Advertisement

Psychopharmacology

, Volume 199, Issue 4, pp 549–568 | Cite as

S32006, a novel 5-HT2C receptor antagonist displaying broad-based antidepressant and anxiolytic properties in rodent models

  • Anne Dekeyne
  • Clotilde Mannoury la Cour
  • Alain Gobert
  • Mauricette Brocco
  • Françoise Lejeune
  • Florence Serres
  • Trevor Sharp
  • Annie Daszuta
  • Amélie Soumier
  • Mariusz Papp
  • Jean-Michel Rivet
  • Gunnar Flik
  • Thomas I. Cremers
  • Olivier Muller
  • Gilbert Lavielle
  • Mark J. Millan
Original Investigation

Abstract

Rationale

Serotonin (5-HT)2C receptors are implicated in the control of mood, and their blockade is of potential interest for the management of anxiodepressive states.

Objectives

Herein, we characterized the in vitro and in vivo pharmacological profile of the novel benzourea derivative, S32006.

Materials and methods

Standard cellular, electrophysiological, neurochemical, and behavioral procedures were used.

Results

S32006 displayed high affinity for human (h)5-HT2C and h5-HT2B receptors (pK is, 8.4 and 8.0, respectively). By contrast, it had negligible (100-fold lower) affinity for h5-HT2A receptors and all other sites examined. In measures of Gq-protein coupling/phospholipase C activation, S32006 displayed potent antagonist properties at h5-HT2C receptors (pK B values, 8.8/8.2) and h5-HT2B receptors (7.8/7.7). In vivo, S32006 dose-dependently (2.5–40.0 mg/kg, i.p. and p.o.) abolished the induction of penile erections and a discriminative stimulus by the 5-HT2C receptor agonist, Ro60,0175, in rats. It elevated dialysis levels of noradrenaline and dopamine in the frontal cortex of freely moving rats, and accelerated the firing rate of ventrotegmental dopaminergic and locus ceruleus adrenergic neurons. At similar doses, S32006 decreased immobility in a forced-swim test in rats, reduced the motor depression elicited by 5-HT2C and α2-adrenoceptor agonists, and inhibited both aggressive and marble-burying behavior in mice. Supporting antidepressant properties, chronic (2–5 weeks) administration of S32006 suppressed “anhedonia” in a chronic mild stress procedure and increased both expression of BDNF and cell proliferation in rat dentate gyrus. Finally, S32006 (0.63–40 mg/kg, i.p. and p.o) displayed anxiolytic properties in Vogel conflict and social interaction tests in rats.

Conclusion

S32006 is a potent 5-HT2C receptor antagonist, and possesses antidepressant and anxiolytic properties in diverse rodent models.

Keywords

5-HT2C receptor Anxiolytic Antidepressant Stress Ventral tegmental area Locus ceruleus BDNF 

Notes

Acknowledgements

We thank Manuelle Touzard, Sylvie Girardon, Sylvie Veiga, Huguette Gressier, Brigitte Denorme, Loretta Iob Laetitia Cistarelli, Rodolphe Billiras, and Jimmy Mullot for excellent technical assistance.

