scholar
  6. Beglinger LJ, Tangphao-Daniels O, Kareken DA, Zhang L, Mohs R, Siemers ER (2005) Neuropsychological test performance in healthy elderly volunteers before and after donepezil administration: a randomized, controlled study. J Clin Psychopharmacol 25(2):159–165PubMedCrossRefGoogle Scholar
  7. Bejar C, Wang RH, Weinstock M (1999) Effect of rivastigmine on scopolamine-induced memory impairment in rats. Eur J Pharmacol 383(3):231–240PubMedCrossRefGoogle Scholar
  8. Birks J (2006) Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database of Systematic Reviews Issue 1, Article No. CD005593Google Scholar
  9. Blokland A (1998) Involvement of striatal cholinergic receptors in reaction time and fixed interval responding in rats. Brain Res Bull 45:21–25PubMedCrossRefGoogle Scholar
  10. Braida D, Paladini E, Griffini P, Lamperti M, Maggi A, Sala M (1996) An inverted U-shaped curve for heptylphysostigmine on radial maze performance in rats: comparison with other cholinesterase inhibitors. Eur J Pharmacol 302:13–20PubMedCrossRefGoogle Scholar
  11. Buxton A, Callan OA, Blatt EJ, Wong EH, Fontana DJ (1994) Cholinergic agents and delay-dependent performance in the rat. Pharmacol Biochem Behav 49(4):1067–1073PubMedCrossRefGoogle Scholar
  12. Cachard-Chastel M, Devers S, Sicsic S, Langlois M, Lezoualc’h F, Gardier AM, Belzung C (2008) Prucalopride and donepezil act synergistically to reverse scopolamine-induced memory deficit in C57Bl/6j mice. Behav Brain Res 187(2):455–461PubMedCrossRefGoogle Scholar
  13. Callaway NL, Riha PD, Wrubel KM, McCollum D, Gonzalez-Lima F (2002) Methylene blue restores spatial memory retention impaired by an inhibitor of cytochrome oxidase in rats. Neurosci Lett 332(2):83–86PubMedCrossRefGoogle Scholar
  14. Callaway NL, Riha PD, Bruchey AK, Munshi Z, Gonzalez-Lima F (2004) Methylene blue improves brain oxidative metabolism and memory retention in rats. Pharmacol Biochem Behav 77(1):175–181PubMedCrossRefGoogle Scholar
  15. Chen Z, Xu AJ, Li R, Wei EQ (2002) Reversal of scopolamine-induced spatial memory deficits in rats by TAK-147. Acta Pharmacol Sin 23(4):355–360PubMedGoogle Scholar
  16. de Angelis L, Furlan C (1995) The effects of ascorbic acid and oxiracetam on scopolamine-induced amnesia in a habituation test in aged mice. Nuerobiol Learn Mem 64(2):119–124CrossRefGoogle Scholar
  17. de Bruin N, Pouzet B (2006) Beneficial effects of galantamine on performance in the object recognition task in Swiss mice: deficits induced by scopolamine and by prolonging the retention interval. Pharmacol Biochem Behav 85(1):253–260PubMedCrossRefGoogle Scholar
  18. De Leon MJ, Harris SH, George AE, Reisberg B, Christman DR, Kricheff II, Wolf AP (1983) Computed tomography and positron emission transaxial tomography evaluation of normal aging and Alzheimer’s disease. J Cereb Blood Flow Metab 3:391–394PubMedGoogle Scholar
  19. Deutsch SI, Rosse RB, Paul SM, Tomasino V, Koetzner L, Morn CB, Mastropaolo J (1996) 7-Nitroindazole and methylene blue, inhibitors of neuronal nitric oxide synthase and NO-stimulated guanylate cyclase, block MK-801-elicited behaviors in mice. Neuropsychopharmacology 15(1):37–43PubMedCrossRefGoogle Scholar
  20. Drachman DA, Leavitt J (1974) Human memory and the cholinergic system: a relationship to aging? Arch Neurol 30:113–121PubMedGoogle Scholar
  21. El-Sherbiny DA, Khalifa AE, Attia AS, Eldenshary Eel D (2003) Hypericum perforatum extract demonstrates antioxidant properties against elevated rat brain oxidative status induced by amnestic dose of scopolamine. Pharmacol Biochem Behav 76:525–533PubMedCrossRefGoogle Scholar
