Psychopharmacology

, Volume 198, Issue 4, pp 449–460 | Cite as

Increase of brain endocannabinoid anandamide levels by FAAH inhibition and alcohol abuse behaviours in the rat

  • Andrea Cippitelli
  • Nazzareno Cannella
  • Simone Braconi
  • Andrea Duranti
  • Andrea Tontini
  • Ainhoa Bilbao
  • Fernando Rodríguez DeFonseca
  • Daniele Piomelli
  • Roberto Ciccocioppo
Original Investigation

Abstract

Rationale

A major clinical concern with the use of cannabinoid receptor 1 (CB1) direct agonists is that these compounds increase alcohol drinking and drug abuse-related behaviours. As an alternative approach, CB1-receptor-mediated activity can be facilitated by increasing anandamide levels with the use of hydrolase fatty acid amide hydrolase (FAAH) inhibitors.

Objective

Using the selective FAAH inhibitor URB597, we investigated whether activation of the endogenous cannabinoid tone increases alcohol abuse liability, as what happens with the CB1 receptor direct agonists.

Materials and methods

URB597 was tested on alcohol self-administration in Wistar rats and on homecage alcohol drinking in genetically selected Marchigian Sardinian alcohol-preferring (msP) rats. In Wistar rats, URB597 effects on alcohol-induced anxiety and on stress-, yohimbine- and cue-induced reinstatement of alcohol seeking were also evaluated. For comparison, the effect of the CB1 receptor antagonist rimonabant on ethanol self-administration was also tested.

Results

Under our experimental condition, intraperitoneal (IP) administration of URB597 (0.0, 0.3 and 1.0 mg/kg) neither increased voluntary homecage alcohol drinking in msP rats nor facilitated fixed ratio 1 and progressive ratio alcohol self-administration in nonselected Wistars. In the reinstatement tests, the compound did not have effects on cue-, footshock stress- and yohimbine-induced relapse. Conversely, URB597 completely abolished the anxiogenic response measured during withdrawal after an acute IP administration of alcohol (3.0 g/kg). Rimonabant (0.0, 0.3, 1.0 and 3.0 mg/kg) significantly reduced ethanol self-administration.

Conclusions

Results demonstrate that activation of the endocannabinoid anandamide system by selective inhibition of FAAH does not increase alcohol abuse risks but does reduce anxiety associated to alcohol withdrawal. We thus can speculate that medication based on the use of endocannabinoid system modulators such as URB597 may offer important advantages compared to treatment with direct CB1 receptor activators.

Keywords

Anandamide Cannabinoids URB597 FAAH Alcohol drinking Relapse Alcohol self-administration 

Notes

Acknowledgements

This work was supported by the Italian MUR (Ministero dell’Università e della Ricerca), the University of Urbino, the Plan Nacional Sobre Drogas, REDES TEMATICAS RD06/001 and the 5th Framework Programme, grants TARGALC QLRT-2001-01048. The authors have no financial interest in or financial conflict with the subject matter or materials discussed in the manuscript.