References

  1. Alex KD, Pehek EA (2007) Pharmacologic mechanisms of serotonergic regulation of dopamine neurotransmission. Pharmacol Ther 113:296–320PubMedGoogle Scholar
  2. Alves SH, Pinheiro G, Motta V, Landeira-Fernandez J, Cruz APM (2004) Anxiogenic effects in the rat elevated plus-maze of 5-HT2C agonists into ventral but not dorsal hippocampus. Behav Pharmacol 15:37–43PubMedGoogle Scholar
  3. Bagdy G, Graf M, Anheuer ZE, Modos EA, Kantor S (2001) Anxiety-like effects induced by acute fluoxetine, sertraline or m-CPP treatment are reversed by pretreatment with the 5-HT2C receptor antagonist SB-242084 but not the 5-HT1A receptor antagonist WAY-100635. Int J Neuropsychopharmacol 4:399–408PubMedGoogle Scholar
  4. Bakish D, Lapierre YD, Weinstein R, Klein J, Wiens A, Jones B, Horn E, Browne M, Bourget D, Blanchard A et al (1993) Ritanserin, imipramine, and placebo in the treatment of dysthymic disorder. J Clin Psychopharmacol 13:409–414PubMedGoogle Scholar
  5. Banasr M, Hery M, Printemps R, Datzuta A (2004) Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone. Neuropsychopharmacology 29:450–460PubMedGoogle Scholar
  6. Banasr M, Soumier A, Hery M, Mocaër E, Daszuta A (2006) Agomelatine, a new antidepressant, induces regional changes in hippocampal neurogenesis. Biol Psychiatry 59:1087–1096PubMedGoogle Scholar
  7. Bancila M, Vergé D, Rampin O, Backstrom JR, Sanders-Bush E, McKenna KE, Marson L, Calas A, Giuliano F (1999) 5-HT2C receptors on spinal neurons controlling penile erection in the rat. Neuroscience 92:1523–1537PubMedGoogle Scholar
  8. Berg KA, Harvey JA, Spampinato U, Clarke WP (2005) Physiological relevance of constitutive activity of 5-HT2A and 5-HT2C receptors. Trends Pharmacol Sci 26:625–630PubMedGoogle Scholar
  9. Blier P, De Montigny C (1998) Possible serotonergic mechanisms underlying the antidepressant and anti-obsessive-compulsive disorder responses. Biol Psychiatry 44:313–323PubMedGoogle Scholar
  10. Boothman L, Raley J, Denk F, Hirani E, Sharp T (2006) In vivo evidence that 5-HT2C receptors inhibit 5-HT neuronal activity via a GABAergic mechanism. Br J Pharmacol 149:861–869PubMedGoogle Scholar
  11. Bristow LJ, O’Connor D, Watts R, Duxon MS, Hutson PH (2000) Evidence for accelerated desensitisation of 5-HT2C receptors following combined treatment with fluoxetine and the 5-HT1A receptor antagonist, WAY100,635, in the rat. Neuropsychopharmacology 39:1222–1236Google Scholar
  12. Brocco M, Dekeyne A, Veiga S, Girardon S, Millan MJ (2002) Induction of locomotion in mice exposed to a novel environment by inhibition of serotonin reuptake. A pharmacological characterization of diverse classes of antidepressant agent. Pharmacol Biochem Behav 71:667–680PubMedGoogle Scholar
  13. Brocco M, Dekeyne A, Papp M, Millan MJ (2006) Antidepressant-like properties of the anti-Parkinson agent, piribedil, in rodents: mediation by dopamine D2 receptors. Behav Pharmacol 17:559–572PubMedGoogle Scholar
  14. Bubar MJ, Cunningham KA (2007) Distribution of serotonin 5-HT2C receptors in the ventral tegmental area. Neuroscience 146:286–297PubMedGoogle Scholar
  15. Campbell BM, Merchant KM (2003) Serotonin 2C receptors within the basolateral amygdala induce acute fear-like responses in an open-field environment. Brain Res 993:1–9PubMedGoogle Scholar
  16. Castren E, Voikar V, Rantamaki T (2007) Role of neurotrophic factors in depression. Curr Opin Pharmacol 7:18–21PubMedGoogle Scholar
  17. Cespuglio R, Rousset C, Debilly G, Rochat C, Millan MJ (2005) Acute administration of the novel serotonin and noradrenaline reuptake inhibitor, S33005, markedly modifies sleep–wake cycle architecture in the rat. Psychopharmacology 181:639–652PubMedGoogle Scholar
  18. Chanrion B, Mannoury la Cour C, Gavarini S, Seimandi M, Vincent L, Pujol JF, Bockaert J, Marin P, Millan MJ (2008) Inverse agonist and neutral antagonist actions of antidepressants at recombinant and native 5-HT2C receptors: differential modulation of cell surface expression and signal transduction. Mol Pharmacol 73:748–757PubMedGoogle Scholar