  22. Eriksson P, Fredriksson A (1991) Neurotoxic effects of two different pyrethroids, bioallethrin and deltamethrin, on immature and adult mice: changes in behavioral and muscarinic receptor variables. Toxicol Appl Pharmacol 108(1):78–85PubMedCrossRefGoogle Scholar
  23. Eriksson TM, Madjid N, Elvander-Tottie E, Stiedl O, Svenningsson P, Ogren SO (2008) Blockade of 5-HT(1B) receptors facilitates contextual aversive learning in mice by disinhibition of cholinergic and glutamatergic neurotransmission. Neuropharmacology 54(7):1041–1050PubMedCrossRefGoogle Scholar
  24. Espinosa-Raya J, Espinoza-Fonseca M, Picazo O, Trujillo-Ferrara J (2007) Effect of a M1 allosteric modulator on scopolamine-induced amnesia. Med Chem 3(1):7–11PubMedCrossRefGoogle Scholar
  25. Fan Y, Hu J, Li J, Yang Z, Xin X, Wang J, Ding J, Geng M (2005) Effect of acidic oligosaccharide sugar chain on scopolamine-induced memory impairment in rats and its related mechanisms. Neurosci Lett 374:222–226PubMedCrossRefGoogle Scholar
  26. Gibson GE, Blass JP (1976) Impaired synthesis of acetylcholine in brain accompanying mild hypoxia and hypoglycaemia. J Neurochem 27:37–42PubMedCrossRefGoogle Scholar
  27. Gonzalez-Lima F, Bruchey AK (2004) Extinction memory improvement by the metabolic enhancer methylene blue. Learn Mem 11(5):633–640PubMedCrossRefGoogle Scholar
  28. Gonzalez-Lima F, Valla J, Matos-Collazo S (1997) Quantitative cytochemistry of cytochrome oxidase and cellular morphometry of the human inferior colliculus in control and Alzheimer’s patients. Brain Res 752:117–126PubMedCrossRefGoogle Scholar
  29. Han CJ, Pierre-Louis J, Scheff A, Robinson JK (2000) A performance-dependent adjustment of the retention interval in a delayed non-matching-to-position paradigm differentiates effects of amnestic drugs in rats. Eur J Pharmacol 403(1–2):87–93PubMedCrossRefGoogle Scholar
  30. Hulme EC, Lu ZL, Saldanha JW, Bee MS (2003) Structure and activation of muscarinic acetylcholine receptors. Biochem Soc Trans 31(Pt 1):29–34PubMedGoogle Scholar
  31. Ito T, Akiyama N, Ogawa T, Satake T, Kato T, Sugiyama S, Ozawa T (1989) Changes in myocardial mitochondrial electron transport activity in rats administered with acetylcholinesterase inhibitor. Biochem Biophys Res Commun 164(3):997–1002PubMedCrossRefGoogle Scholar
  32. Janas AM, Cunningham SC, Duffy KB, Devan BD, Greig NH, Holloway HW, Yu QS, Markowska AL, Ingram DK, Spangler EL (2005) The cholinesterase inhibitor, phenserine, improves Morris water maze performance of scopolamine-treated rats. Life Sci 76(10):1073–1081PubMedCrossRefGoogle Scholar
  33. Kaduszkiewicz H, Zimmermann T, Beck-Bornholdt HP, van den Bussche H (2005) Cholinesterase inhibitors for patients with Alzheimer’s disease: systematic review of randomised clinical trials. BMJ 331:321–327PubMedCrossRefGoogle Scholar
  34. Kim DH, Hung TM, Bae KH, Jung JW, Lee S, Yoon BH, Cheong JH, Ko KH, Ryu JH (2006) Gomisin A improves scopolamine-induced memory impairment in mice. Eur J Pharmacol 542(1–3):129–135PubMedCrossRefGoogle Scholar
  35. Kim DH, Jeon SJ, Son KH, Jung JW, Lee S, Yoon BH, Lee JJ, Cho YW, Cheong JH, Ko KH, Ryu JH (2007) The ameliorating effect of oroxylin A on scopolamine-induced memory impairment in mice. Neurobiol Learn Mem 87(4):536–546PubMedCrossRefGoogle Scholar
  36. Kish SJ, Bergeron C, Rajput A, Dozic S, Mastrogiacomo F, Chang LJ, Wilson JM, DiStefano LM, Nobrega JN (1992) Brain cytochrome oxidase in Alzheimer’s disease. J Neurochem 59:776–779PubMedCrossRefGoogle Scholar
  37. Klapdor K, van der Staay FJ (1996) The Morris water-escape task in mice: strain differences and effects of intra-maze contrast and brightness. Physiol Behav 60(5):1247–1254PubMedCrossRefGoogle Scholar