References

  1. Abercrombie ED, Keller RW Jr, Zigmond MJ (1988) Characterization of hippocampal norepinephrine release as measured by microdialysis perfusion: pharmacological and behavioral studies. Neuroscience 27:897–904PubMedCrossRefGoogle Scholar
  2. Aghajanian GK, VanderMaelen CP (1982) Alpha 2-adrenoceptormediated hyperpolarization of locus coeruleus neurons: intracellular studies in vivo. Science 215:1394–1396PubMedCrossRefGoogle Scholar
  3. American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Association, Washington D.CGoogle Scholar
  4. Arnold JM, Roberts DCS (1997) A critique of fixed and progressive ratio schedules used to examine the neural substrates of drug reinforcement. Pharmacol Biochem Behav 57:441–447PubMedCrossRefGoogle Scholar
  5. Beltramo M, Stella N, Calignano A, Lin SY, Makriyannis A, Piomelli D (1997) Functional role of high-affinity anandamide transport, as revealed by selective inhibition. Science 277:1094–1097PubMedCrossRefGoogle Scholar
  6. Blednov YA, Cravatt BF, Boehm SL 2nd, Walker D, Harris RA (2007) Role of endocannabinoids in alcohol consumption and intoxication: studies of mice lacking fatty acid amide hydrolase. Neuropsychopharmacology 32:1570–1582PubMedCrossRefGoogle Scholar
  7. Bortolato M, Campolongo P, Mangieri RA, Scattoni ML, Frau R, Trezza V, La Rana G, Russo R, Calignano A, Gessa GL, Cuomo V, Piomelli D (2006) Anxiolytic-like properties of the anandamide transport inhibitor AM404. Neuropsychopharmacology 31:2652–2659PubMedCrossRefGoogle Scholar
  8. Bremner JD, Krystal JH, Southwick SM, Charney DS (1996a) Noradrenergic mechanisms in stress and anxiety. I. Preclinical studies. Synapse 23:28–38PubMedCrossRefGoogle Scholar
  9. Bremner JD, Krystal JH, Southwick SM, Charney DS (1996b) Noradrenergic mechanisms in stress and anxiety. II. Clinical studies. Synapse 23:39–51PubMedCrossRefGoogle Scholar
  10. Chaperon F, Thiebot MH (1999) Behavioral effects of cannabinoid agents in animals. Crit Rev Neurobiol 13:243–281PubMedGoogle Scholar
  11. Charney DS, Heninger GR, Redmond DE Jr (1983) Yohimbine induced anxiety and increased noradrenergic function in humans: effects of diazepam and clonidine. Life Sci 33:19–29PubMedCrossRefGoogle Scholar
  12. Ciccocioppo R, Sanna PP, Weiss F (2001) Cocaine-predictive stimulus induces drug-seeking behavior and neural activation in limbic brain regions after multiple months of abstinence: reversal by D (1) antagonists. Proc Natl Acad Sci USA 98:1976–1981PubMedCrossRefGoogle Scholar
  13. Ciccocioppo R, Economidou D, Fedeli A, Angeletti S, Weiss F, Heilig M, Massi M (2004) Attenuation of alcohol self-administration and of conditioned reinstatement of alcohol-seeking behaviour by the antiopioid peptide nociceptin/orphanin FQ in alcohol-preferring rats. Psychopharmacology 172:170–178PubMedCrossRefGoogle Scholar
  14. Ciccocioppo R, Economidou D, Cippitelli A, Cucculelli M, Ubaldi M, Soverchia L, Lourdusamy A, Massi M (2006) Genetically selected Marchigian Sardinian alcohol-preferring (msP) rats: an animal model to study the neurobiology of alcoholism. Addict Biol 11:339–355PubMedCrossRefGoogle Scholar
  15. Cippitelli A, Bilbao A, Hansson AC, Del Arco I, Sommer W, Heilig M, Massi M, Bermudez-Silva FJ, Navarro M, Ciccocioppo R, de Fonseca FR (2005) The European TARGALC Consortium Cannabinoid CB1 receptor antagonism reduces conditioned reinstatement of alcohol-seeking behavior in rats. Eur J Neurosci 21:2243–2251PubMedCrossRefGoogle Scholar
  16. Cippitelli A, Bilbao A, Gorriti MA, Navarro M, Massi M, Piomelli D, Ciccocioppo R, de Fonseca FR (2007) The anandamide transport inhibitor AM404 reduces alcohol self-administration. Eur J Neurosci. 26:476–486PubMedCrossRefGoogle Scholar