  19. Clemett DA, Punhani T, Duxon MS, Blackburn TP, Fone KC (2000) Immunohistochemical localisation of the 5-HT2C receptor protein in the rat CNS. Neuropharmacology 39:123–132PubMedGoogle Scholar
  20. Clenet F, De Vos A, Bourin M (2001) Involvement of 5-HT2C receptors in the anti-immobility effects of antidepressants in the forced swimming test in mice. Eur Neuropsychopharmacol 11:145–152PubMedGoogle Scholar
  21. Coppell AL, Pei Q, Zetterström TSC (2003) Bi-phasic change in BDNF gene expression following antidepressant drug treatment. Neuropharmacology 44:903–910PubMedGoogle Scholar
  22. Cowen PJ (1998) Pharmacological challenge tests and brain serotonin function in depression during SSRI treatment. In: Briley M, Montgomery S (eds) Antidepressant therapy at the dawn of third millennium. Martin Dunitz Ltd, London, pp 175–189Google Scholar
  23. Cremers TI, Rea K, Bosker FJ, Wikström HV, Hogg S, Mørk A, Westerink BH (2007) Augmentation of SSRI effects on serotonin by 5-HT2C antagonists: mechanistic studies. Neuropsychopharmacology 32:1550–1557PubMedGoogle Scholar
  24. Cryan JF, Lucki I (2000) Antidepressant-like behavioral effects mediated by 5-hydroxytryptamine2C receptors. J Pharm Exp Ther 295:1120–1126Google Scholar
  25. Cussac D, Newman-Tancredi A, Duqueyroix D, Pasteau V, Millan MJ (2002) Differential activation of Gq/11 and Gi3 proteins as 5-hydroxytryptamine2C receptors revealed by antibody capture assays: influence of receptor reserve and relationship to agonist-directed trafficking. Mol Pharmacol 62:578–586PubMedGoogle Scholar
  26. De Deurwaerdère P, Spampinato U (2001) The nigrostriatal dopamine system: a neglected target for 5-HT2C receptors. Trends Pharmacol Sci 22:502–503PubMedGoogle Scholar
  27. De Foubert G, Carney SL, Robinson CS, Destexhe EJ, Tomlinson R, Hicks CA, Murray TK, Gaillard JP, Deville C, Xhenseval V, Thomas CE, O’Neill MJ, Zetterström TSC (2004) Fluoxetine-induced change in rat brain expression of brain-derived neurotrophic factor varies depending on length of treatment. Neuroscience 128:597–604PubMedGoogle Scholar
  28. De Jong TR, Veening JG, Waldinger MD, Cools AR, Olivier B (2006) Serotonin and the neurobiology of the ejaculatory threshold. Neurosci Biobehav Rev 30:893–907PubMedGoogle Scholar
  29. De Vry J, Benz U, Schreiber R, Traber J (1993) Shock-induced ultrasonic vocalization in young adult rats: a model for testing putative anti-anxiety drugs. Eur J Pharmacol 249:331–339PubMedGoogle Scholar
  30. Dekeyne A, Girardon S, Millan MJ (1999) Discriminative stimulus properties of the novel serotonin (5-HT)2C receptor agonist, Ro 60-0175: a pharmacological analysis. Neuropharmacology 38:415–423PubMedGoogle Scholar
  31. Dekeyne A, Denorme B, Monneyron S, Millan MJ (2000) Citalopram reduces social interaction in rats by activation of serotonin (5-HT)2C receptors. Neuropharmacology 39:1114–1117PubMedGoogle Scholar
  32. Descamps-Lefebvre A, Rousset C, Millan MJ, Spedding M, Delagrange P, Cespuglio R (2008) Effects of agomelatine, a MT1/MT2 agonist and 5-HT2C antagonist, on 24-hour electroencephalogram in the rat. Soc Neurosci Abstr P501.17Google Scholar
  33. Di Giovanni G, De Deurwaerdere P, Di Mascio M, Di Matteo V, Esposito E, Spampinato U (1999) Selective blockade of serotonin2C/2B receptors enhances mesolimbic and mesocortical dopaminergic function: a combined in vivo electrophysiological and microdialysis study. Neuroscience 91:587–597PubMedGoogle Scholar
  34. Di Giovanni G, Di Matteo V, Pierucci M, Benigno A, Esposito E (2006) Central serotonin2C receptor: from physiology to pathology. Curr Topics Med Chem 6:1909–1925Google Scholar
  35. Duman RS, Monteggia LM (2006) A neurotrophic model for stress-related mood disorders. Biol Psychiatry 59:1116–1127PubMedGoogle Scholar
  36. Dunlop J, Sabb AL, Mazandarani H, Zhang J, Kalgaonker S, Shukhina E, Sukoff S, Vogel RL, Stack G, Schechter L, Harrison BL, Rosenzweig-Lipson SJ (2005) WAY-163909 [(7bR,10aR)-1,2,3,4,8,9,10,10a-octahydro-7bH-cyclopenta-[b][1,4]diazepino[6,7,1hi]indole], a novel 5-hydroxytryptamine 2C receptor-selective agonist with anorectic activity. Pharmacol Exp Ther 313:862–869Google Scholar
