, Volume 195, Issue 4, pp 579–590 | Cite as

5-HT2A receptor density is decreased in the at-risk mental state

  • René Hurlemann
  • Andreas Matusch
  • Kai-Uwe Kuhn
  • Julia Berning
  • David Elmenhorst
  • Oliver Winz
  • Heike Kolsch
  • Karl Zilles
  • Michael Wagner
  • Wolfgang Maier
  • Andreas Bauer
Original Investigation



Current perspectives on the pathophysiology of schizophrenia direct attention to serotonergic (serotonin, 5-HT) dysregulation in the prodrome or at-risk mental state (ARMS).


To study the cerebral 5-HT2A receptor (5-HT2AR) in the ARMS with [18F]altanserin positron emission tomography (PET) and a bolus-infusion paradigm.

Materials and methods

We quantified the spatial distribution of 5-HT2AR binding potential (BP1′) in never-medicated subjects assigned to early (n = 6) and late (n = 8) prodromal states of schizophrenia relative to healthy controls (n = 21). Five single nucleotide polymorphisms (SNPs) in the 5-HT2AR-encoding gene (HTR2A; 13q14-21) were genotyped to control for a potential bias in BP1′ due to between-group differences in genotype distributions.


Group comparisons of partial-volume corrected PET data by statistical parametric mapping and confirmatory volume of interest analysis yielded a dissemination of BP1′ decreases consistent with increasing levels of risk. An additional decrease in caudate BP1′ was present in subjects who subsequently converted to first-episode psychosis (n = 5), but absent in non-converters (n = 9). Between-group differences were not confounded by a differential distribution of SNP genotypes.


These results suggest a progressive reduction of cortical 5-HT2AR density as a surrogate biological measure of increased risk for schizophrenia, irrespective of conversion. Progressive reductions of subcortical 5-HT2AR density could provide an indicator of illness activity and help to predict imminent conversion to schizophrenia. Moreover, our findings substantiate the rationale for establishing a phase-specific psychopharmacological intervention in the ARMS that addresses the serotonergic component of vulnerability to schizophrenia.


Schizophrenia Psychosis Prodrome At-risk Serotonin 5-HT 5-HT2A Receptor PET 



R.H. and A.M. contributed equally to this study. The authors gratefully acknowledge the fruitful discussions with J. Ermert and K. Hamacher as well as the excellent assistance of S. Grafmuller, M. Lang, B. Palm, S. Rehbein, E. Wabbals (Institute of Nuclear Chemistry), M. Cremer, M. Vogeling (Molecular Neuroimaging Group), H. Herzog, S. Schaden, L. Tellmann, E. Theelen (PET Instrumentation Group), B. Elghahwagi, P. Engels, G. Oefler, J. N. Shah (MRI Instrumentation Group, Research Center Juelich), and C. Hanses (Department of Psychiatry, University of Bonn). The present project is part of the German Research Network on Schizophrenia (GRNS) and the Brain Imaging Center West (BICW) supported by the German Federal Ministry for Education and Research (BMBF; grants 01 GI9934), the Deutsche Forschungsgemeinschaft (DFG; Klinische Forschergruppe 112 to A.B.), and the International Consortium for Brain Mapping (ICBM). W.M. received project funding from Eli Lilly. The authors have no conflicts of interest to report, nor any involvement to disclose, financial or otherwise, that may bias the conduct, interpretation or presentation of this work.


