, Volume 197, Issue 3, pp 391–400 | Cite as

MDMA modifies active avoidance learning and recall in mice

  • José Manuel Trigo
  • Araceli Cabrero-Castel
  • Fernando Berrendero
  • Rafael Maldonado
  • Patricia Robledo
Original Investigatin



Several studies have suggested the existence of cognitive deficits after repeated or high doses of 3,4-methylenedioxymethamphetamine (MDMA) in humans and experimental animals. However, the extent of the impairments observed in learning or memory tasks remains unclear.


The objective of this study was to evaluate the effects of different dosing regimens of MDMA on the ability of mice to learn and recall an active avoidance task.

Materials and methods

Animals were treated with MDMA (0, 1, 3, 10 and 30 mg/kg) under four different experimental conditions, and active avoidance acquisition and recall were evaluated. In experiments 1 and 2, MDMA was administered 1 h before different active avoidance training sessions. In experiments 3 and 4, mice received a repeated treatment with MDMA before or after active avoidance training, respectively. Changes in presynaptic striatal dopamine transporter (DAT) binding sites were evaluated at two different time points in animals receiving a high dose of MDMA (30 mg/kg) or saline twice a day over 4 days.


MDMA administered before the active avoidance sessions interfered with the acquisition and the execution of a previously learned task. A repeated treatment with high doses of MDMA administered before training reduced acquisition of active avoidance in mice, while pre-treatment with both high and low doses of MDMA impaired recall of this task. A reduction in DAT binding was observed 4 days but not 23 days after the last MDMA administration.


Acute MDMA modifies the acquisition and execution of active avoidance in mice, while repeated pre-treatment with MDMA impairs acquisition and recall of this task.


Ecstasy Memory DAT binding Shuttle-box Conditioning 



The authors would like to thank Alba Vidal for her assistance in the behavioural studies. Dr. Trigo was supported by Instituto de Salud Carlos III “Ayudas para contratos posdoctorales de perfeccionamiento”. This work was supported by FIS grant number 03/0305, Plan Nacional Sobre Drogas 2005, Redes de grupos ISCIII (RTA G03/005), Ministerio de Ciencia y Tecnología (BFU2004–00920/BFI and GEN2003–20651), Genomics, mechanisms and treatment of addiction (GENADDICT) EC-DG RTD-FPVI-Life Sciences and Health-2003-IP (LSHM-CT-2004-05166), New molecules in mood disorders (NEWMOOD) EC-DG RTD-FPVI-Life Sciences and Health-2003-IP (LSHM-CT-2004–503474), Generalitat de Catalunya 2005SGR00131.