  37. Dutton AC, Barnes NM (2006) Anti-obesity pharmacotherapy: future perspectives utilising 5-HT2C receptor agonists. Drug Disc Today: Therapeutic Strategies 3:577–583Google Scholar
  38. Duxon MS, Flanigan TP, Reavley AC, Baxter GS, Blackburn TP, Fone KC (1997) Evidence for expression of the 5-hydroxytryptamine-2B receptor protein in the rat central nervous system. Neuroscience 76:323–329PubMedGoogle Scholar
  39. Erzegovesi S, Martucci L, Henin M, Bellodi L (2001) Low versus standard dose mCPP challenge in obsessive-compulsive patients. Neuropsychopharmacology 24:31–36PubMedGoogle Scholar
  40. File SE, Seth P (2003) A review of 25 years of the social interaction test. Eur J Pharm 463:35–53Google Scholar
  41. Fone KC, Shalders K, Fox ZD, Arthur R, Marsden CA (1996) Increased 5-HT2C receptor responsiveness occurs on rearing rats in social isolation. Psychopharmacology 123:346–352PubMedGoogle Scholar
  42. Gatch MB (2003) Discriminative stimulus effects of m-chlorophenylpiperazine as a model of the role of serotonin receptors in anxiety. Life Sci 73:1347–1367PubMedGoogle Scholar
  43. Giorgetti M, Tecott LH (2004) Contributions of 5-HT2C receptors to multiple actions of central serotonin systems. Eur J Pharmacol 488:1–9PubMedGoogle Scholar
  44. Gleason SD, Lucaites VL, Shannon HE, Nelson DL, Leander JD (2001) m-CPP hypolocomotion is selectively antagonized by compounds with high affinity for 5-HT2C receptors but not 5-HT2A or 5-HT2B receptors. Behav Pharmacol 12:613–620PubMedGoogle Scholar
  45. Gobert A, Rivet JP, Lejeune F, Newman-Tancredi A, Adhumeau-Auclair A, Nicolas JP, Cistarelli L, Melon C, Millan MJ (2000) Serotonin2C receptors tonically suppress the activity of mesocortical dopaminergic and adrenergic, but not serotonergic, pathways: a combined dialysis and electrophysiological analysis in the rat. Synapse 36:205–221PubMedGoogle Scholar
  46. Graeff FG (2004) Serotonin, the periaqueductal gray and panic. Neurosci Biobehav Rev 28:239–259PubMedGoogle Scholar
  47. Griebel G, Perrault G, Sanger DJ (1997) A comparative study of the effects of selective and non-selective 5-HT2 receptor subtype antagonists in rat and mouse models of anxiety. Neuropharmacology 36:793–802PubMedGoogle Scholar
  48. Grillon C, Levenson J, Pine DS (2007) A single dose of the selective serotonin reuptake inhibitor citalopram exacerbates anxiety in humans: a fear-potentiated startle study. Neuropsychopharmacology 32:225–231PubMedGoogle Scholar
  49. Hackler EA, Turner GH, Gresch PJ, Sengupta S, Deutch AY, Avison MJ, Gore JC, Sanders-Bush E (2007) 5-Hydroxytryptamine2C receptor contribution to m-chlorophenylpiperazine and N-methyl-b-carboline-3-carboxamide-induced anxiety-like behavior and limbic brain activation. J Pharm Exp Ther 320:1023–1029Google Scholar
  50. Harada K, Aota M, Inoue T, Matsuda R, Mihara T, Yamaji T, Ishibashi K, Matsuoka N (2006) Anxiolytic activity of a novel potent serotonin 5-HT2C receptor antagonist FR260010: a comparison with diazepam and buspirone. Eur J Pharmacol 553:171–184PubMedGoogle Scholar
  51. Heisler LK, Zhou L, Bajwa P, Hsu J, Tecott LH (2007) Serotonin 5-HT2C receptors regulate anxiety-like behavior. Genes Brain Behav 6:491–496PubMedGoogle Scholar
  52. Heslop KE, Curzon G (1999) Effect of reserpine on behavioural responses to agonists at 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT2C receptor subtypes. Neuropharmacology 38:883–891PubMedGoogle Scholar
  53. Hirschfeld RMA (2003) Long-term side effects of SSRIs: sexual dysfunction and weight gain. J Clin Psychiatry 64:20–24PubMedCrossRefGoogle Scholar
  54. Hull EM, Muschamp JW, Sato S (2004) Dopamine and serotonin: influences on male sexual behavior. Physiol Behav 83:291–307PubMedGoogle Scholar
  55. Ichimaru Y, Egawa T, Sawa A (1995) 5-HT1A-receptor subtype mediates the effect of fluvoxamine, selective serotonin reuptake inhibitor, on marble-burying behavior in mice. Jpn J Pharmacol 68:65–70PubMedGoogle Scholar
  56. Invernizzi RW, Pieruci M, Calcagno E, Di Giovanni G, Di Matteo V, Benigno A, Esposito E (2007) Selective activation of the 5-HT2C receptors stimulates GABA-ergic function in the rat substantia nigra pars reticulata: a combined in vivo electrophysiological and neurochemical study. Neuroscience 144:1523–1535PubMedGoogle Scholar
