Psychopharmacology

, Volume 202, Issue 1–3, pp 207–223 | Cite as

RO4938581, a novel cognitive enhancer acting at GABAA α5 subunit-containing receptors

  • Theresa M. Ballard
  • Frédéric Knoflach
  • Eric Prinssen
  • Edilio Borroni
  • Jeffrey A. Vivian
  • Jennifer Basile
  • Rodolfo Gasser
  • Jean-Luc Moreau
  • Joseph G. Wettstein
  • Bernd Buettelmann
  • Henner Knust
  • Andrew W. Thomas
  • Gerhard Trube
  • Maria-Clemencia Hernandez
Original Investigation

Abstract

Rationale

GABAA α5 subunit-containing receptors are primarily expressed in the hippocampus and their role in learning and memory has been demonstrated recently by both genetic and pharmacological approaches.

Objectives

The objective of the study is to evaluate the cognitive effects of a novel GABAA α5 receptor inverse agonist, RO4938581 in rats and monkeys.

Materials and methods

The in vitro profile was determined using radioligand binding and electrophysiological assays for the GABAA α1, α2, α3, and α5 receptors. Long-term potentiation (LTP) was performed in mouse hippocampal slices. Cognitive effects were assessed in rats in the delayed match to position (DMTP) task and the Morris water maze. In monkeys, the object retrieval task was used. Pro-convulsant and anxiogenic potentials were evaluated in mice and rats. In vivo receptor occupancy was determined using [3H]-RO0154513.

Results

RO4938581 is a potent inverse agonist at the GABAA α5 receptor, with both binding and functional selectivity, enhancing hippocampal LTP. RO4938581 reversed scopolamine-induced working memory impairment in the DMTP task (0.3–1 mg/kg p.o.) and diazepam-induced spatial learning impairment (1–10 mg/kg p.o.). RO4938581 improved executive function in monkeys (3-10 mg/kg p.o.). Importantly, RO4938581 showed no anxiogenic and pro-convulsive potential. RO4938581 dose-dependently bound to GABAA α5 receptors and approximately 30% receptor occupancy was sufficient to produce enhanced cognition in the rat.

Conclusions

The data further support the potential of GABAA α5 receptors as a target for cognition-enhancing drugs. The dual binding and functional selectivity offers an ideal profile for cognition-enhancing effects without the unwanted side effects associated with activity at other GABAA receptor subtypes.

Keywords

GABAA receptors Benzodiazepine Inverse agonist Long-term potentiation Cognition Delayed match to position Morris water maze Object retrieval Monkey Rat 

Notes

Acknowledgements

We would like to acknowledge the expert technical assistance of Sebastian Debilly, Michel Enderlin, Patricia Glaentzlin, Jasmin Graehler, Cecile Guizani, Rachel Haab, Marie Haman, Marie-Laurence Harle-Yge, Maria Karg, Yeter Kolb, Roland Mory, Marie Claire Pflimlin, Pascal Pflimlin, Stefanie Saenger, Severine Weil-Bandinelli, Michael Weber, Roger Wyler. We would like to thank Dr. Joachim Manns for formulation support.

