Advertisement

Psychopharmacology

, Volume 203, Issue 1, pp 73–84 | Cite as

Acute clozapine exposure in vivo induces lipid accumulation and marked sequential changes in the expression of SREBP, PPAR, and LXR target genes in rat liver

  • Johan Fernø
  • Audun O. Vik-Mo
  • Goran Jassim
  • Bjarte Håvik
  • Kjetil Berge
  • Silje Skrede
  • Oddrun A. Gudbrandsen
  • Jo Waage
  • Niclas Lunder
  • Sverre Mørk
  • Rolf K. Berge
  • Hugo A. Jørgensen
  • Vidar M. Steen
Original Investigation

Abstract

Background

Several antipsychotic drugs (APDs) have high propensity to induce weight gain and dyslipidemia in patients, with clozapine and olanzapine as the most potent drugs. These lipid-related effects have been attributed to drug-mediated blockade or antagonism of histamine H1 and serotonin 5-HT2 receptors as well as activation of hypothalamic AMP-activated protein kinase. We recently showed that APDs activate lipid biosynthesis in cultured liver cells through stimulation of the sterol regulatory element-binding protein (SREBP) transcription factors.

Objective

The objective of the study was to search for clozapine-related lipogenic effects in peripheral tissues in vivo using rat liver as target organ.

Materials and methods

Adult female Sprague–Dawley rats were administered single intraperitoneal injections of clozapine (25 and 50 mg/kg). Hepatic lipid levels were measured during a 48-h time course. Real-time quantitative PCR was used to analyze expression of genes involved in lipid biosynthesis, oxidation, efflux, and lipolysis.

Results

We identified an initial up-regulation of central lipogenic SREBP target genes, followed by a marked and sustained down-regulation. We also observed a sequential transcriptional response for fatty acid β-oxidation and cholesterol efflux genes, normally controlled by the peroxisome proliferator activated receptor alpha and liver X receptor alpha transcription factors, and also down-regulation of genes encoding major lipases. The transcriptional responses were associated with a significant accumulation of triacylglycerol, phospholipids, and cholesterol in the liver.

Conclusion

These results demonstrate that acute clozapine exposure affects SREBP-regulated lipid biosynthesis as well as other lipid homeostasis pathways. We suggest that such drug-induced effects on lipid metabolism in peripheral tissues are relevant for the metabolic adverse effects associated with clozapine and possibly other APDs.

Keywords

Antipsychotic Clozapine Energy metabolism Gene expression Lipid Rat RT-PCR 

Notes

Acknowledgments

We acknowledge the research infrastructure provided by the Norwegian Microarray Consortium (NMC; www.microarray.no), a national FUGE technology platform (Functional Genomics in Norway; www.fuge.no). The present study has been supported by grants from the Research Council of Norway (incl. the FUGE program and “PSYKISK HELSE” program), Helse Vest RHF, Dr. Einar Martens Fund, and the Lundbeck Foundation through a research grant to JF, awarded by the Scandinavian College of Neuro-Psychopharmacology (SCNP). We highly appreciate the excellent technical assistance from Marianne S. Nævdal in the animal facility. The authors also thank Erling Dahl Borkamo for assistance with the digital microscopy.