  57. Iwamoto K, Nakatani N, Bundo M, Yoshikawa T, Kato T (2005) Altered RNA editing of serotonin 2C receptor in a rat model of depression. Neurosci Res 53:69–76PubMedGoogle Scholar
  58. Jenck F, Moreau J-L Berendsen HHG, Boes M, Broekkamp CLE, Martin JR, Wichmann J, Van Delft AML (1998) Antiaversive effects of 5-HT2C receptor agonists and fluoxetine in a model of panic-like anxiety in rats. Eur Neuropsychopharmacol 8:161–168PubMedGoogle Scholar
  59. Kantor S, Jakus R, Balogh B, Benko A, Bagdy G (2004) Increased wakefulness, motor activity and decreased theta activity after blockade of the 5-HT2B receptor by the subtype-selective antagonist SB-215505. Br J Pharmacol 142:1332–1342PubMedGoogle Scholar
  60. Kantor S, Jakus R, Molnar E, Gyongyosi N, Toth A, Detari L, Bagdy G (2005) Despite similar anxiolytic potential, the 5-HT2C receptor antagonist SB-242084 and chlordiazepoxide produced differential effects on EEG power spectra. J Pharm Exp Ther 315:921–930Google Scholar
  61. Kempermann G, Wiskott L, Gage FH (2004) Functionnal significance of adult neurogenesis. Curr Opin Neurobiol 14:186–191PubMedGoogle Scholar
  62. Kennett GA, Lightowler S, De Biasi V, Stevens NC, Wood MD, Tulloch IF, Blackburn TP (1994) Effect of chronic administration of selective 5-hydroxytryptamine and noradrenaline uptake inhibitors on a putative index of 5-HT2C/2B receptor function. Neuropharmacology 33:1581–1588PubMedGoogle Scholar
  63. Kennett GA, Bright F, Trail B, Baxter GS, Blackburn TP (1996a) Effects of the 5-HT2B receptor agonist, BW 723C86, on three rat models of anxiety. Br J Pharmacol 117:1443–1448PubMedGoogle Scholar
  64. Kennett GA, Wood MD, Bright F, Cilia J, Piper DC, Gager T, Thomas D, Baxter GS, Forbes IT, Ham P, Blackburn TP (1996b) In vitro and in vivo profile of SB 206553, a potent 5-HT2C/5-HT2B receptor antagonist with anxiolytic-like properties. Br J Pharmacol 117:427–434PubMedGoogle Scholar
  65. Kennett GA, Wood MD, Bright F, Trail B, Riley G, Holland V, Avenell KY, Stean T, Upton N, Bromidge S, Forbes IT, Brown AM, Middlemiss DN, Blackburn TP (1997) SB 242084, a selective and brain penetrant 5-HT2C receptor antagonist. Neuropharmacology 36:609–620PubMedGoogle Scholar
  66. Kennett GA, Lightowler S, Trail B Bright F, Bromidge S (2000) Effects of RO 60 0175, a 5-HT2C receptor agonist, in three animal models of anxiety. Eur J Pharm 387:197–204Google Scholar
  67. Kroeze WK, Hufeisen SJ, Popadak BA, Renock SM, Steinberg S, Ernsberger P, Jayathilake K, Meltzer HY, Roth BL (2003) H1-histamine receptor affinity predicts short-term weight gain for typical and atypical antipsychotic drugs. Neuropsychopharmacology 28:519–526PubMedGoogle Scholar
  68. Launay JM, Hervé P, Peoc’h K, Tournois C, Callebert J, Nebigil CG, Etienne N, Drouet L, Humbert M, Simonneau G, Maroteaux L (2002) Function of the serotonin 5-hydroxytryptamine2B receptor in pulmonary hypertension. Nat Med 8:1129–1135PubMedGoogle Scholar
  69. Malberg JE, Eisch AJ, Nestler EJ, Duman RS (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 20:9104–9110PubMedGoogle Scholar
  70. Marquis KL, Sabb AL, Logue SF, Brennan JA, Piesla MJ, Comery TA, Grauer SM, Ashby CR Jr, Nguyen HQ, Dawson LA, Barrett JE, Stack G, Meltzer HY, Harrison BL, Rosenzweig-Lipson S (2007) WAY-163909 [(7bR,10aR)-1,2,3,4,8,9,10,10a-octahydro-7bH-cyclopenta-[b][1,4]diazepino[6,7,1hi]indole]: a novel 5-hydroxytryptamine2C receptor-selective agonist with preclinical antipsychotic-like activity. J Pharmacol Exp Ther 320:486–496PubMedGoogle Scholar
  71. Martin JR, Bös M, Jenck F, Moreau J, Mutel V, Sleight AJ, Wichmann J, Andrews JS, Berendsen HH, Broekkamp CL, Ruigt GS, Köhler C, Delft AM (1998) 5-HT2C receptor agonists: pharmacological characteristics and therapeutic potential. J Pharmacol Exp Ther 286:913–924PubMedGoogle Scholar
  72. Martin JP, Ballard TM, Higgins GA (2002) Influence of the 5-HT2C receptor antagonist, SB-242084, in tests of anxiety. Pharmacol Biochem Behav 71:615–625PubMedGoogle Scholar
  73. Menard J, Treit D (1999) Effects of centrally administered anxiolytic compounds in animal models of anxiety. Neurosci Biobehav Rev 23:591–613PubMedGoogle Scholar