References

  1. Aggleton JP, Keith AB, Rawlins JN, Hunt PR, Sahgal A (1992) Removal of the hippocampus and transection of the fornix produce comparable deficits on delayed non-matching to position by rats. Behav Brain Res 52:61–71PubMedCrossRefGoogle Scholar
  2. Akbarian S, Huntsman MM, Kim JJ, Tafazzoli A, Potkin SG, Bunney WE Jr, Jones EG (1995) GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls. Cereb Cortex 5(6):550–560PubMedCrossRefGoogle Scholar
  3. Atack JR, Bayley PJ, Fletcher SR, McKernan RM, Wafford KA, Dawson GR (2006a) The proconvulsant effects of the GABAA α5 subtype-selective compound RY-080 may not be α5-mediated. Eur J Pharmacol 548:77–82PubMedCrossRefGoogle Scholar
  4. Atack JR, Bayley PJ, Seabrook GR, Wafford KA, McKernan RM, Dawson GR (2006b) L-655,708 enhances cognition in rats but is not proconvulsant at a dose selective for α5-containing GABAA receptors. Neuropharmacology 51:1023–1029PubMedCrossRefGoogle Scholar
  5. Ballard TM, Woolley ML, Prinssen E, Huwyler J, Porter R, Spooren W (2005) The effect of the mGlu5 receptor antagonist MPEP in rodent tests of anxiety and cognition: a comparison. Psychopharmacology (Berl) 179:218–229CrossRefGoogle Scholar
  6. Birks J, Harvey RJ (2006) Donepezil for dementia due to Alzheimer’s disease. Cochrane Database Syst Rev:CD001190Google Scholar
  7. Bonin RP, Martin LJ, Macdonald JF, Orser BA (2007) α5 GABAA receptors regulate the intrinsic excitability of mouse hippocampal pyramidal neurons. J NeurophysiolGoogle Scholar
  8. Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108PubMedCrossRefGoogle Scholar
  9. Collinson N, Atack JR, Laughton P, Dawson GR, Stephens DN (2006) An inverse agonist selective for α5 subunit-containing GABAA receptors improves encoding and recall but not consolidation in the Morris water maze. Psychopharmacology (Berl) 188:619–628CrossRefGoogle Scholar
  10. Collinson N, Kuenzi FM, Jarolimek W, Maubach KA, Cothliff R, Sur C, Smith A, Otu FM, Howell O, Atack JR, McKernan RM, Seabrook GR, Dawson GR, Whiting PJ, Rosahl TW (2002) Enhanced learning and memory and altered GABAergic synaptic transmission in mice lacking the α5 subunit of the GABAA receptor. J Neurosci 22:5572–5580PubMedGoogle Scholar
  11. Crestani F, Keist R, Fritschy JM, Benke D, Vogt K, Prut L, Blüthmann H, Möhler H, Rudolph U (2002) Trace fear conditioning involves hippocampal α5 GABAA receptors. Proc Natl Acad Sci U S A 99:8980–8985PubMedCrossRefGoogle Scholar
  12. Dawson GR, Maubach KA, Collinson N, Cobain M, Everitt BJ, MacLeod AM, Choudhury HI, McDonald LM, Pillai G, Rycroft W, Smith AJ, Sternfeld F, Tattersall FD, Wafford KA, Reynolds DS, Seabrook GR, Atack JR (2006) An inverse agonist selective for α5 subunit-containing GABAA receptors enhances cognition. J Pharmacol Exp Ther 316:1335–1345PubMedCrossRefGoogle Scholar
  13. del Cerro S, Jung M, Lynch G (1992) Benzodiazepines block long-term potentiation in slices of hippocampus and piriform cortex. Neuroscience 49:1–6PubMedCrossRefGoogle Scholar
  14. Diamond A, Zola-Morgan S, Squire LR (1989) Successful performance by monkeys with lesions of the hippocampal formation on AB and object retrieval, two tasks that mark developmental changes in human infants. Behav Neurosci 103:526–537PubMedCrossRefGoogle Scholar
  15. Dorow R, Horowski R, Paschelke G, Amin M (1983) Severe anxiety induced by FG 7142, a beta-carboline ligand for benzodiazepine receptors. Lancet 2:98–99PubMedCrossRefGoogle Scholar
