Psychopharmacology

, Volume 197, Issue 3, pp 351–360

Anticonvulsant and anxiolytic-like effects of compounds isolated from Polygala sabulosa (Polygalaceae) in rodents: in vitro and in vivo interactions with benzodiazepine binding sites

  • Filipe Silveira Duarte
  • Mariel Marder
  • Alexandre Ademar Hoeller
  • Marcelo Duzzioni
  • Beatriz Garcia Mendes
  • Moacir Geraldo Pizzolatti
  • Thereza Christina Monteiro De Lima
Original Investigation

Abstract

Rationale

Polygala sabulosa, a folk medicine, presents dihydrostyryl-2-pyrones (DST) and styryl-2-pyrones (STY), compounds structurally similar to kavalactones. Our previous study showed that the ethyl acetate fraction (EA) and these constituents present anxiolytic-like, hypno-sedative, and anticonvulsant effects in mice.

Objectives

This study investigated the role of benzodiazepine binding site (BDZ-bs) in the central effects of either EA or three DST (1, 2, and 3) and three STY (4, 5, and 7), using in vivo and in vitro assays.

Methods and results

In the elevated plus-maze (EPM), flumazenil (FMZ), a BDZ antagonist, partially blocked the anxiolytic-like effect of DST-3 or STY-4 and STY-7, but not DST-1. Using electroencephalogram (EEG), EA protected against pentylenetetrazole (PTZ)-induced convulsion in rats, an effect partially blocked by FMZ, suggesting the participation of the BDZ-bs in this action. EA also protected against the maximal electroshock (MES)-induced convulsions in mice, a profile distinct from diazepam (DZP). DST and STY compounds inhibited the [3H]-flunitrazepam ([3H]-FNZ) binding to BDZ-bs in rat cortical synaptosomes with Ki higher than 100 μM (DST-1), 41.7 μM (DST-2), 35.8 μM (DST-3), 90.3 μM (STY-4), 31.0 μM (STY-5) and 70.0 μM (STY-7). In the saturation assay, DST-3 and STY-7 competitively inhibited the binding of [3H]-FNZ to BDZ-bs with a significant decrease in apparent affinity (Kd) and no change in maximal binding (Bmax).

Conclusions

The present data support a partial BDZ-bs mediation of the anxiolytic-like and anticonvulsant effects of EA of P. sabulosa and its main isolated constituents, DST and STY.