  74. Micallef J, Blin O (2001) Neurobiology and clinical pharmacology of obsessive–compulsive disorder. Clin Neuropharmacol 24:191–207PubMedGoogle Scholar
  75. Miczek KA, O’Donnell JM (1978) Intruder-evoked aggression in isolated and nonisolated mice: effects of psychomotor stimulants and l-dopa. Psychopharmacology 57:47–55PubMedGoogle Scholar
  76. Millan MJ (2003) The neurobiology and control of anxious states. Prog Neurobiol 70:53–244Google Scholar
  77. Millan MJ (2005) 5-HT2C receptors as a target for the treatment of depressive and anxious states: focus on novel therapeutic strategies. Therapie 60:441–460PubMedCrossRefGoogle Scholar
  78. Millan MJ (2006) Multi-target strategies for the improved treatment of depressive states: conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther 110:135–370PubMedGoogle Scholar
  79. Millan MJ, Brocco M (2003) The Vogel conflict test: procedural aspects, γ-aminobutyric acid, glutamate and monoamines. Eur J Pharmacol 463:67–96PubMedGoogle Scholar
  80. Millan MJ, Peglion JL, Lavielle G, Perrin-Monneyron S (1997a) 5-HT2C receptors mediate penile erections in rats: actions of novel and selective agonists and antagonists. Eur J Pharmacol 325:9–12PubMedGoogle Scholar
  81. Millan MJ, Hjorth S, Samanin R, Schreiber R, Jaffard R, De Ladonchamps B, Veiga S, Goument B, Peglion JL, Spedding M, Brocco M (1997b) S 15535, a novel benzodioxopiperazine ligand of serotonin (5-HT)1A receptors: II. Modulation of hippocampal serotonin release in relation to potential anxiolytic properties. J Pharmacol Exp Ther 282:148–161PubMedGoogle Scholar
  82. Millan MJ, Dekeyne A, Gobert A (1998) Serotonin (5-HT)2C receptors tonically inhibit dopamine (DA) and noradrenaline (NA), but not 5-HT, release in the frontal cortex in vivo. Neuropharmacology 37:953–955PubMedGoogle Scholar
  83. Millan MJ, Gobert A, Rivet J-M, Adhumeau-Auclair A, Cussac D, Newman-Tancredi A, Dekeyne A, Nicolas JP, Lejeune F (2000a) Mirtazapine enhances frontocortical dopaminergic and corticolimbic adrenergic, but not serotonergic, transmission by blockade of a2-adrenergic and serotonin2C receptors: a comparison with citalopram. Eur J Neurosci 12:1079–1095PubMedGoogle Scholar
  84. Millan MJ, Lejeune F, Gobert A (2000b) Reciprocal autoreceptor and heteroceptor control of serotonergic, dopaminergic and adrenergic transmission in frontal cortex: a review, and relevance to the actions of antidepressant agents. J Psychopharmacol 14:114–138PubMedCrossRefGoogle Scholar
  85. Millan MJ, Dekeyne A, Papp M, Drieu La Rochelle C, Macsweeny C, Peglion J-L, Brocco M (2001) S33005, a novel ligand at both serotonin and norepinephrine transporters: II. Behavioral profile in comparison with venlafaxine, reboxetine, citalopram and clomipramine. J Pharm Exp Ther 298:581–591Google Scholar
  86. Millan MJ, Gobert A, Lejeune F, Dekeyne A, Newman-Tancredi A, Pasteau V, Rivet JM, Cussac D (2003) The novel melatonin agonist agomelatine (S20098) is an antagonist at 5-HT2C receptors, blockade of which enhances the activity of frontocortical dopaminergic and adrenergic pathways. J Pharmacol Exp Ther 306:954–964PubMedGoogle Scholar
  87. Millan MJ, Brocco M, Gobert A, Dekeyne A (2005) Anxiolytic properties of agomelatine, an antidepressant with melatoninergic and serotonergic properties: role of 5-HT2C receptor blockade. Psychopharmacology 17:448–458Google Scholar
  88. Millan MJ, Loiseau F, Dekeyne A, Gobert A, Flik G, Cremers TI, Rivet JM, Sicard D, Billiras R, Brocco M (2007) S33138, a preferential dopamine D3 versus D2 receptor antagonist and potential antipsychotic agent. III. Actions in models of therapeutic activity and induction of side-effects. J Pharmacol Exp Ther 324:1212–1226PubMedGoogle Scholar
  89. Mitchell PJ (2005) Antidepressant treatment and rodent aggressive behaviour. Eur J Pharmacol 526:147–162PubMedGoogle Scholar
  90. Mitchell PJ, Fairhall SJ, Fletcher A, Redfern PH (2003) Effects of single and repeated electroconvulsive shock on the social and agonistic behaviour of resident rats. Neuropharmacology 44:911–925PubMedGoogle Scholar