  38. Krügel U, Bigl V, Eschrich K, Bigl M (2001) Deafferentation of the septo-hippocampal pathway in rats as a model of the metabolic events in Alzheimer’s disease. Int J Dev Neurosci 19(3):263–277PubMedCrossRefGoogle Scholar
  39. Lamberty Y, Gower AJ (1988) Investigation into sex-related differences in locomotor activity, place learning and passive avoidance responding in NMRI mice. Physiol Behav 44(6):787–790PubMedCrossRefGoogle Scholar
  40. Lamberty Y, Gower AJ (1990) Age-related changes in spontaneous behavior and learning in NMRI mice from maturity to middle age. Physiol Behav 47(6):1137–1144PubMedCrossRefGoogle Scholar
  41. Lamberty Y, Gower AJ (1991) Simplifying environmental cues in a Morris-type water maze improves place learning in old NMRI mice. Behav Neural Bioll 56(1):89–100CrossRefGoogle Scholar
  42. Lamberty Y, Gower AJ (1993) Spatial processing and emotionality in aged NMRI mice: a multivariate analysis. Physiol Behav 54(2):339–343PubMedCrossRefGoogle Scholar
  43. Lamberty Y, Gower AJ, Gobert J, Hanin I, Wulfert E (1992) Behavioural, biochemical and histological effects of AF64A following injection into the third ventricle of the mouse. Behav Brain Res 51(2):165–177PubMedCrossRefGoogle Scholar
  44. Lee KY, Jeong EJ, Lee HS, Kim YC (2006) Acteoside of Callicarpa dichotoma attenuates scopolamine-induced memory impairments. Biol Pharm Bull 29(1):71–74PubMedCrossRefGoogle Scholar
  45. Lee JH, Park SY, Shin YW, Kim CD, Lee WS, Hong KW (2007) Concurrent administration of cilostazol with donepezil effectively improves cognitive dysfunction with increased neuroprotection after chronic cerebral hypoperfusion in rats. Brain Res 1185:246–255PubMedCrossRefGoogle Scholar
  46. Lindner MD, Hogan JB, Hodges DB Jr, Orie AF, Chen P, Corsa JA, Leet JE, Gillman KW, Rose GM, Jones KM, Gribkoff VK (2006) Donepezil primarily attenuates scopolamine-induced deficits in psychomotor function, with moderate effects on simple conditioning and attention, and small effects on working memory and spatial mapping. Psychopharmacology (Berl) 188(4):629–640CrossRefGoogle Scholar
  47. Martinez JL Jr, Jensen RA, Vasquez BJ, McGuinness T, McGaugh JL (1978) Methylene blue alters retention of inhibitory avoidance responses. Physiol Psychol 6:387–390Google Scholar
  48. Micheau J, Messier C, Jaffard R (1995) Glucose enhancement of scopolamine-induced increase of hippocampal high-affinity choline uptake in mice: relation to plasma glucose levels. Brain Res 685(1–2):99–104PubMedCrossRefGoogle Scholar
  49. Micheau J, Riedel G, Roloff EL, Inglis J, Morris RG (2004) Reversible hippocampal inactivation partially dissociates how and where to search in the water maze. Behav Neurosci 118(5):1022–1032PubMedCrossRefGoogle Scholar
  50. Milivojevic N, Babic K, Milatovic D, Dettbarn WD, Sket D, Zivin M (2001) N-tert-butyl-alpha-phenylnitrone, a free radical scavenger with anticholinesterase activity does not improve the cognitive performance of scopolamine-challenged rats. Int J Dev Neurosci 19(3):319–325PubMedCrossRefGoogle Scholar
  51. Moragrega I, Carrasco MC, Vicens P, Redolat R (2002) Motor activity in group-housed and isolated mice with short and long attack latencies: effects of scopolamine. Aggress Behav 28(4):328–336CrossRefGoogle Scholar
  52. Mowla A, Mosavinasab M, Haghshenas H, Haghighi AB (2007) Does serotonin augmentation have any effect on cognition and activities of daily living in Alzheimer’s dementia? A double-blind, placebo-controlled clinical trial. J Clin Psychopharmacol 27(5):484–487PubMedCrossRefGoogle Scholar