  17. Colombo G, Serra S, Brunetti G, Gómez R, Melis S, Vacca G, Carai MM, Gessa GL (2002) Stimulation of voluntary alcohol intake by cannabinoid receptor agonists in alcohol preferring sP rats. Psychopharmacology 159:181–187PubMedCrossRefGoogle Scholar
  18. Colombo G, Serra S, Vacca G, Gessa GL, Carai MA (2004) Suppression by baclofen of the stimulation of alcohol intake induced by morphine and WIN 55,212-2 in alcohol-preferring rats. Eur J Pharmacol 492:189–193PubMedCrossRefGoogle Scholar
  19. Colombo G, Lobina C, Carai MA, Gessa GL (2006) Phenotypic characterization of genetically selected Sardinian alcohol-preferring (sP) and -non-preferring (sNP) rats. Addict Biol 11:324–338PubMedCrossRefGoogle Scholar
  20. Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB (1996) Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384:83–87PubMedCrossRefGoogle Scholar
  21. Cruz AP, Frei F, Graeff FG (1994) Ethopharmacological analysis of rat behavior on the elevated plus-maze. Pharmacol Biochem Behav 49:171–176PubMedCrossRefGoogle Scholar
  22. Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–1949PubMedCrossRefGoogle Scholar
  23. De Vries TJ, Shaham Y, Homberg JR, Crombag H, Schuurman K, Dieben J, Vanderschuren LJ Schoffelmeer AN (2001) A cannabinoid mechanism in relapse to cocaine seeking. Nat Med 7:1151–1154PubMedCrossRefGoogle Scholar
  24. De Vries TJ, Homberg JR, Binnekade R, Raaso H, Schoffelmeer AN (2003) Cannabinoid modulation of the reinforcing and motivational properties of heroin and heroin-associated cues in rats. Psychopharmacology 168:164–169PubMedCrossRefGoogle Scholar
  25. Economidou D, Mattioli L, Cifani C, Perfumi M, Massi M, Cuomo V, Trabace L, Ciccocioppo R (2006) Effect of the cannabinoid CB1 receptor antagonist SR-141716A on alcohol self-administration and alcohol-seeking behaviour in rats. Psychopharmacology 183:394–403PubMedCrossRefGoogle Scholar
  26. Fegley D, Gaetani S, Duranti A, Tontini A, Mor M, Tarzia G, Piomelli D (2005) Characterization of the fatty acid amide hydrolase inhibitor cyclohexyl carbamic acid 3′-carbamoyl-biphenyl-3-yl ester (URB597): effects on anandamide and oleoylalcoholamide deactivation. J Pharmacol Exp Ther 313:352–358PubMedCrossRefGoogle Scholar
  27. Freund TF, Katona I, Piomelli D (2003) Role of endogenous cannabinoids in synaptic signaling. Physiol Rev 83:1017–1066PubMedGoogle Scholar
  28. Gallate JE, Saharov T, Mallet PE, McGregor IS (1999) Increased motivation for beer in rats following administration of a cannabinoid CB1 receptor agonist. Eur J Pharmacol 370:233–240PubMedCrossRefGoogle Scholar
  29. Gehlert DR, Cippitelli A, Thorsell A, Lê AD, Hipskind PA, Hamdouchi C, Lu J, Hembre EJ, Cramer J, Song M, McKinzie D, Morin M, Ciccocioppo R, Heilig M (2007) 3-(4-Chloro-2-morpholin-4-yl-thiazol-5-yl)-8-(1-ethylpropyl)-2,6-dimethyl-imidazo[1,2-b]pyridazine: a novel brain-penetrant, orally available corticotropin-releasing factor receptor 1 antagonist with efficacy in animal models of alcoholism. J Neurosci 27:2718–2726PubMedCrossRefGoogle Scholar
  30. Giuffrida A, Parsons LH, Kerr TM, Rodriguez de Fonseca F, Navarro M, Piomelli D (1999) Dopamine activation of endogenous cannabinoid signaling in dorsal striatum. Nature Neurosci 2:358–363PubMedCrossRefGoogle Scholar
  31. Gobbi G, Bambico FR, Mangieri R, Bortolato M, Campolongo P, Solinas M, Cassano T, Morgese MG, Debonnel G, Duranti A, Tontini A, Tarzia G, Mor M, Trezza V, Goldberg SR, Cuomo V, Piomelli D (2005) Antidepressant-like activity and modulation of brain monoaminergic transmission by blockade of anandamide hydrolysis. Proc Natl Acad Sci USA 102:18620–18625PubMedCrossRefGoogle Scholar