  91. Molewijk HE, van der Poel AM, Mos J, van der Heyden JA, Olivier B (1995) Conditioned ultrasonic distress vocalizations in adult male rats as a behavioural paradigm for screening anti-panic drugs. Psychopharmacology 117:32–40PubMedGoogle Scholar
  92. Moreau JL, Jenck F, Martin JR, Perrin S, Haefely WE (1993) Effects of repeated mild stress and two antidepressant treatments on the behavioural response to 5-HT1C receptor activation in rats. Psychopharmacology 110:140–144PubMedGoogle Scholar
  93. Moreau JL, Bös M, Jenck F, Martin JR, Mortas P, Wichmann J (1996) 5-HT2C receptor agonists exhibit antidepressant-like properties in the anhedonia model of depression in rats. Eur Neuropsychopharmacol 6:169–175PubMedGoogle Scholar
  94. Moya PR, Berg KA, Gutiérrez-Hernandez MA, Sáez-Briones P, Reyes-Parada M, Cassels BK, Clarke WP (2007) Functional selectivity of hallucinogenic phenethylamine and phenylisopropylamine derivatives at human 5-hydroxytryptamine (5-HT)2A and 5-HT2C receptors. J Pharmacol Exp Ther 321:1054–1061PubMedGoogle Scholar
  95. Murphy DL, Mueller EA, Hill JL, Tolliver TJ, Jacobsen FM (1989) Comparative anxiogenic, neuroendocrine, and other physiologic effects of m-chlorophenylpiperazine given intravenously or orally to healthy volunteers. Psychopharmacology 98:275–282PubMedGoogle Scholar
  96. Nebigil CG, Maroteaux L (2003) Functional consequence of serotonin/5-HT2B receptor signaling in heart: role of mitochondria in transition between hypertrophy and heart failure? Circulation 108:902–908PubMedGoogle Scholar
  97. Nestler EJ, Carlezon WA Jr (2006) The mesolimbic dopamine reward circuit in depression. Biol Psychiatry 59:1151–1159PubMedGoogle Scholar
  98. Nicolas LB, Kolb Y, Prinssen EP (2006) A combined marble burying-locomotor activity test in mice: a practical screening test with sensitivity to different classes of anxiolytics and antidepressants. Eur J Pharmacol 547:106–115PubMedGoogle Scholar
  99. Olié JP, Kasper S (2007) Efficacy of agomelatine, a MT1/MT2 receptor agonist with 5-HT2C antagonistic properties, in major depressive disorder. Int J Neuropsychopharmacol 10:661–673PubMedGoogle Scholar
  100. Papp M, Gruca P, Boyer PA, Mocaër E (2003) Effect of agomelatine in the chronic mild stress model of depression in the rat. Neuropsychopharmacology 28:694–703PubMedGoogle Scholar
  101. Papp M, Litwa E, Gruca P, Mocaër E (2006) Anxiolytic-like activity of agomelatine and melatonin in three animal models of anxiety. Behav Pharmacol 17:9–18PubMedGoogle Scholar
  102. Rosenzweig-Lipson S, Sabb A, Stack G, Mitchell P, Lucki I, Malberg JE, Grauer S, Brennan J, Cryan JF, Sukoff Rizzo SJ, Dunlop J, Barrett JE, Marquis KL (2007) Antidepressant-like effects of the novel, selective, 5-HT2C receptor agonist WAY-163909 in rodents. Psychopharmacology 192:159–70PubMedGoogle Scholar
  103. Sabbe B, Hulstijn W, Maes M, Pier M, Scharpé S, Zitman F (2001) Psychomotor slowing, neuroendocrine responses, and behavioural changes after oral administration of meta-chlorophenylpiperazine in normal volunteers. Psychiatry Res 105:151–163PubMedGoogle Scholar
  104. Sánchez C, Meier E (1997) Behavioural profiles of SSRIs in animal models of depression, anxiety and aggression. Are they all alike? Psychopharmacology 129:197–205PubMedGoogle Scholar
  105. Sanders-Bush E, Fentress H, Hazelwood L (2003) Serotonin 5-HT2C receptors: molecular and genomic diversity. Mol Interv 3:319–330PubMedGoogle Scholar
  106. Schaerlinger B, Hickel P, Etienne N, Guesnier L, Maroteaux L (2003) Agonist actions of dihydroergotamine at 5-HT2B and 5-HT2C receptors and their possible relevance to antimigraine efficacy. Br J Pharmacol 140:277–284 2003 SepPubMedGoogle Scholar
  107. Sharma A, Punhani F, Fone KCF (1997) Distribution of the 5-hydroxytryptamine2C receptor protein in adult rat brain and spinal cord determined using a receptor-directed antibody effect of 5,7-dihydroxytryptamine. Synapse 26:45–56Google Scholar
  108. Singewald N, Sharp T (2000) Neuroanatomical targets of anxiogenic drugs in the hindbrain as revealed by Fos immunocytochemistry. Neuroscience 98:759–770PubMedGoogle Scholar