References

  1. Allison DB, Mentore JL, Heo M, Chandler LP, Cappelleri JC, Infante MC, Weiden PJ (1999) Antipsychotic-induced weight gain: a comprehensive research synthesis. Am J Psychiatry 156:1686–1696PubMedGoogle Scholar
  2. Alvir JM, Lieberman JA, Safferman AZ, Schwimmer JL, Schaaf JA (1993) Clozapine-induced agranulocytosis. Incidence and risk factors in the United States. N Engl J Med 329:162–167PubMedCrossRefGoogle Scholar
  3. Baldessarini RJ, Centorrino F, Flood JG, Volpicelli SA, Huston-Lyons D, Cohen BM (1993) Tissue concentrations of clozapine and its metabolites in the rat. Neuropsychopharmacology 9:117–124PubMedGoogle Scholar
  4. Basile VS, Masellis M, McIntyre RS, Meltzer HY, Lieberman JA, Kennedy JL (2001) Genetic dissection of atypical antipsychotic-induced weight gain: novel preliminary data on the pharmacogenetic puzzle. J Clin Psychiatry 62(Suppl 23):45–66PubMedGoogle Scholar
  5. Baumann P, Hiemke C, Ulrich S, Eckermann G, Gaertner I, Gerlach M, Kuss HJ, Laux G, Muller-Oerlinghausen B, Rao ML, Riederer P, Zernig G (2004) The AGNP-TDM expert group consensus guidelines: therapeutic drug monitoring in psychiatry. Pharmacopsychiatry 37:243–265PubMedCrossRefGoogle Scholar
  6. Brown MS, Goldstein JL (1997) The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89:331–340PubMedCrossRefGoogle Scholar
  7. Byerly MJ, DeVane CL (1996) Pharmacokinetics of clozapine and risperidone: a review of recent literature. J Clin Psychopharmacol 16:177–187PubMedCrossRefGoogle Scholar
  8. Chakravarthy MV, Pan Z, Zhu Y, Tordjman K, Schneider JG, Coleman T, Turk J, Semenkovich CF (2005) “New” hepatic fat activates PPARalpha to maintain glucose, lipid, and cholesterol homeostasis. Cell Metab 1:309–322PubMedCrossRefGoogle Scholar
  9. Chang TY, Chang CC, Cheng D (1997) Acyl-coenzyme A:cholesterol acyltransferase. Annu Rev Biochem 66:613–638PubMedCrossRefGoogle Scholar
  10. Conley RR, Tamminga CA, Kelly DL, Richardson CM (1999) Treatment-resistant schizophrenic patients respond to clozapine after olanzapine non-response. Biol Psychiatry 46:73–77PubMedCrossRefGoogle Scholar
  11. Eberle D, Clement K, Meyre D, Sahbatou M, Vaxillaire M, Le Gall A, Ferre P, Basdevant A, Froguel P, Foufelle F (2004) SREBF-1 gene polymorphisms are associated with obesity and type 2 diabetes in French obese and diabetic cohorts. Diabetes 53:2153–2157PubMedCrossRefGoogle Scholar
  12. Ferno J, Raeder MB, Vik-Mo AO, Skrede S, Glambek M, Tronstad KJ, Breilid H, Lovlie R, Berge RK, Stansberg C, Steen VM (2005) Antipsychotic drugs activate SREBP-regulated expression of lipid biosynthetic genes in cultured human glioma cells: a novel mechanism of action? Pharmacogenomics J 5:298–304PubMedCrossRefGoogle Scholar
  13. Ferno J, Skrede S, Vik-Mo AO, Havik B, Steen VM (2006) Drug-induced activation of SREBP-controlled lipogenic gene expression in CNS-related cell lines: marked differences between various antipsychotic drugs. BMC Neurosci 7:69PubMedCrossRefGoogle Scholar
  14. Ferre P, Foufelle F (2007) SREBP-1c transcription factor and lipid homeostasis: clinical perspective. Horm Res 68:72–82PubMedGoogle Scholar
  15. Freedman R (2003) Schizophrenia. N Engl J Med 349:1738–1749PubMedCrossRefGoogle Scholar
  16. Gaulin BD, Markowitz JS, Caley CF, Nesbitt LA, Dufresne RL (1999) Clozapine-associated elevation in serum triglycerides. Am J Psychiatry 156:1270–1272PubMedGoogle Scholar
  17. Ghaeli P, Dufresne RL (1996) Serum triglyceride levels in patients treated with clozapine. Am J Health Syst Pharm 53:2079–2081PubMedGoogle Scholar