  1. Adams KH, Pinborg LH, Svarer C, Hasselbalch SG, Holm S, Haugbol S, Madsen K, Frokjaer V, Martiny L, Paulson OB, Knudsen GM (2004) A database of [(18)F]-altanserin binding to 5-HT(2A) receptors in normal volunteers: normative data and relationship to physiological and demographic variables. Neuroimage 21:1105–1113PubMedCrossRefGoogle Scholar
  2. Arranz M, Collier D, Sodhi M, Ball D, Roberts G, Price J, Sham P, Kerwin R (1995) Association between clozapine response and allelic variation in 5-HT2A receptor gene. Lancet 346:281–282PubMedCrossRefGoogle Scholar
  3. Arranz MJ, Bolonna AA, Munro J, Curtis CJ, Collier DA, Kerwin RW (2000) The serotonin transporter and clozapine response. Mol Psychiatry 5:124–125PubMedCrossRefGoogle Scholar
  4. Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38:1083–1152PubMedCrossRefGoogle Scholar
  5. Biver F, Wikler D, Lotstra F, Damhaut P, Goldman S, Mendlewicz J (1997) Serotonin 5-HT2 receptor imaging in major depression: focal changes in orbito-insular cortex. Br J Psychiatry 171:444–448PubMedCrossRefGoogle Scholar
  6. Borgwardt SJ, Riecher-Rossler A, Dazzan P, Chitnis X, Aston J, Drewe M, Gschwandtner U, Haller S, Pfluger M, Rechsteiner E, D’Souza M, Stieglitz RD, Radu EW, McGuire PK (2007) Regional gray matter volume abnormalities in the at risk mental state. Biol Psychiatry 61:1148–1156PubMedCrossRefGoogle Scholar
  7. Cannon TD (2005) Clinical and genetic high-risk strategies in understanding vulnerability to psychosis. Schizophr Res 79:35–44PubMedCrossRefGoogle Scholar
  8. Cornblatt B, Lencz T, Obuchowski M (2002) The schizophrenia prodrome: treatment and high-risk perspectives. Schizophr Res 54:177–186PubMedCrossRefGoogle Scholar
  9. Damasio AR, Grabowski TJ, Bechara A, Damasio H, Ponto LL, Parvizi J, Hichwa RD (2000) Subcortical and cortical brain activity during the feeling of self-generated emotions. Nat Neurosci 3:1049–1056PubMedCrossRefGoogle Scholar
  10. Dean B (2003) The cortical serotonin 2A receptor and the pathology of schizophrenia: a likely accomplice. J Neurochem 85:1–13PubMedCrossRefGoogle Scholar
  11. Erdmann J, Shimron-Abarbanell D, Rietschel M, Albus M, Maier W, Korner J, Bondy B, Chen K, Shih JC, Knapp M, Propping P, Nothen MM (1996) Systematic screening for mutations in the human serotonin-2A (5-HT2A) receptor gene: identification of two naturally occurring receptor variants and association analysis in schizophrenia. Human Genet 97:614–619Google Scholar
  12. Feinberg I (1983) Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? J Psychiatr Res 17:319–334CrossRefGoogle Scholar
  13. Fusar-Poli P, Perez J, Broome M, Borgwardt S, Placentino A, Caverzasi E, Cortesi M, Veggiotti P, Politi P, Barale F, McGuire P (2007) Neurofunctional correlates of vulnerability to psychosis: a systematic review and meta-analysis. Neurosci Biobehav Rev 31:465–484PubMedCrossRefGoogle Scholar
  14. Glahn DC, Therman S, Manninen M, Huttunen M, Kaprio J, Lonnqvist J, Cannon TD (2003) Spatial working memory as an endophenotype for schizophrenia. Biol Psychiatry 53:624–626PubMedCrossRefGoogle Scholar
  15. Gonzalez-Maeso J, Weisstaub NV, Zhou M, Chan P, Ivic L, Ang R, Lira A, Bradley-Moore M, Ge Y, Zhou Q, Sealfon SC, Gingrich JA (2007) Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signalling pathways to affect behavior. Neuron 53:439–452PubMedCrossRefGoogle Scholar