  109. Siuciak JA, Chapin DS, McCarthy SA, Guanowsky V, Brown J, Chiang P, Marala R, Patterson T, Seymour PA, Swick A, Iredale PA (2007) CP-809,101, a selective 5-HT2C agonist, shows activity in animal models of antipsychotic activity. Neuropharmacology 52:279–290PubMedGoogle Scholar
  110. Smith MI, Piper DC, Duxon MS, Upton N (2002) Effect of SB-243213, a selective 5-HT2C receptor antagonist, on the rat sleep profile: a comparison to paroxetine. Pharmacol Biochem Behav 71:599–605PubMedGoogle Scholar
  111. Somerville EM, Horwood JM, Lee MD, Kennett GA, Clifton PG (2007) 5-HT2C receptor activation inhibits appetitive and consummatory components of feeding and increases brain c-fos immunoreactivity in mice. Eur J Neurosci 25:3115–3124PubMedGoogle Scholar
  112. Stark JA, Davies KE, Williams SR, Luckman SM (2006) Functional magnetic resonance imaging and c-fos mapping in rats following an anorectic dose of m-chlorophenylpiperazine. NeuroImage 31:1228–1237PubMedGoogle Scholar
  113. Tanda G, Carboni E, Frau R, Di Chiara G (1994) Increase of extracellular dopamine in the prefrontal cortex: a trait of drugs with antidepressant potential? Psychopharmacology 115:285–288PubMedGoogle Scholar
  114. Tecott LH, Sun LM, Akana SF, Strack AM, Lowenstein DH, Dallman MF, Julius D (1995) Eating disorder and epilepsy in mice lacking 5-HT2C serotonin receptors. Nature 374:542–546PubMedGoogle Scholar
  115. Tremblay P, Blier P (2006) Catecholaminergic strategies for the treatment of major depression. Curr Drug Targets 7:149–158PubMedGoogle Scholar
  116. Van Oekelen D, Luyten WH, Leysen JE (2003) 5-HT2A and 5-HT2C receptors and their atypical regulation properties. Life Sci 72:2429–2449PubMedGoogle Scholar
  117. Van Veen JF, Van der Wee NJA, Fiselier J Van Vliet IM, Westenberg HGM (2007) Behavioural effects of rapid intravenous administration of meta-chlorophenyl piperazine (m-CPP) in patients with generalized social anxiety disorder, panic disorder and healthy control. Eur Neuropsychopharmacol 17:637–642PubMedGoogle Scholar
  118. Walker EA, Kohut SJ, Hass RW Brown EK, Prabandham A, Lefever T (2005) Selective and nonselective serotonin antagonists block the aversive stimulus properties of MK212 and m-chlorophenylpiperazine (mCPP) in mice. Neuropharmacology 42:1210–1219Google Scholar
  119. Willner P (1997) Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology 134:319–329PubMedGoogle Scholar
  120. Winter JC, Rabin RA (1993) Discriminative stimulus properties of m-chlorophenylpiperazine. Pharmacol Biochem Behav 45:221–223PubMedGoogle Scholar
  121. Wood MD, Reavill C, Trail B, Wilson A, Stean T, Kennett GA, Lightowler S, Blackburn TP, Thomas D, Gager TL, Riley G, Holland V, Bromidge SM, Forbes IT, Middlemiss DN (2001) SB-243213; a selective 5-HT2C receptor inverse agonist with improved anxiolytic profile: lack of tolerance and withdrawal anxiety. Neuropharmacology 41:186–199PubMedGoogle Scholar
  122. Zacharko RM, Koszycki D, Mendella PD, Bradwejn J (1995) Behavioral, neurochemical, anatomical and electrophysiological correlates of panic disorder: multiple transmitter interaction and neuropeptide colocalization. Prog Neurobiol 47:371–423PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Anne Dekeyne
    • 1
  • Clotilde Mannoury la Cour
    • 1
  • Alain Gobert
    • 1
  • Mauricette Brocco
    • 1
  • Françoise Lejeune
    • 1
  • Florence Serres
    • 2
  • Trevor Sharp
    • 2
  • Annie Daszuta
    • 3
  • Amélie Soumier
    • 3
  • Mariusz Papp
    • 4
  • Jean-Michel Rivet
    • 1
  • Gunnar Flik
    • 5
  • Thomas I. Cremers
    • 5
  • Olivier Muller
    • 6
  • Gilbert Lavielle
    • 6
  • Mark J. Millan
    • 1
  1. 1.Department of Psychopharmacology, Institut de Recherches ServierCentre de Recherches de CroissyCroissy/SeineFrance
  2. 2.Department of PharmacologyOxford UniversityOxfordUK
  3. 3.IC2N, IBDMLUMR-6216 CNRS-Université de la méditerranéeMarseille cedex 9France
  4. 4.Institute of PharmacologyPolish Academy of SciencesKrakowPoland
  5. 5.Brains-on-LineGroningenThe Netherlands
  6. 6.Department of Chemistry F, Institut de Recherches ServierCentre de Recherches de CroissyCroissy/SeineFrance

Personalised recommendations