  16. Duka T, Ott H, Rohloff A, Voet B (1996) The effects of a benzodiazepine receptor antagonist beta-carboline ZK-93426 on scopolamine-induced impairment on attention, memory and psychomotor skills. Psychopharmacology (Berl) 123:361–373CrossRefGoogle Scholar
  17. Faingold CL (2002) Role of GABA abnormalities in the inferior colliculus pathophysiology—audiogenic seizures. Hear Res 168(1-2):223–237PubMedCrossRefGoogle Scholar
  18. Fritschy JM, Möhler H (1995) GABAA-receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits. J Comp Neurol 359:154–194PubMedCrossRefGoogle Scholar
  19. Glykys J, Mann EO, Mody I (2008) Which GABA(A) receptor subunits are necessary for tonic inhibition in the hippocampus. J Neurosci 28:1421–1426PubMedCrossRefGoogle Scholar
  20. Hadingham KL, Wingrove P, Le Bourdelles B, Palmer KJ, Ragan CI, Whiting PJ (1993) Cloning of cDNA sequences encoding human α2 and α3 GABAA receptor subunits and characterization of the benzodiazepine pharmacology of recombinant α1-, α2-, α3-, and α5-containing human GABAA receptors. Mol Pharmacol 43:970–975PubMedGoogle Scholar
  21. Haefely WE (1989) Pharmacology of the benzodiazepine receptor. Eur Arch Psychiatry Neurol Sci 238:294–301PubMedCrossRefGoogle Scholar
  22. Hampson RE, Jarrard LE, Deadwyler SA (1999) Effects of ibotenate hippocampal and extrahippocampal destruction on delayed-match and -nonmatch-to-sample behavior in rats. J Neurosci 19:1492–1507PubMedGoogle Scholar
  23. Higgins GA, Grottick AJ, Ballard TM, Richards JG, Messer J, Takeshima H, Pauly-Evers M, Jenck F, Adam G, Wichmann J (2001) Influence of the selective ORL1 receptor agonist, Ro64-6198, on rodent neurological function. Neuropharmacology 41:97–107PubMedCrossRefGoogle Scholar
  24. Higgins GA, Enderlin M, Fimbel R, Haman M, Grottick AJ, Soriano M, Richards JG, Kemp JA, Gill R (2002) Donepezil reverses a mnemonic deficit produced by scopolamine but not by perforant path lesion or transient cerebral ischaemia. Eur J Neurosci 15:1827–1840PubMedCrossRefGoogle Scholar
  25. Higgins GA, Ballard TM, Kew JN, Richards JG, Kemp JA, Adam G, Woltering T, Nakanishi S, Mutel V (2004) Pharmacological manipulation of mGlu2 receptors influences cognitive performance in the rodent. Neuropharmacology 46:907–917PubMedCrossRefGoogle Scholar
  26. Howell O, Atack JR, Dewar D, McKernan RM, Sur C (2000) Density and pharmacology of α5 subunit-containing GABAA receptors are preserved in hippocampus of Alzheimer’s disease patients. Neuroscience 98:669–675PubMedCrossRefGoogle Scholar
  27. Jensen LH, Stephens DN, Sarter M, Petersen EN (1987) Bidirectional effects of beta-carbolines and benzodiazepines on cognitive processes. Brain Res Bull 19:359–364PubMedCrossRefGoogle Scholar
  28. Kawasaki K, Eigyo M, Ikeda M, Kihara T, Koike K, Matsushita A, Murata S, Shiomi T, Takada S, Yasui M (1996) A novel benzodiazepine inverse agonist, S-8510, as a cognitive enhancer. Prog Neuropsychopharmacol Biol Psychiatry 20:1413–1425PubMedCrossRefGoogle Scholar
  29. Kemp JA, Marshall GR, Wong EH, Woodruff GN (1987) The affinities, potencies and efficacies of some benzodiazepine-receptor agonists, antagonists and inverse-agonists at rat hippocampal GABAA-receptors. Br J Pharmacol 91:601–608PubMedGoogle Scholar