  16. Gross G, Huber G (1985) Psychopathology of basic stages of schizophrenia in view of formal thought disturbances. Psychopathology 18:115–125PubMedCrossRefGoogle Scholar
  17. Hafner H, Maurer K, Ruhrmann S, Bechdolf A, Klosterkotter J, Wagner M, Maier W, Bottlender R, Moller HJ, Gaebel W, Wolwer W (2004) Early detection and secondary prevention of psychosis: facts and visions. Eur Arch Psychiatry Clin Neurosci 254:117–128PubMedCrossRefGoogle Scholar
  18. Hafner H, Riecher-Rossler A, Hambrecht M, Maurer K, Meissner S, Schmidtke A, Fatkenheuer B, Loffler W, van der Heiden W (1992) IRAOS: an instrument for the assessment of onset and early course of schizophrenia. Schizophr Res 6:209–223PubMedCrossRefGoogle Scholar
  19. Hamacher K, Coenen HH (2006) No-carrier-added nucleophilic 18F-labelling in an electrochemical cell exemplified by the routine production of [18F]altanserin. Appl Radiat Isotopes 64:989–994CrossRefGoogle Scholar
  20. Harvey JA (2003) Role of the serotonin 5-HT(2A) receptor in learning. Learn Mem 10:355–362PubMedCrossRefGoogle Scholar
  21. Haugbol S, Pinborg LH, Arfan HM, Frokjaer VM, Madsen J, Dyrby TB, Svarer C, Knudsen GM (2007) Reproducibility of 5-HT(2A) receptor measurements and sample size estimations with [(18)F]altanserin PET using a bolus/infusion approach. Eur J Nucl Med Mol Imaging 34:910–915PubMedCrossRefGoogle Scholar
  22. Heckers S, Konradi C (2002) Hippocampal neurons in schizophrenia. J Neural Transm 109:891–905PubMedCrossRefGoogle Scholar
  23. Hirvonen J, van Erp TG, Huttunen J, Aalto S, Nagren K, Huttunen M, Lonnqvist J, Kaprio J, Hietala J, Cannon TD (2005) Increased caudate dopamine D2 receptor availability as a genetic marker for schizophrenia. Arch Gen Psychiatry 62:371–378PubMedCrossRefGoogle Scholar
  24. Honea R, Crow TJ, Passingham D, Mackay CE (2005) Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. Am J Psychiatry 162:2233–2245PubMedCrossRefGoogle Scholar
  25. Hurlemann R, Boy C, Meyer PT, Scherk H, Wagner M, Herzog H, Coenen HH, Vogeley K, Falkai P, Zilles K, Maier W, Bauer A (2005a) Decreased prefrontal 5-HT2A receptor binding in subjects at enhanced risk for schizophrenia. Anat Embryol (Berl) 210:519–523CrossRefGoogle Scholar
  26. Hurlemann R, Tepest R, Maier W, Falkai P, Vogeley K (2005b) Intact hippocampal gray matter in schizophrenia as revealed by automatized image analysis postmortem. Anat Embryol (Berl) 210:513–517CrossRefGoogle Scholar
  27. Jessen F, Scherk H, Traber F, Theyson S, Berning J, Tepest R, Falkai P, Schild HH, Maier W, Wagner M, Block W (2006) Proton magnetic resonance spectroscopy in subjects at risk for schizophrenia. Schizophr Res 87:81–88PubMedCrossRefGoogle Scholar
  28. Kasai K, Shenton ME, Salisbury DF, Onitsuka T, Toner SK, Yurgelun-Todd D, Kikinis R, Jolesz FA, McCarley RW (2003) Differences and similarities in insular and temporal pole MRI gray matter volume abnormalities in first-episode schizophrenia and affective psychosis. Arch Gen Psychiatry 60:1069–1077PubMedCrossRefGoogle Scholar
  29. Kennedy SH, Evans KR, Kruger S, Mayberg HS, Meyer JH, McCann S, Arifuzzman AI, Houle S, Vaccarino FJ (2001) Changes in regional brain glucose metabolism measured with positron emission tomography after paroxetine treatment of major depression. Am J Psychiatry 158:899–905PubMedGoogle Scholar