  18. Ghaeli P, Dufresne RL (1999) Elevated serum triglycerides with clozapine resolved with risperidone in four patients. Pharmacotherapy 19:1099–1101PubMedCrossRefGoogle Scholar
  19. Goff DC, Coyle JT (2001) The emerging role of glutamate in the pathophysiology and treatment of schizophrenia. Am J Psychiatry 158:1367–1377PubMedCrossRefGoogle Scholar
  20. Henderson DC, Cagliero E, Gray C, Nasrallah RA, Hayden DL, Schoenfeld DA, Goff DC (2000) Clozapine, diabetes mellitus, weight gain, and lipid abnormalities: a five-year naturalistic study. Am J Psychiatry 157:975–981PubMedCrossRefGoogle Scholar
  21. Horton JD, Shimomura I, Brown MS, Hammer RE, Goldstein JL, Shimano H (1998) Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element-binding protein-2. J Clin Invest 101:2331–2339PubMedCrossRefGoogle Scholar
  22. Horton JD, Goldstein JL, Brown MS (2002) SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 109:1125–1131PubMedGoogle Scholar
  23. Ide T, Shimano H, Yoshikawa T, Yahagi N, Amemiya-Kudo M, Matsuzaka T, Nakakuki M, Yatoh S, Iizuka Y, Tomita S, Ohashi K, Takahashi A, Sone H, Gotoda T, Osuga J, Ishibashi S, Yamada N (2003) Cross-talk between peroxisome proliferator-activated receptor (PPAR) alpha and liver X receptor (LXR) in nutritional regulation of fatty acid metabolism. II. LXRs suppress lipid degradation gene promoters through inhibition of PPAR signaling. Mol Endocrinol 17:1255–1267PubMedCrossRefGoogle Scholar
  24. Jump DB, Botolin D, Wang Y, Xu J, Christian B, Demeure O (2005) Fatty acid regulation of hepatic gene transcription. J Nutr 135:2503–2506PubMedGoogle Scholar
  25. Kaddurah-Daouk R, McEvoy J, Baillie RA, Lee D, Yao JK, Doraiswamy PM, Krishnan KR (2007) Metabolomic mapping of atypical antipsychotic effects in schizophrenia. Mol Psychiatry 12:934–945PubMedCrossRefGoogle Scholar
  26. Kane J, Honigfeld G, Singer J, Meltzer H (1988) Clozapine for the treatment-resistant schizophrenic. A double-blind comparison with chlorpromazine. Arch Gen Psychiatry 45:789–796PubMedGoogle Scholar
  27. Kast-Woelbern HR, Dana SL, Cesario RM, Sun L, de Grandpre LY, Brooks ME, Osburn DL, Reifel-Miller A, Klausing K, Leibowitz MD (2004) Rosiglitazone induction of Insig-1 in white adipose tissue reveals a novel interplay of peroxisome proliferator-activated receptor gamma and sterol regulatory element-binding protein in the regulation of adipogenesis. J Biol Chem 279:23908–23915PubMedCrossRefGoogle Scholar
  28. Kim SF, Huang AS, Snowman AM, Teuscher C, Snyder SH (2007) From the Cover: antipsychotic drug-induced weight gain mediated by histamine H1 receptor-linked activation of hypothalamic AMP-kinase. Proc Natl Acad Sci U S A 104:3456–3459PubMedCrossRefGoogle Scholar
  29. Kroeze WK, Hufeisen SJ, Popadak BA, Renock SM, Steinberg S, Ernsberger P, Jayathilake K, Meltzer HY, Roth BL (2003) H1-histamine receptor affinity predicts short-term weight gain for typical and atypical antipsychotic drugs. Neuropsychopharmacology 28:519–526PubMedCrossRefGoogle Scholar
  30. Lamberti JS, Olson D, Crilly JF, Olivares T, Williams GC, Tu X, Tang W, Wiener K, Dvorin S, Dietz MB (2006) Prevalence of the metabolic syndrome among patients receiving clozapine. Am J Psychiatry 163:1273–1276PubMedCrossRefGoogle Scholar
  31. Le Hellard S, Theisen FM, Haberhausen M, Raeder MB, Ferno J, Gebhardt S, Hinney A, Remschmidt H, Krieg JC, Mehler-Wex C, Nothen MM, Hebebrand J, Steen VM (2008) Association between the insulin-induced gene 2 (INSIG2) and weight gain in a German sample of antipsychotic-treated schizophrenic patients: perturbation of SREBP-controlled lipogenesis in drug-related metabolic adverse effects? Mol Psychiatry. doi: 10.1038/sj.mp.4002133 (originally published online Jan. 15, 2008).