  32. Gomez R, Navarro M, Ferrer B, Trigo JM, Bilbao A, Del Arco I, Cippitelli A, Nava F, Piomelli D, Rodriguez de Fonseca F (2002) A peripheral mechanism for CB1 cannabinoid receptor-dependent modulation of feeding. J Neurosci 22:9612–9617PubMedGoogle Scholar
  33. Hansson AC, Cippitelli A, Sommer WH, Fedeli A, Bjork K, Soverchia L, Terasmaa A, Massi M, Heilig M, Ciccocioppo R (2006) Variation at the rat Crhr1 locus and sensitivity to relapse into alcohol seeking induced by environmental stress. Proc Natl Acad Sci USA 103:15236–15241PubMedCrossRefGoogle Scholar
  34. Hansson AC, Bermudez-Silva FJ, Malinen H, Hyytia P, Sanchez-Vera I, Rimondini R, Rodriguez de Fonseca F, Kunos G, Sommer WH, Heilig M (2007) Genetic impairment of frontocortical endocannabinoid degradation and high alcohol preference. Neuropsychopharmacology 32:117–126PubMedCrossRefGoogle Scholar
  35. Hill MN, Ho WS, Sinopoli KJ, Viau V, Hillard CJ, Gorzalka BB (2006) Involvement of the endocannabinoid system in the ability of long-term tricyclic antidepressant treatment to suppress stress-induced activation of the hypothalamic–pituitary–adrenal axis. Neuropsychopharmacology 31:2591–2599PubMedCrossRefGoogle Scholar
  36. Hohmann AG, Suplita RL, Bolton NM, Neely MH, Fegley D, Mangieri R, Krey JF, Walker JM, Holmes PV, Crystal JD, Duranti A, Tontini A, Mor M, Tarzia G, Piomelli D (2005) An endocannabinoid mechanism for stress-induced analgesia. Nature 435:1108–1112PubMedCrossRefGoogle Scholar
  37. Holmberg G, Gershon S, Beck LH (1962) Yohimbine as an autonomic test drug. Nature 193:1313–1314PubMedCrossRefGoogle Scholar
  38. Kathuria S, Gaetani S, Fegley D, Valino F, Duranti A, Tontini A, Mor M, Tarzia G, La Rana G, Calignano A, Giustino A, Tattoli M, Palmery M, Cuomo V, Piomelli D (2003) Modulation of anxiety through blockade of anandamide hydrolysis. Nat Med 9:76–81PubMedCrossRefGoogle Scholar
  39. Lê AD, Shaham Y (2002) Neurobiology of relapse to alcohol in rats. Pharmacol Ther 94:137–156PubMedCrossRefGoogle Scholar
  40. Lê AD, Quan B, Juzytch W, Fletcher PJ, Joharchi N, Shaham Y (1998) Reinstatement of alcohol-seeking by priming injections of alcohol and exposure to stress in rats. Psychopharmacology 135:169–174PubMedCrossRefGoogle Scholar
  41. Lê AD, Harding S, Juzytsch W, Watchus J, Shalev U, Shaham Y (2000) The role of corticotrophin-releasing factor in stress-induced relapse to alcohol-seeking behavior in rats. Psychopharmacology 150:317–324PubMedCrossRefGoogle Scholar
  42. Lê AD, Harding S, Juzytsch W, Funk D, Shaham Y (2005) Role of alpha-2 adrenoceptors in stress-induced reinstatement of alcohol seeking and alcohol self-administration in rats. Psychopharmacology 179:366–373PubMedCrossRefGoogle Scholar
  43. Lee B, Tiefenbacher S, Platt DM, Spealman RD (2004) Pharmacological blockade of alpha(2)-adrenoceptors induces reinstatement of cocaine-seeking behavior in squirrel monkeys. Neuropsychopharmacology. 29:686–693PubMedCrossRefGoogle Scholar
  44. Liu X, Weiss F (2002) Additive effect of stress and drug cues on reinstatement of alcohol seeking: exacerbation by history of dependence and role of concurrent activation of corticotropin-releasing factor and opioid mechanisms. J Neurosci 22:7856–7861PubMedGoogle Scholar
  45. Lopez-Moreno JA, Gonzalez-Cuevas G, Rodriguez de Fonseca F, Navarro M (2004) Long-lasting increase of alcohol relapse by the cannabinoid receptor agonist WIN 55,212-2 during alcohol deprivation. J Neurosci 24:8245–8252PubMedCrossRefGoogle Scholar
  46. McGregor IS, Dam KD, Mallet PE, Gallate JE (2005) Delta9-THC reinstates beer- and sucrose-seeking behaviour in abstinent rats: comparison with midazolam, food deprivation and predator odour. Alcohol Alcohol 40:35–45PubMedGoogle Scholar