  30. Keshavan MS, Berger G, Zipursky RB, Wood SJ, Pantelis C (2005) Neurobiology of early psychosis. Br J Psychiatry 48:s8–18CrossRefGoogle Scholar
  31. Keshavan MS, Haas G, Miewald J, Montrose DM, Reddy R, Schooler NR, Sweeney JA (2003) Prolonged untreated illness duration from prodromal onset predicts outcome in first episode psychoses. Schizophr Bull 29:757–769PubMedGoogle Scholar
  32. Klosterkotter J, Hellmich M, Steinmeyer EM, Schultze-Lutter F (2001) Diagnosing schizophrenia in the initial prodromal phase. Arch Gen Psychiatry 58:158–164PubMedCrossRefGoogle Scholar
  33. Kreczmanski P, Heinsen H, Mantua V, Woltersdorf F, Masson T, Ulfig N, Schmidt-Kastner R, Korr H, Steinbusch HW, Hof PR, Schmitz C (2007) Volume, neuron density and total neuron number in five subcortical regions in schizophrenia. Brain 130:678–692PubMedCrossRefGoogle Scholar
  34. Lewis R, Kapur S, Jones C, DaSilva J, Brown GM, Wilson AA, Houle S, Zipursky RB (1999) Serotonin 5-HT2 receptors in schizophrenia: a PET study using [18F]setoperone in neuroleptic-naive patients and normal subjects. Am J Psychiatry 156:72–78PubMedGoogle Scholar
  35. Lieberman JA, Perkins D, Belger A, Chakos M, Jarskog F, Boteva K, Gilmore J (2001) The early stages of schizophrenia: speculations on pathogenesis, pathophysiology, and therapeutic approaches. Biol Psychiatry 50:884–897PubMedCrossRefGoogle Scholar
  36. Lopez-Figueroa AL, Norton CS, Lopez-Figueroa MO, Armellini-Dodel D, Burke S, Akil H, Lopez JF, Watson SJ (2004) Serotonin 5-HT1A, 5-HT1B, and 5-HT2A receptor mRNA expression in subjects with major depression, bipolar disorder, and schizophrenia. Biol Psychiatry 55:225–233PubMedCrossRefGoogle Scholar
  37. Malizia AL, Cunningham VJ, Bell CJ, Liddle PF, Jones T, Nutt DJ (1998) Decreased brain GABA(A)-benzodiazepine receptor binding in panic disorder: preliminary results from a quantitative PET study. Arch Gen Psychiatry 55:715–720PubMedCrossRefGoogle Scholar
  38. Matsumoto I, Inoue Y, Iwazaki T, Pavey G, Dean B (2005) 5-HT2A and muscarinic receptors in schizophrenia: a postmortem study. Neurosci Lett 379:164–168PubMedCrossRefGoogle Scholar
  39. Matusch A, Hurlemann R, Rota Kops E, Winz O, Elmenhorst D, Herzog H, Zilles K, Bauer A (2007) Acute S-ketamine application does not alter cerebral [18F]altanserin binding: a pilot PET study in humans. J Neural Transm. doi:10.1007/s00702-007-0751-3
  40. Mayberg HS, Liotti M, Brannan SK, McGinnis S, Mahurin RK, Jerabek PA, Silva JA, Tekell JL, Martin CC, Lancaster JL, Fox PT (1999) Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am J Psychiatry 156:675–682PubMedGoogle Scholar
  41. McGlashan TH (1996) Early detection and intervention in schizophrenia. Schizophr Bull 22:327–345PubMedGoogle Scholar
  42. McGlashan TH, Hoffman RE (2000) Schizophrenia as a disorder of developmentally reduced synaptic connectivity. Arch Gen Psychiatry 57:637–648PubMedCrossRefGoogle Scholar
  43. McGorry PD, Yung AR, Phillips LJ, Yuen HP, Francey S, Cosgrave EM, Germano D, Bravin J, McDonald T, Blair A, Adlard S, Jackson H (2002) Randomized controlled trial of interventions designed to reduce the risk of progression to first-episode psychosis in a clinical sample with subthreshold symptoms. Arch Gen Psychiatry 59:921–928PubMedCrossRefGoogle Scholar