  32. Minet-Ringuet J, Even PC, Lacroix M, Tome D, de Beaurepaire R (2006) A model for antipsychotic-induced obesity in the male rat. Psychopharmacology (Berl) 187:447–454CrossRefGoogle Scholar
  33. Minet-Ringuet J, Even PC, Valet P, Carpene C, Visentin V, Prevot D, Daviaud D, Quignard-Boulange A, Tome D, de Beaurepaire R (2007) Alterations of lipid metabolism and gene expression in rat adipocytes during chronic olanzapine treatment. Mol Psychiatry 12:562–571PubMedCrossRefGoogle Scholar
  34. Miyamoto S, Duncan GE, Marx CE, Lieberman JA (2005) Treatments for schizophrenia: a critical review of pharmacology and mechanisms of action of antipsychotic drugs. Mol Psychiatry 10:79–104PubMedCrossRefGoogle Scholar
  35. Pouzet B, Mow T, Kreilgaard M, Velschow S (2003) Chronic treatment with antipsychotics in rats as a model for antipsychotic-induced weight gain in human. Pharmacol Biochem Behav 75:133–140PubMedCrossRefGoogle Scholar
  36. Price SC, Hall DE, Hinton RH (1985) Lipid accumulation in the livers of chlorpromazine-treated rats does not induce peroxisome proliferation. Toxicol Lett 25:11–17PubMedCrossRefGoogle Scholar
  37. Qi NR, Wang J, Zidek V, Landa V, Mlejnek P, Kazdova L, Pravenec M, Kurtz TW (2005) A new transgenic rat model of hepatic steatosis and the metabolic syndrome. Hypertension 45:1004–1011PubMedCrossRefGoogle Scholar
  38. Raeder MB, Ferno J, Vik-Mo AO, Steen VM (2006) SREBP Activation by antipsychotic- and antidepressant-drugs in cultured human liver cells: relevance for metabolic side-effects? Mol Cell Biochem 289:167–173PubMedCrossRefGoogle Scholar
  39. Rakhshandehroo M, Sanderson LM, Matilainen M, Stienstra R, Carlberg C, de Groot PJ, Muller M, Kersten S (2007) Comprehensive analysis of pparalpha-dependent regulation of hepatic lipid metabolism by expression profiling. PPAR Res 2007:26839PubMedGoogle Scholar
  40. Reynolds GP, Hill MJ, Kirk SL (2006) The 5-HT2C receptor and antipsychoticinduced weight gain–mechanisms and genetics. J Psychopharmacol 20:15–18PubMedCrossRefGoogle Scholar
  41. Roth BL, Sheffler DJ, Kroeze WK (2004) Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat Rev Drug Discov 3:353–359PubMedCrossRefGoogle Scholar
  42. Shimano H, Horton JD, Shimomura I, Hammer RE, Brown MS, Goldstein JL (1997) Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. J Clin Invest 99:846–854PubMedCrossRefGoogle Scholar
  43. Shimomura I, Shimano H, Horton JD, Goldstein JL, Brown MS (1997) Differential expression of exons 1a and 1c in mRNAs for sterol regulatory element binding protein-1 in human and mouse organs and cultured cells. J Clin Invest 99:838–845PubMedCrossRefGoogle Scholar
  44. Shimomura I, Hammer RE, Richardson JA, Ikemoto S, Bashmakov Y, Goldstein JL, Brown MS (1998) Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in adipose tissue: model for congenital generalized lipodystrophy. Genes Dev 12:3182–3194PubMedCrossRefGoogle Scholar
  45. Shulman AI, Mangelsdorf DJ (2005) Retinoid x receptor heterodimers in the metabolic syndrome. N Engl J Med 353:604–15PubMedCrossRefGoogle Scholar
  46. Spivak B, Roitman S, Vered Y, Mester R, Graff E, Talmon Y, Guy N, Gonen N, Weizman A (1998) Diminished suicidal and aggressive behavior, high plasma norepinephrine levels, and serum triglyceride levels in chronic neuroleptic-resistant schizophrenic patients maintained on clozapine. Clin Neuropharmacol 21:245–250PubMedGoogle Scholar
  47. Theisen FM, Cichon S, Linden A, Martin M, Remschmidt H, Hebebrand J (2001) Clozapine and weight gain. Am J Psychiatry 158:816PubMedCrossRefGoogle Scholar