  47. Mor M, Rivara S, Lodola A, Plazzi PV, Tarzia G, Duranti A, Tontini A, Piersanti G, Kathuria S, Piomelli D (2004) Cyclohexylcarbamic acid 3′- or 4′-substituted biphenyl-3-yl esters as fatty acid amide hydrolase inhibitors: synthesis, quantitative structure–activity relationships, and molecular modeling studies. J Med Chem 47:4998–5008PubMedCrossRefGoogle Scholar
  48. O’Brien CP, McLellan AT (1996) Myths about the treatment of addiction. Lancet 347:237–240PubMedCrossRefGoogle Scholar
  49. O’Brien CP, Childress AR, McLellan AT, Ehrman R (1990) Integrating systematic cue exposure with standard treatment in recovering drug dependent patients. Addict Behav 15:355–365PubMedCrossRefGoogle Scholar
  50. O’Brien CP, Childress AR, Ehrman R, Robbins SJ (1998) Conditioning factors in drug abuse: can they explain compulsion? J Psychopharmacol 12:15–22PubMedCrossRefGoogle Scholar
  51. Pacher P, Batkai S, Kunos G (2006) The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev 58:389–462PubMedCrossRefGoogle Scholar
  52. Patel S, Roelke CT, Rademacher DJ, Hillard CJ (2005) Inhibition of restraint stress-induced neural and behavioural activation by endogenous cannabinoid signalling. Eur J Neurosci 21:1057–1069PubMedCrossRefGoogle Scholar
  53. Piomelli D (2003) The molecular logic of endocannabinoid signalling. Nat Rev Neurosci 4:873–884PubMedCrossRefGoogle Scholar
  54. Piomelli D, Tarzia G, Duranti A, Tontini A, Mor M, Compton TR, Dasse O, Monaghan EP, Parrott JA, Putman D (2006) Pharmacological profile of the selective FAAH inhibitor KDS-4103 (URB597). CNS Drug Rev 12:21–38PubMedCrossRefGoogle Scholar
  55. Rademacher DJ, Hillard CJ (2007) Interactions between endocannabinoids and stress-induced decreased sensitivity to natural reward. Prog Neuropsychopharmacol Biol Psychiatry 31:633–641PubMedCrossRefGoogle Scholar
  56. Shaham Y, Erb S, Stewart J (2000) Stress-induced relapse to heroin and cocaine seeking in rats: a review. Brain Res Brain Res Rev 33:13–33PubMedCrossRefGoogle Scholar
  57. Shalev U, Grimm JW, Shaham Y (2002) Neurobiology of relapse to heroin and cocaine seeking: a review. Pharmacol Rev 54:1–42PubMedCrossRefGoogle Scholar
  58. Shepard JD, Bossert JM, Liu SY, Shaham Y (2004) The anxiogenic drug yohimbine reinstates methamphetamine seeking in a rat model of drug relapse. Biol Psych 55:1082–1089CrossRefGoogle Scholar
  59. Vinod KY, Yalamanchili R, Xie S, Cooper TB, Hungund BL (2006) Effect of chronic alcohol exposure and its withdrawal on the endocannabinoid system. Neurochem Int 49:619–625PubMedCrossRefGoogle Scholar
  60. Weiss F, Lorang MT, Bloom FE, Koob GF (1993) Oral alcohol self-administration stimulates dopamine release in the rat nucleus accumbens: genetic and motivational determinants. J Pharmacol Exp Ther 267:250–258PubMedGoogle Scholar
  61. Williams CM, Rogers PJ, Kirkham TC (1998) Hyperphagia in pre-fed rats following oral D9-THC-THC. Physiol Behav 65:343–346PubMedCrossRefGoogle Scholar
  62. Wilson RI, Nicoll RA (2002) Endocannabinoid signaling in the brain. Science 296:678–682PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Andrea Cippitelli
    • 1
  • Nazzareno Cannella
    • 1
  • Simone Braconi
    • 1
  • Andrea Duranti
    • 2
  • Andrea Tontini
    • 2
  • Ainhoa Bilbao
    • 3
  • Fernando Rodríguez DeFonseca
    • 3
  • Daniele Piomelli
    • 4
  • Roberto Ciccocioppo
    • 1
  1. 1.Department of Experimental Medicine and Public HealthUniversity of CamerinoCamerinoItaly
  2. 2.Institute of Medicinal ChemistryUniversity of Urbino “Carlo Bo”UrbinoItaly
  3. 3.Fundación IMABISHospital Carlos Haya de MálagaMalagaSpain
  4. 4.Department of Pharmacology360 MSRII, University of CaliforniaIrvineUSA

Personalised recommendations