  44. McMahon FJ, Buervenich S, Charney D, Lipsky R, Rush AJ, Wilson AF, Sorant AJ, Papanicolaou GJ, Laje G, Fava M, Trivedi MH, Wisniewski SR, Manji H (2006) Variation in the gene encoding the serotonin 2A receptor is associated with outcome of antidepressant treatment. Am J Hum Genet 78:804–814PubMedCrossRefGoogle Scholar
  45. Meltzer HY, Matsubara S, Lee JC (1989) The ratios of serotonin2 and dopamine2 affinities differentiate atypical and typical antipsychotic drugs. Psychopharmacol Bull 25:390–392PubMedGoogle Scholar
  46. Meltzer HY, Li Z, Kaneda Y, Ichikawa J (2003) Serotonin receptors: their key role in drugs to treat schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 27:1159–1172PubMedCrossRefGoogle Scholar
  47. Mesulam MM, Mufson EJ (1985) The insula of Reil in man and monkey: architectonics, connectivity, and function. In: Peters A, Jones EG (eds) Cerebral cortex 4. Plenum, New York, pp 179–226Google Scholar
  48. Muller-Gartner HW, Links JM, Prince JL, Bryan RN, McVeigh E, Leal JP, Davatzikos C, Frost JJ (1992) Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial-volume effects. J Cereb Blood Flow Metab 12:571–583PubMedGoogle Scholar
  49. Nagai M, Kishi K, Kato S (2007) Insular cortex and neuropsychiatric disorders: a review of recent literature. Eur Psychiatry. doi:10.1016/j.eurpsy.2007.02.006
  50. Ngan ET, Yatham LN, Ruth TJ, Liddle PF (2000) Decreased serotonin 2A receptor densities in neuroleptic-naive patients with schizophrenia: a PET study using [(18)F]setoperone. Am J Psychiatry 157:1016–1018PubMedCrossRefGoogle Scholar
  51. Norman RM, Malla AK (2001) Duration of untreated psychosis: a critical examination of the concept and its importance. Psychol Med 31:381–400PubMedCrossRefGoogle Scholar
  52. Norton N, Owen MJ (2005) HTR2A: association and expression studies in neuropsychiatric genetics. Ann Med 37:121–129PubMedCrossRefGoogle Scholar
  53. Okubo Y, Suhara T, Suzuki K, Kobayashi K, Inoue O, Terasaki O, Someya Y, Sassa T, Sudo Y, Matsushima E, Iyo M, Tateno Y, Toru M (2000) Serotonin 5-HT2 receptors in schizophrenic patients studied by positron emission tomography. Life Sci 66:2455–2464PubMedGoogle Scholar
  54. Pantelis C, Velakoulis D, McGorry PD, Wood SJ, Suckling J, Phillips LJ, Yung AR, Bullmore ET, Brewer W, Soulsby B, Desmond P, McGuire PK (2003) Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lancet 361:281–288PubMedCrossRefGoogle Scholar
  55. Pinborg LH, Adams KH, Svarer C, Holm S, Hasselbalch SG, Haugbol S, Madsen J, Knudsen GM (2003) Quantification of 5-HT2A receptors in the human brain using [18F]altanserin-PET and the bolus/infusion approach. J Cereb Blood Flow Metab 23:985–996PubMedCrossRefGoogle Scholar
  56. Romano AG, Quinn JL, Liu R, Dave KD, Schwab D, Alexander G, Aloyo VJ, Harvey JA (2006) Effect of serotonin depletion on 5-HT2A-mediated learning in the rabbit: evidence for constitutive activity of the 5-HT2A receptor in vivo. Psychopharmacology (Berl) 184:173–181CrossRefGoogle Scholar
  57. Salisbury DF, Kuroki N, Kasai K, Shenton ME, McCarley RW (2007) Progressive and interrelated functional and structural evidence of post-onset brain reduction in schizophrenia. Arch Gen Psychiatry 64:521–529PubMedCrossRefGoogle Scholar