  1. Able JA, Gudelsky GA, Vorhees CV, Williams MT (2006) 3,4-Methylenedioxymethamphetamine in adult rats produces deficits in path integration and spatial reference memory. Biol Psychiatry 59:1219–1226PubMedCrossRefGoogle Scholar
  2. Bhattachary S, Powell JH (2001) Recreational use of 3,4-methylenedioxymethamphetamine (MDMA) or ‘ecstasy’: evidence for cognitive impairment. Psychol Med 31:647–658PubMedCrossRefGoogle Scholar
  3. Broening HW, Morford LL, Inman-Wood SL, Fukumura M, Vorhees CV (2001) 3,4-methylenedioxymethamphetamine (ecstasy)-induced learning and memory impairments depend on the age of exposure during early development. J Neurosci 21:3228–3235PubMedGoogle Scholar
  4. Byrne T, Baker LE, Poling A (2000) MDMA and learning: effects of acute and neurotoxic exposure in the rat. Pharmacol Biochem Behav 66:501–508PubMedCrossRefGoogle Scholar
  5. Castellano C, Cestari V, Cabib S, Puglisi-Allegra S (1991) Post-training dopamine receptor agonists and antagonists affect memory storage in mice irrespective of their selectivity for D1 or D2 receptors. Behav Neural Biol 56:283–291PubMedCrossRefGoogle Scholar
  6. Colado MI, O’Shea E, Green AR (2004) Acute and long-term effects of MDMA on cerebral dopamine biochemistry and function. Psychopharmacology 173:249–263PubMedCrossRefGoogle Scholar
  7. Crisp T, Stafinsky JL, Boja JW, Schechter MD (1989) The antinociceptive effects of 3,4-methylenedioxymethamphetamine (MDMA) in the rat. Pharmacol Biochem Behav 34:497–501PubMedCrossRefGoogle Scholar
  8. Dafters RI (2006) Chronic ecstasy (MDMA) use is associated with deficits in task-switching but not inhibition or memory updating executive functions. Drug Alcohol Depend 83:181–184PubMedCrossRefGoogle Scholar
  9. Easton N, Marsden CA (2006) Ecstasy: are animal data consistent between species and can they translate to humans? J Psychopharmacol 20:194–210PubMedCrossRefGoogle Scholar
  10. Ferretti V, Florian C, Costantini VJ, Roullet P, Rinaldi A, De Leonibus E, Oliverio A, Mele A (2005) Co-activation of glutamate and dopamine receptors within the nucleus accumbens is required for spatial memory consolidation in mice. Psychopharmacology (Berl) 179:108–116CrossRefGoogle Scholar
  11. Fone KC, Beckett SR, Topham IA, Swettenham J, Ball M, Maddocks L (2002) Long-term changes in social interaction and reward following repeated MDMA administration to adolescent rats without accompanying serotonergic neurotoxicity. Psychopharmacology (Berl) 159:437–444CrossRefGoogle Scholar
  12. Frederick DL, Paule MG (1997) Effects of MDMA on complex brain function in laboratory animals. Neurosci Biobehav Rev 21:67–78PubMedCrossRefGoogle Scholar
  13. Glennon RA, Little PJ, Rosecrans JA, Yousif M (1987) The effect of MDMA (“Ecstasy”) and its optical isomers on schedule-controlled responding in mice. Pharmacol Biochem Behav 26:425–426PubMedCrossRefGoogle Scholar
  14. Green AR, Mechan AO, Elliott JM, O'Shea E, Colado MI (2003) The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”). Pharmacol Rev 55:463–508PubMedCrossRefGoogle Scholar
  15. Kalechstein AD, De La Garza R 2nd, Mahoney JJ 3rd, Fantegrossi WE, Newton TF (2007) MDMA use and neurocognition: a meta-analytic review. Psychopharmacology (Berl) 189:531–537CrossRefGoogle Scholar
  16. Kindlundh-Högberg AM, Schiöth HB, Svenningsson P (2007) Repeated intermittent MDMA binges reduce DAT density in mice and SERT density in rats in reward regions of the adolescent brain. Neurotoxicology 28:1158–1169PubMedCrossRefGoogle Scholar
  17. Mayerhofer A, Kovar KA, Schmidt WJ (2001) Changes in serotonin dopamine and noradrenaline levels in striatum and nucleus accumbens after repeated administration of the abused drug MDMA in rats. Neurosci Lett 308:99–102PubMedCrossRefGoogle Scholar
  18. Mele A, Avena M, Roullet P, De Leonibus E, Mandillo S, Sargolini F, Coccurello R, Oliverio A (2004) Nucleus accumbens dopamine receptors in the consolidation of spatial memory. Behav Pharmacol 15:423–431PubMedCrossRefGoogle Scholar
  19. Morgan MJ (1999) Memory deficits associated with recreational use of “ecstasy” (MDMA). Psychopharmacology (Berl) 141:30–36CrossRefGoogle Scholar
  20. Morgan MJ, McFie L, Fleetwood H, Robinson JA (2002) Ecstasy (MDMA): are the psychological problems associated with its use reversed by prolonged abstinence? Psychopharmacology (Berl) 159:294–303CrossRefGoogle Scholar