  53. Noda Y, Ochi Y, Shimada E, Oka M (1991) Involvement of central cholinergic mechanism in RU-24969-induced behavioral deficits. Pharmacol Biochem Behav 38(2):441–446PubMedCrossRefGoogle Scholar
  54. Ostrovskaya RU, Gruden MA, Bobkova NA, Sewell RD, Gudasheva TA, Samokhin AN, Seredinin SB, Noppe W, Sherstnev VV, Morozova-Roche LA (2007) The nootropic and neuroprotective proline-containing dipeptide noopept restores spatial memory and increases immunoreactivity to amyloid in an Alzheimer’s disease model. J Psychopharmacol 21(6):611–619PubMedCrossRefGoogle Scholar
  55. Parkes M, White KG (2000) Glucose attenuation of memory impairments. Behav Neurosci 114(2):307–319PubMedCrossRefGoogle Scholar
  56. Parle M, Dhingra D (2003) Ascorbic Acid: a promising memory-enhancer in mice. J Pharmacol Sci 93(2):129–135PubMedCrossRefGoogle Scholar
  57. Parsons MW, Gold PE (1992) Scopolamine-induced deficits in spontaneous alternation performance: attenuation with lateral ventricle injections of glucose. Behav Neural Biol 57(1):90–92PubMedCrossRefGoogle Scholar
  58. Pepeu G, Giovannini MG (2004) Changes in acetylcholine extracellular levels during cognitive processes. Learn Mem 11(1):21–27PubMedCrossRefGoogle Scholar
  59. Pfaffendorf M, Bruning TA, Batnik HD, van Zwieten PA (1997) The interaction between methylene blue and the cholinergic system. Br J Pharmacol 122(1):95–98PubMedCrossRefGoogle Scholar
  60. Rasmussen T, Fink-Jensen A (2000) Intravenous scopolamine is potently self-administered in drug-naive mice. Neuropsychopharmacology 22(1):97–99PubMedCrossRefGoogle Scholar
  61. Reddy PH (2007) Mitochondrial dysfunction in aging and Alzheimer’s disease: strategies to protect neurons. Antioxid Redox Signal 9(10):1647–1658PubMedCrossRefGoogle Scholar
  62. Riedel W, Lang U, Oetjen U, Schlapp U, Shibata M (2003) Inhibition of oxygen radical formation by methylene blue, aspirin, or alpha-lipoic acid, prevents bacterial-lipopolysaccharide-induced fever. Mol Cell Biochem 247(1–2):83–94PubMedCrossRefGoogle Scholar
  63. Riepe MW, Adler G, Ibach B, Weinkauf B, Tracik F, Gunay I (2007) Domain-specific improvement of cognition on memantine in patients with Alzheimer’s disease treated with rivastigmine. Dement Geriatr Cogn Disord 23(5):301–306PubMedCrossRefGoogle Scholar
  64. Robinson L, Harbaran D, Riedel G (2004) Visual acuity in the water maze: sensitivity to muscarinic receptor blockade in rats and mice. Behav Brain Res 151(1–2):277–286PubMedCrossRefGoogle Scholar
  65. Roloff EvL, Harbaran D, Micheau J, Platt B, Riedel G (2007) Dissociation of cholinergic function in spatial and procedural learning in rats. Neuroscience 146(3):875–889CrossRefGoogle Scholar
  66. Salaris SC, Babbs CF, Voorhees WD 3rd (1991) Methylene blue as an inhibitor of superoxide generation by xanthine oxidase A potential new drug for the attenuation of ischemia/reperfusion injury. Biochem Pharmacol 42(3):499–506PubMedCrossRefGoogle Scholar
  67. Scarpini E, Scheltens P, Feldman H (2003) Treatment of Alzheimer’s disease: current status and new perspectives. Lancet Neurol 2:539–547PubMedCrossRefGoogle Scholar
  68. Small GW, Ercoli LM, Silverman DH, Huang SC, Komo S, Bookheimer SY, Lavretsky H, Miller K, Siddarth P, Rasgon NL, Mazziotta JC, Saxena S, Wu HM, Mega MS, Cummings JL, Saunders AM, Pericak-Vance MA, Roses AD, Barrio JR, Phelps ME (2000) Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer’s disease. Proc Natl Acad Sci 97:6037–6042PubMedCrossRefGoogle Scholar
  69. Smythe JW, Murphy D, Bhatnagar S, Timothy C, Costall B (1996) Muscarinic antagonists are anxiogenic in rats tested in the black-white box. Pharmacol Biochem Behav 54(1):57–63PubMedCrossRefGoogle Scholar