  58. Trichard C, Paillere-Martinot ML, Attar-Levy D, Blin J, Feline A, Martinot JL (1998) No serotonin 5-HT2A receptor density abnormality in the cortex of schizophrenic patients studied with PET. Schizophr Res 31:13–17PubMedCrossRefGoogle Scholar
  59. Velakoulis D, Wood SJ, Wong MT, McGorry PD, Yung A, Phillips L, Smith D, Brewer W, Proffitt T, Desmond P, Pantelis C (2006) Hippocampal and amygdala volumes according to psychosis stage and diagnosis: a magnetic resonance imaging study of chronic schizophrenia, first-episode psychosis, and ultra-high-risk individuals. Arch Gen Psychiatry 63:139–149PubMedCrossRefGoogle Scholar
  60. Verhoeff NP, Meyer JH, Kecojevic A, Hussey D, Lewis R, Tauscher J, Zipursky RB, Kapur S (2000) A voxel-by-voxel analysis of [18F]setoperone PET data shows no substantial serotonin 5-HT(2A) receptor changes in schizophrenia. Psychiatry Res 99:123–135PubMedCrossRefGoogle Scholar
  61. Walker MA, Highley JR, Esiri MM, McDonald B, Roberts HC, Evans SP, Crow TJ (2002) Estimated neuronal populations and volumes of the hippocampus and its subfields in schizophrenia. Am J Psychiatry 159:821–828PubMedCrossRefGoogle Scholar
  62. Weinberger DR, McClure RK (2002) Neurotoxicity, neuroplasticity, and magnetic resonance imaging morphometry: what is happening in the schizophrenic brain? Arch Gen Psychiatry 59:553–558PubMedCrossRefGoogle Scholar
  63. Weisstaub NV, Zhou M, Lira A, Lambe E, Gonzalez-Maeso J, Hornung JP, Sibille E, Underwood M, Itohara S, Dauer WT, Ansorge MS, Morelli E, Mann JJ, Toth M, Aghajanian G, Sealfon SC, Hen R, Gingrich JA (2006) 5-HT2A receptor signaling modulates anxiety-like behaviors in mice. Science 313:536–540PubMedCrossRefGoogle Scholar
  64. Williams GV, Rao SG, Goldman-Rakic PS (2002) The physiological role of 5-HT2A receptors in working memory. J Neurosci 22:2843–2854PubMedGoogle Scholar
  65. Woods SW, Breier A, Zipursky RB, Perkins DO, Addington J, Miller TJ, Hawkins KA, Marquez E, Lindborg SR, Tohen M, McGlashan TH (2003) Randomized trial of olanzapine versus placebo in the symptomatic acute treatment of the schizophrenic prodrome. Biol Psychiatry 54:453–456PubMedCrossRefGoogle Scholar
  66. Wyatt RJ (1991) Neuroleptics and the natural course of schizophrenia. Schizophr Bull 17:325–351PubMedGoogle Scholar
  67. Yung AR, McGorry PD (1996) The prodromal phase of first-episode psychosis: past and current conceptualizations. Schizophr Bull 22:353–370PubMedGoogle Scholar
  68. Yung AR, Phillips LJ, Yuen HP, Francey SM, McFarlane CA, Hallgren M, McGorry PD (2003) Psychosis prediction: 12-month follow up of a high-risk (“prodromal”) group. Schizophr Res 60:21–32PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • René Hurlemann
    • 1
    • 3
  • Andreas Matusch
    • 2
  • Kai-Uwe Kuhn
    • 3
  • Julia Berning
    • 3
  • David Elmenhorst
    • 2
  • Oliver Winz
    • 2
  • Heike Kolsch
    • 3
  • Karl Zilles
    • 1
    • 2
    • 4
  • Michael Wagner
    • 3
  • Wolfgang Maier
    • 1
    • 3
  • Andreas Bauer
    • 1
    • 2
    • 5
  1. 1.Brain Imaging Center West (BICW)Research Center JuelichJuelichGermany
  2. 2.Institute of MedicineResearch Center JuelichJuelichGermany
  3. 3.Department of PsychiatryUniversity of BonnBonnGermany
  4. 4.C. & O. Vogt Institute for Brain ResearchUniversity of DuesseldorfDuesseldorfGermany
  5. 5.Department of NeurologyUniversity of DuesseldorfDuesseldorfGermany

Personalised recommendations