  21. Navarro JF, Maldonado E (2002) Acute and subchronic effects of MDMA (“ecstasy”) on anxiety in male mice tested in the elevated plus-maze. Prog Neuropsychopharmacol Biol Psychiatry 26:1151–1154PubMedCrossRefGoogle Scholar
  22. Parrott AC, Lees A, Garnham NJ, Jones M, Wesnes K (1998) Cognitive performance in recreational users of MDMA of “ecstasy”: evidence for memory deficits. J Psychopharmacol 12:79–83PubMedCrossRefGoogle Scholar
  23. Piper BJ, Meyer JS (2004) Memory deficit and reduced anxiety in young adult rats given repeated intermittent MDMA treatment during the periadolescent period. Pharmacol Biochem Behav 79:723–731PubMedCrossRefGoogle Scholar
  24. Quednow BB, Jessen F, Kuhn KU, Maier W, Daum I, Wagner M (2006) Memory deficits in abstinent MDMA (ecstasy) users: neuropsychological evidence of frontal dysfunction. J Psychopharmacol 20:373–384PubMedCrossRefGoogle Scholar
  25. Reneman L, Booij J, Schmand B, van den Brink W, Gunning B (2000) Memory disturbances in “Ecstasy” users are correlated with an altered brain serotonin neurotransmission. Psychopharmacology 148:322–324PubMedCrossRefGoogle Scholar
  26. Ricaurte GA, Forno LS, Wilson MA, DeLanney LE, Irwin I, Molliver ME, Langston JW (1988) (+/−)3,4-Methylenedioxymethamphetamine selectively damages central serotonergic neurons in nonhuman primates. JAMA 260:51–55PubMedCrossRefGoogle Scholar
  27. Ricaurte GA, Markowska AL, Wnk GL, Hatzidimitriou G, Wlos J, Olton DS (1993) 3,4-methylenedioxymethamphetamine serotonin and memory. J Pharmac Exp Ther 266:1097–1105Google Scholar
  28. Robledo P, Balerio G, Berrendero F, Maldonado R (2004) Study of the behavioural responses related to the potential addictive properties of MDMA in mice. Naunyn Schmiedebergs Arch Pharmacol 369:338–349PubMedCrossRefGoogle Scholar
  29. Rodgers J (2000) Cognitive performance amongst recreational users of “ecstasy”. Psychopharmacology 151:19–24PubMedCrossRefGoogle Scholar
  30. Rosecrans JA, Glennon RA (1987) The effect of MDA and MDMA (“Ecstasy”) isomers in combination with pirenpirone on operant responding in mice. Pharmacol Biochem Behav 28:39–42PubMedCrossRefGoogle Scholar
  31. Ryan RE, Ross SA, Drago J, Loiacono RE (2001) Dose-related neuroprotective effects of chronic nicotine in 6-hydroxydopamine treated rats, and loss of neuroprotection in α4 nicotinic receptor subunit knockout mice. Br J Pharmacol 132:1650–1656PubMedCrossRefGoogle Scholar
  32. Skelton MR, Williams MT, Vorhees CV (2006) Treatment with MDMA from P11–20 disrupts spatial learning and path integration learning in adolescent rats but only spatial learning in older rats. Psychopharmacology (Berl) 189:307–318CrossRefGoogle Scholar
  33. Sprague JE, Preston AS, Leifheit M, Woodside B (2003) Hippocampal serotonergic damage induced by MDMA (ecstasy): effects on spatial learning. Physiol Behav 79:281–287PubMedCrossRefGoogle Scholar
  34. Taffe MA, Weed MR, Davis S, Huitron-Resendiz S, Schroeder R, Parsons LH, Henriksen SJ, Gold LH (2001) Functional consequences of repeated (+/−)3,4-methylenedioxymethamphetamine (MDMA) treatment in rhesus monkeys. Neuropsychopharmacology 24:230–239PubMedCrossRefGoogle Scholar
  35. Wareing M, Fisk JE, Murphy PN (2000) Working memory deficits in current and previous users of MDMA (“ecstasy”). Br J Psychol 91:181–188PubMedCrossRefGoogle Scholar
  36. Whishaw IQ, Dunnett SB (1985) Dopamine depletion, stimulation or blockade in the rat disrupts spatial navigation and locomotion dependent upon beacon or distal cues. Behav Brain Res 18:11–29PubMedCrossRefGoogle Scholar
  37. Zakzanis KK, Campbell Z (2006) Memory impairment in now abstinent MDMA users and continued users: a longitudinal follow-up. Neurology 66:740–741PubMedCrossRefGoogle Scholar
  38. Zakzanis KK, Campbell Z, Jovanovski D (2007) The neuropsychology of ecstasy (MDMA) use: a quantitative. Hum Psychopharmacol 22:427–435PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • José Manuel Trigo
    • 1
  • Araceli Cabrero-Castel
    • 1
  • Fernando Berrendero
    • 1
  • Rafael Maldonado
    • 1
    • 3
  • Patricia Robledo
    • 1
    • 2
  1. 1.Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de la SalutUniversitat Pompeu FabraBarcelonaSpain
  2. 2.Institut Municipal d’Investigació Mèdica (IMIM)BarcelonaSpain
  3. 3.Universitat Pompeu FabraBarcelonaSpain

Personalised recommendations