Keywords

Phytomedicines Polygala sabulosa Benzodiazepine site Anxiolytic Anticonvulsant 

References

  1. Ashton H (1994) Guidelines for the rational use of benzodiazepines. When and what to use. Drugs 48(1):25–40Google Scholar
  2. Blumenthal M (2002) Kava safety questioned due to case reports of liver toxicity. HerbalGram 55:26–32Google Scholar
  3. Brauer RB, Stangl M, Stewart JR, Pfab R, Becker K (2003) Acute liver failure after administration of herbal tranquilizer kava-kava (Piper methysticum). J Clin Psychiatry 64(2):216–218PubMedCrossRefGoogle Scholar
  4. Clenet F, Hascoet M, Fillion G, Galons H, Bourin M (2005) Role of GABA-ergic and serotonergic systems in the anxiolytic-like mechanism of action of a 5-HT-moduline antagonist in the mouse elevated plus maze. Behav Brain Res 158(2):339–348PubMedCrossRefGoogle Scholar
  5. Cole JC, Rodgers RJ (1994) Ethological comparison of the effects of diazepam and acute/chronic imipramine on the behaviour of mice in the elevated plus-maze. Pharmacol Biochem Behav 52(3):473–478CrossRefGoogle Scholar
  6. Crestani F, Martin JR, Mohler H, Rudolph U (2000) Mechanism of action of the hypnotic zolpidem in vivo. Br J Pharmacol 131(7):1251–1254PubMedCrossRefGoogle Scholar
  7. Dhawan K, Dhawan S, Sharma A (2004) Anti-anxiety studies on extracts of Passiflora incarnata Linneaus. J Ethnopharmacol 78(2–3):165–170Google Scholar
  8. Duarte FS, Duzzioni M, Mendes BG, Pizzolatti MG, De Lima TC (2007) Participation of dihydrostyryl-2-pyrones and styryl-2-pyrones in the central effects of Polygala sabulosa (Polygalaceae), a folk medicine topical anesthetic. Pharmacol Biochem Behav 86(1):150–161PubMedCrossRefGoogle Scholar
  9. Escher M, Desmeules J, Giostra E, Mentha G (2001) Hepatitis associated with Kava, a herbal remedy for anxiety. BMJ 322(7279):139PubMedCrossRefGoogle Scholar
  10. Haley TJ, McCormick WG (1957) Pharmacological effects produced by intracerebral injection of drugs in the conscious mouse. Br J Pharmacol 12(1):12–15Google Scholar
  11. Hui KM, Huen MSY, Wang HY, Zheng H, Sigel E, Baur R, Ren H, Li ZW, Wong JT-F, Xue H (2002) Anxiolytic effect of wongonin, a benzodiazepine receptor ligand isolated from Scutellaria baicalensis Georgi. Biochem Pharmacol 64(9):1415–1424PubMedCrossRefGoogle Scholar
  12. Ishizawa Y, Furuya K, Yamagishi S, Dohi S (1997) Non-GABAergic effects of midazolam, diazepam and flumazenil on voltage-dependent ion currents in NG108–15 cells. Neuroreport 8(11):2635–2638PubMedCrossRefGoogle Scholar
  13. Kupferberg HJ (1992) Strategies for identifying and developing new anticonvulsant drugs. Pharm Weekbl Sci 14(3A):132–138PubMedGoogle Scholar
  14. Leung WC, Zheng H, Huen M, Law SK, Xue H (2003) Anxiolytic-like action of orally administered dl-tetrahydropalmatine in elevated plus-maze. Prog Neuro-Psychopharmacol. Biol Psychiatry 27(5):775–779CrossRefGoogle Scholar
  15. Lister RG (1987) The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology (Berl) 92(2):180–185CrossRefGoogle Scholar
  16. Löscher W (2002) Basic pharmacology of valproate: a review after 35 years of clinical use for the treatment of epilepsy. CNS Drugs 16(10):669–694PubMedCrossRefGoogle Scholar
  17. Luddens H, Korpi ER, Seeburg PH (1995) GABAA/benzodiazepine receptor heterogeneity: neurophysiological implications. Neuropharmacology 34(3):245–254PubMedCrossRefGoogle Scholar
  18. MacDonald RL, Kelly KM (1995) Antiepileptic drug mechanisms of action. Epilepsia 36(2):S2–12PubMedCrossRefGoogle Scholar
  19. Mandhane SN, Aavula K, Rajamannar T (2007) Timed pentylenetetrazol infusion test: A comparative analysis with s.c. PTZ and MES models of anticonvulsant screening in mice. Seizure 16(7):636–644Google Scholar
  20. Marder M, Viola H, Wasowski C, Fernandez S, Medina JH, Paladini AC (2003) 6-methylapigenin and hesperidin: new valeriana flavonoids with activity on the CNS. Pharmacol Biochem Behav 75(3):537–545PubMedCrossRefGoogle Scholar