  30. Lingford-Hughes A, Hume SP, Feeney A, Hirani E, Osman S, Cunningham VJ, Pike VW, Brooks DJ, Nutt DJ (2002) Imaging the GABA-benzodiazepine receptor subtype containing the α5-subunit in vivo with [11C]Ro15 4513 positron emission tomography. J Cereb Blood Flow Metab 22:878–889PubMedCrossRefGoogle Scholar
  31. Little HJ, Nutt DJ, Taylor SC (1984) Acute and chronic effects of the benzodiazepine receptor ligand FG 7142: proconvulsant properties and kindling. Br J Pharmacol 83:951–958PubMedGoogle Scholar
  32. Liu R, Hu RJ, Zhang P, Skolnick P, Cook JM (1996) Synthesis and pharmacological properties of novel 8-substituted imidazobenzodiazepines: high-affinity, selective probes for α5-containing GABAA receptors. J Med Chem 39:1928–1934PubMedCrossRefGoogle Scholar
  33. Löw K, Crestani F, Keist R, Benke D, Brünig I, Benson JA, Fritschy JM, Rülicke T, Bluethmann H, Möhler H, Rudolph U (2000) Molecular and neuronal substrate for the selective attenuation of anxiety. Science 290:131–134PubMedCrossRefGoogle Scholar
  34. Maeda J, Suhara T, Kawabe K, Okauchi T, Obayashi S, Hojo J, Suzuki K (2003) Visualization of α5 subunit of GABAA/benzodiazepine receptor by 11C Ro15-4513 using positron emission tomography. Synapse 47:200–208PubMedCrossRefGoogle Scholar
  35. Martin JR, Ballard TM, Higgins GA (2002) Influence of the 5-HT2C receptor antagonist, SB-242084, in tests of anxiety. Pharmacol Biochem Behav 71:615–625PubMedCrossRefGoogle Scholar
  36. Maubach K (2003) GABAA receptor subtype selective cognition enhancers. Curr Drug Targets CNS Neurol Disord 2:233–239PubMedCrossRefGoogle Scholar
  37. McKernan RM, Rosahl TW, Reynolds DS, Sur C, Wafford KA, Atack JR, Farrar S, Myers J, Cook G, Ferris P, Garrett L, Bristow L, Marshall G, Macaulay A, Brown N, Howell O, Moore KW, Carling RW, Street LJ, Castro JL, Ragan CI, Dawson GR, Whiting PJ (2000) Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABAA receptor α1 subtype. Nat Neurosci 3:587–592PubMedCrossRefGoogle Scholar
  38. McNamara RK, Skelton RW (1993) Benzodiazepine receptor antagonists flumazenil and CGS 8216 and inverse- agonist beta-CCM enhance spatial learning in the rat: dissociation from anxiogenic actions. Psychobiology 21:101–108Google Scholar
  39. McNaughton N, Morris RG (1987) Chlordiazepoxide, an anxiolytic benzodiazepine, impairs place navigation in rats. Behav Brain Res 24:39–46PubMedCrossRefGoogle Scholar
  40. McShane R, Areosa Sastre A, Minakaran N (2006) Memantine for dementia. Cochrane Database Syst Rev:CD003154Google Scholar
  41. Möhler H (2006) GABAA receptor diversity and pharmacology. Cell Tissue Res 326:505–516PubMedCrossRefGoogle Scholar
  42. Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60PubMedCrossRefGoogle Scholar
  43. Nicolas LB, Prinssen EP (2006) Social approach-avoidance behavior of a high-anxiety strain of rats: effects of benzodiazepine receptor ligands. Psychopharmacology (Berl) 184:65–74CrossRefGoogle Scholar
  44. Nutt DJ, Besson M, Wilson SJ, Dawson GR, Lingford-Hughes AR (2007) Blockade of alcohol’s amnestic activity in humans by an α5 subtype benzodiazepine receptor inverse agonist. Neuropharmacology 53:810–820PubMedCrossRefGoogle Scholar
  45. Petersen EN, Jensen LH, Honore T, Braestrup C (1983) Differential pharmacological effects of benzodiazepine receptor inverse agonists. Adv Biochem Psychopharmacol 38:57–64PubMedGoogle Scholar
  46. Pirker S, Schwarzer C, Wieselthaler A, Sieghart W, Sperk G (2000) GABAA receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience 101:815–850PubMedCrossRefGoogle Scholar