  70. Steckler T, Holsboer F (2001) Interaction between the cholinergic system and CRH in the modulation of spatial discrimination learning in mice. Brain Res 906(1–2):46–59PubMedCrossRefGoogle Scholar
  71. Takahata K, Minami A, Kusumoto H, Shimazu S, Yoneda F (2005) Effects of selegiline alone or with donepezil on memory impairment in rats. Eur J Pharmacol 518(2–3):140–144PubMedCrossRefGoogle Scholar
  72. Tariot PN, Farlow MR, Grossberg GT, Graham SM, McDonald S, Gergel I (2004) Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: a randomized controlled trial. JAMA 291(3):317–324PubMedCrossRefGoogle Scholar
  73. Terry AV Jr, Buccafusco JJ (2003) The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: recent challenges and their implications for novel drug development. J Pharmacol Exp Ther 306:821–827PubMedCrossRefGoogle Scholar
  74. Valla J, Berndt JD, Gonzalez-Lima F (2001) Energy hypometabolism in posterior cingulate cortex of Alzheimer’s patients: superficial laminar cytochrome oxidase associated with disease duration. J Neurosci 21:4923–4930PubMedGoogle Scholar
  75. Van Dam D, Abramowski D, Staufenbiel M, De Deyn PP (2005) Symptomatic effect of donepezil, rivastigmine, galantamine and memantine on cognitive deficits in the APP23 model. Psychopharmacology (Berl) 180(1):177–190CrossRefGoogle Scholar
  76. Van Dam D, Coen K, De Deyn PP (2008) Cognitive evaluation of disease-modifying efficacy of donepezil in the APP23 mouse model for Alzheimer’s disease. Psychopharmacology (Berl) 197(1):37–43CrossRefGoogle Scholar
  77. van der Heyden JA, Molewijk E, Olivier B (1987) Strain differences in response to drugs in the tail suspension test for antidepressant activity. Psychopharmacology (Berl) 92(1):127–130CrossRefGoogle Scholar
  78. Van der Zee EA, Luiten PG (1999) Muscarinic acetylcholine receptors in the hippocampus, neocortex and amygdala: a review of immunocytochemical localization in relation to learning and memory. Prog Neurobiol 58:409–471PubMedCrossRefGoogle Scholar
  79. Vicens P, Bernal MC, Carrasco MC, Redolat R (1999) Previous training in the water maze: differential effects in NMRI and C57BL mice. Physiol Behav 67(2):197–203PubMedCrossRefGoogle Scholar
  80. Vicens P, Redolat R, Carrasco MC (2002) Effects of early spatial training on water maze performance: a longitudinal study in mice. Exp Gerontol 37(4):575–581PubMedCrossRefGoogle Scholar
  81. Volke V, Wegener G, Vasar E, Rosenberg R (1999) Methylene blue inhibits hippocampal nitric oxide synthase activity in vivo. Brain Res 826(2):303–305PubMedCrossRefGoogle Scholar
  82. Wischik CM, Edwards PC, Lai RY, Roth M, Harrington CR (1996) Selective inhibition of Alzheimer disease-like tau aggregation by phenothiazines. Proc Natl Acad Sci USA 93(20):11213–11218PubMedCrossRefGoogle Scholar
  83. Wrubel KM, Riha PD, Maldonado MA, McCollum D, Gonzalez-Lima F (2007) The brain metabolic enhancer methylene blue improves discrimination learning in rats. Pharmacol Biochem Behav 86(4):712–717PubMedCrossRefGoogle Scholar
  84. Yilmazer-Hanke DM, Roskoden T, Zilles K, Schwegler H (2003) Anxiety-related behavior and densities of glutamate, GABAA, acetylcholine and serotonin receptors in the amygdala of seven inbred mouse strains. Behav Brain Res 145(1–2):145–159PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Serena Deiana
    • 1
  • Charles R. Harrington
    • 2
  • Claude M. Wischik
    • 2
  • Gernot Riedel
    • 1
    Email author
  1. 1.School of Medical SciencesUniversity of AberdeenAberdeenScotland
  2. 2.School of Medicine and DentistryUniversity of Aberdeen, Scotland and TauRx Therapeutics Ltd.AberdeenScotland

Personalised recommendations