  21. Maurice T, Lockhart BP, Privat A (1996) Amnesia induced in mice by centrally administered beta-amyloid peptides involves cholinergic dysfunction. Brain Res 706(2):181–193PubMedCrossRefGoogle Scholar
  22. Medina JH, Paladin AC, Wolfman C, Levi de Stein M, Calvo D, Diaz LE, Pena C (1990) Chrysin (5,7-di-OH-flavone), a naturally-occurring ligand for benzodiazepine receptors, with anticonvulsant properties. Biochem Pharmacol 40(10):2227–2231PubMedCrossRefGoogle Scholar
  23. Möhler H (2006) GABAA receptors in central nervous system disease: anxiety, epilepsy, and insomnia. J Recept Signal Transduct Res 26(5–6):731–740PubMedGoogle Scholar
  24. Nutt DJ, Malizia AL (2001) New insights into the role of the GABA(A)-benzodiazepine receptor in psychiatric disorder. Br J Psychiatry 179:390–396PubMedCrossRefGoogle Scholar
  25. Polc P (1991) GABA-independent mechanisms of benzodiazepine action. In: File SE, Briley M (eds) New concepts in anxiety. London, MacMillan Publishers, pp 211–236Google Scholar
  26. Racine RJ (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 32(3):281–294CrossRefGoogle Scholar
  27. Rodgers RJ, Dalvi A (1997) Anxiety, defence and the elevated plus-maze. Neurosci Biobehav Rev 21(6):801–810PubMedCrossRefGoogle Scholar
  28. Rogawski MA, Porter RJ (1990) Antiepileptic drugs: pharmacological mechanisms and clinical efficacy with consideration of promising developmental stage compounds. Pharmacol Rev 42(3):223–286PubMedGoogle Scholar
  29. Russmann S, Lauterburg BH, Helbling A (2001) Kava hepatotoxicity. Ann Intern Med 135(1):68–9PubMedGoogle Scholar
  30. Singh YN (2005) Potential for interaction of kava and St. John’s wort with drugs. J Ethnopharmacol 100(1–2):108–13PubMedCrossRefGoogle Scholar
  31. Starr KR, Price GW, Watson JM, Atkinson PJ, Arban R, Melotto S, Dawson LA, Hagan JJ, Upton N, Duxon MS (2007) SB-649915-B, a Novel 5-HT(1A/B) Autoreceptor Antagonist and Serotonin Reuptake Inhibitor, is Anxiolytic and Displays Fast Onset Activity in the Rat High Light Social Interaction Test. Neuropsychopharmacology 32(10):2163–2172PubMedCrossRefGoogle Scholar
  32. Subramaniam S, Rho JM, Penix L, Donevan SD, Fielding RP, Rogawski MA (1995) Felbamate block of the N-methyl-D-aspartate receptor. J Pharmacol Exp Ther 273(2):878–886PubMedGoogle Scholar
  33. Swinyard EA, Brown WC, Goodman LS (1952) Comparative assays of antiepileptic drugs in mice and rats. J Pharmacol Exp Ther 106(3):319–330PubMedGoogle Scholar
  34. Viola H, Marder M, Wasowski C, Giorgi O, Paladini AC, Medina JH (2000) 6,3′-dibromoflavone and 6-nitro-3′-bromoflavone: new additions to the 6,3′-disubstituted flavone family of high-affinity ligands of the brain benzodiazepine binding site with agonistic properties. Biochem Biophys Res Commun 273(2):694–698PubMedCrossRefGoogle Scholar
  35. Zhang ZJ (2004) Therapeutic effects of herbal extracts and constituents in animal models of psychiatric disorders. Life Sci 75(14):1659–1699PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Filipe Silveira Duarte
    • 1
  • Mariel Marder
    • 2
  • Alexandre Ademar Hoeller
    • 3
  • Marcelo Duzzioni
    • 1
  • Beatriz Garcia Mendes
    • 4
  • Moacir Geraldo Pizzolatti
    • 4
  • Thereza Christina Monteiro De Lima
    • 1
    • 5
  1. 1.Laboratory of Neuropharmacology - Department of PharmacologyFederal University of Santa CatarinaFlorianópolisBrazil
  2. 2.Instituto de Química y Fisicoquímica Biológicas - Faculdad de Farmacia y BioquímicaUniversity of Buenos AiresBuenos AiresArgentina
  3. 3.Laboratory of Physiology—Department of Physiological SciencesFederal University of Santa CatarinaFlorianópolisBrazil
  4. 4.Laboratory of Organic Chemistry - Department of ChemistryFederal University of Santa CatarinaFlorianópolisBrazil
  5. 5.Department of Pharmacology, Center of Biological Sciences, Federal University of Santa CatarinaCampus UniversitárioFlorianópolisBrazil

Personalised recommendations