  48. Timar O, Sestier F, Levy E (2000) Metabolic syndrome X: a review. Can J Cardiol 16:779–789PubMedGoogle Scholar
  49. Tobin KA, Steineger HH, Alberti S, Spydevold O, Auwerx J, Gustafsson JA, Nebb HI (2000) Cross-talk between fatty acid and cholesterol metabolism mediated by liver X receptor-alpha. Mol Endocrinol 14:741–752PubMedCrossRefGoogle Scholar
  50. Uelmen PJ, Oka K, Sullivan M, Chang CC, Chang TY, Chan L (1995) Tissue-specific expression and cholesterol regulation of acylcoenzyme A:cholesterol acyltransferase (ACAT) in mice. Molecular cloning of mouse ACAT cDNA, chromosomal localization, and regulation of ACAT in vivo and in vitro. J Biol Chem 270:26192–26201PubMedCrossRefGoogle Scholar
  51. Vestri HS, Maianu L, Moellering DR, Garvey WT (2007) Atypical antipsychotic drugs directly impair insulin action in adipocytes: effects on glucose transport, lipogenesis, and antilipolysis. Neuropsychopharmacology 32:765–772PubMedCrossRefGoogle Scholar
  52. Vik-Mo AO, Birkenaes AB, Ferno J, Jonsdottir H, Andreassen OA, Steen VM (2008) Increased expression of lipid biosynthesis genes in peripheral blood cells of olanzapine-treated patients. Int J Neuropsychopharmacol 11:679–684PubMedCrossRefGoogle Scholar
  53. Wehmeier PM, Gebhardt S, Schmidtke J, Remschmidt H, Hebebrand J, Theisen FM (2005) Clozapine: weight gain in a pair of monozygotic twins concordant for schizophrenia and mild mental retardation. Psychiatry Res 133:273–276PubMedCrossRefGoogle Scholar
  54. Winer J, Jung CK, Shackel I, Williams PM (1999) Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro. Anal Biochem 270:41–49PubMedCrossRefGoogle Scholar
  55. Yang LH, Chen TM, Yu ST, Chen YH (2007) Olanzapine induces SREBP-1-related adipogenesis in 3T3-L1 cells. Pharmacol Res 56:202–208PubMedCrossRefGoogle Scholar
  56. Yoshikawa T, Ide T, Shimano H, Yahagi N, Amemiya-Kudo M, Matsuzaka T, Yatoh S, Kitamine T, Okazaki H, Tamura Y, Sekiya M, Takahashi A, Hasty AH, Sato R, Sone H, Osuga J, Ishibashi S, Yamada N (2003) Cross-talk between peroxisome proliferator-activated receptor (PPAR) alpha and liver X receptor (LXR) in nutritional regulation of fatty acid metabolism. I. PPARs suppress sterol regulatory element binding protein-1c promoter through inhibition of LXR signaling. Mol Endocrinol 17:1240–1254PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Johan Fernø
    • 1
    • 2
  • Audun O. Vik-Mo
    • 1
    • 2
  • Goran Jassim
    • 1
    • 2
  • Bjarte Håvik
    • 1
    • 2
  • Kjetil Berge
    • 3
  • Silje Skrede
    • 1
    • 2
  • Oddrun A. Gudbrandsen
    • 3
  • Jo Waage
    • 4
  • Niclas Lunder
    • 5
  • Sverre Mørk
    • 6
  • Rolf K. Berge
    • 3
    • 7
  • Hugo A. Jørgensen
    • 4
    • 8
  • Vidar M. Steen
    • 1
    • 2
  1. 1.Department of Clinical Medicine, Dr. Einar Martens’ Research Group for Biological Psychiatry and Bergen Mental Health, Research CenterUniversity of BergenBergenNorway
  2. 2.Center for Medical Genetics and Molecular MedicineHaukeland University HospitalBergenNorway
  3. 3.The Lipid Research Group, Section of Medical Biochemistry, Institute of MedicineUniversity of BergenBergenNorway
  4. 4.Department of Clinical Medicine, Section for PsychiatryUniversity of BergenBergenNorway
  5. 5.Department of PsychopharmacologyDiakonhjemmet HospitalOsloNorway
  6. 6.Department of Pathology, The Gade InstituteHaukeland University HospitalBergenNorway
  7. 7.Department of Cardiovascular DiseaseHaukeland University HospitalBergenNorway
  8. 8.Division of PsychiatryHelse Bergen HFBergenNorway

Personalised recommendations