  47. Quirk K, Blurton P, Fletcher S, Leeson P, Tang F, Mellilo D, Ragan CI, McKernan RM (1996) [3H]L-655,708, a novel ligand selective for the benzodiazepine site of GABAA receptors which contain the α5 subunit. Neuropharmacology 35:1331–1335PubMedCrossRefGoogle Scholar
  48. Ross KC, Coleman JR (2000) Developmental and genetic audiogenic seizure models: behavior and biological substrates. Neurosci Biobehav Rev 24(6):639–653PubMedCrossRefGoogle Scholar
  49. Rudolph U, Möhler H (2004) Analysis of GABAA receptor function and dissection of the pharmacology of benzodiazepines and general anesthetics through mouse genetics. Annu Rev Pharmacol Toxicol 44:475–498PubMedCrossRefGoogle Scholar
  50. Rudolph U, Crestani F, Benke D, Brünig I, Benson JA, Fritschy JM, Martin JR, Bluethmann H, Möhler H (1999) Benzodiazepine actions mediated by specific GABAA receptor subtypes. Nature 401:796–800PubMedCrossRefGoogle Scholar
  51. Rutten K, Basile JL, Prickaerts J, Blokland A, Vivian JA (2008) Selective PDE inhibitors rolipram and sildenafil improve object retrieval performance in adult cynomolgus macaques. Psychopharmacology (Berl) 196:643–648CrossRefGoogle Scholar
  52. Savic MM, Clayton T, Furtmuller R, Gavrilovic I, Samardzic J, Savic S, Huck S, Sieghart W, Cook JM (2008) PWZ-029, a compound with moderate inverse agonist functional selectivity at GABAA receptors containing α5 subunits, improves passive, but not active, avoidance learning in rats. Brain Res 1208:150–159PubMedCrossRefGoogle Scholar
  53. Seabrook GR, Easter A, Dawson GR, Bowery BJ (1997) Modulation of long-term potentiation in CA1 region of mouse hippocampal brain slices by GABAA receptor benzodiazepine site ligands. Neuropharmacology 36:823–830PubMedCrossRefGoogle Scholar
  54. Sternfeld F, Carling RW, Jelley RA, Ladduwahetty T, Merchant KJ, Moore KW, Reeve AJ, Street LJ, O’Connor D, Sohal B, Atack JR, Cook S, Seabrook G, Wafford K, Tattersall FD, Collinson N, Dawson GR, Castro JL, MacLeod AM (2004) Selective, orally active GABAA α5 receptor inverse agonists as cognition enhancers. J Med Chem 47:2176–2179PubMedCrossRefGoogle Scholar
  55. Venault P, Chapouthier G, de Carvalho LP, Simiand J, Morre M, Dodd RH, Rossier J (1986) Benzodiazepine impairs and beta-carboline enhances performance in learning and memory tasks. Nature 321:864–866PubMedCrossRefGoogle Scholar
  56. Wilkinson LS, Dias R, Thomas KL, Augood SJ, Everitt BJ, Robbins TW, Roberts AC (1997) Contrasting effects of excitotoxic lesions of the prefrontal cortex on the behavioural response to D-amphetamine and presynaptic and postsynaptic measures of striatal dopamine function in monkeys. Neuroscience 80:717–730PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Theresa M. Ballard
    • 1
  • Frédéric Knoflach
    • 1
  • Eric Prinssen
    • 1
  • Edilio Borroni
    • 1
  • Jeffrey A. Vivian
    • 1
    • 2
    • 3
  • Jennifer Basile
    • 1
    • 2
  • Rodolfo Gasser
    • 1
  • Jean-Luc Moreau
    • 1
  • Joseph G. Wettstein
    • 1
  • Bernd Buettelmann
    • 1
  • Henner Knust
    • 1
  • Andrew W. Thomas
    • 1
  • Gerhard Trube
    • 1
  • Maria-Clemencia Hernandez
    • 1
  1. 1.CNS Research, F. Hoffmann-La Roche Ltd.BaselSwitzerland
  2. 2.CNS Research, Roche BiosciencePalo AltoUSA
  3. 3.Department of Integrative Systems NeuroscienceMerck Research LaboratoriesWest PointUSA

Personalised recommendations