Psychopharmacology

, Volume 195, Issue 3, pp 333–343 | Cite as

Nicotinic acetylcholine receptors in the ventral tegmental area mediate the dopamine activating and reinforcing properties of ethanol cues

  • Elin Löf
  • Peter Olausson
  • Andrea deBejczy
  • Rosita Stomberg
  • J. Michael McIntosh
  • Jane R. Taylor
  • Bo Söderpalm
Original Investigation

Abstract

Rationale

Cues associated with alcohol can elicit craving, support drug-seeking and precipitate relapse.

Objectives

We investigated the possible involvement of nicotinic acetylcholine receptors (nAChRs) in the ventral tegmental area (VTA) in the conditioned reinforcing properties of ethanol-associated stimuli in the rat.

Materials and methods

First, using in vivo microdialysis, we analyzed the effect of VTA perfusion of the nonselective nAChR antagonist mecamylamine (MEC) or the selective α4β2* nAChR antagonist dihydro-β-erythroidine (DHβE) on the nucleus accumbens (nAc) dopaminergic response to the presentation of an ethanol-associated conditioned stimulus (CS). Second, rats were trained to associate a tone + light CS with the presentation of 10% ethanol and were subsequently tested on the acquisition of a new instrumental response with conditioned reinforcement (CR) after local VTA infusion of MEC, DHβE, or α-Conotoxin MII (α-CtxMII, a selective α3β2* and α6* nAChR antagonist).

Results

The ethanol-associated CS elevated nAc dopamine, an effect that was blocked by VTA perfusion of MEC but not DHβE. Systemic administration of MEC or local VTA infusion of MEC or α-CtxMII selectively blocked ethanol-associated CR, whereas systemic DHβE had no effect.

Conclusions

We hypothesize a novel mechanism by which alcohol-associated cues promote drug-seeking behavior via activation of dopamine-stimulating α-CtxMII-sensitive nAChRs in the VTA. Pharmacological manipulations of selective nAChRs may thus be possible treatment strategies to prevent cue-induced relapse.

Keywords

Acetylcholine Ventral tegmental area Addiction Alcohol Conditioned reinforcement Dopamine Nicotinic receptor Nucleus accumbens 

Notes

Acknowledgements

Financial support for this work was obtained from the Swedish Medical Research Council no:s 11583 and 4247, the Swedish Labour Market Insurance (AFA) support for biomedical alcohol research, the Alcohol Research Council of the Swedish Alcohol Retailing Monopoly, NIDA 2 R01 10765-04A1, PHS NIH (DA15222, DA11717 and AA15632 to JRT and MH53631 to JMM), Gunnar och Märtha Bergendahls Stiftelse, the Council for Medical Tobacco Research—Swedish Match, Wilhelm och Martina Lundgrens vetenskapsfond, Kungliga Vetenskaps—och Vitterhets-Samhället i Göteborg, Helge Ax:son Johnsons Stiftelse, Längmanska kulturfonden, Jubileumsfonden, Iris Jonzén-Sandbloms och Greta Jonzéns Stiftelse & Stiftelsen KvinnorKan, Axel Linders stiftelse and Apotekarsocieteten. We are grateful for the generous gift of mecamylamine from the NIDA drug supply program, Bethesda, MD, USA.

References

  1. Benwell ME, Balfour DJ, Anderson JM (1988) Evidence that tobacco smoking increases the density of (−)−[3H]nicotine binding sites in human brain. J Neurochem 50:1243–1247PubMedCrossRefGoogle Scholar
  2. Blomqvist O, Engel JA, Nissbrandt H, Soderpalm B (1993) The mesolimbic dopamine-activating properties of ethanol are antagonized by mecamylamine. Eur J Pharmacol 249:207–213PubMedCrossRefGoogle Scholar
  3. Blomqvist O, Söderpalm B, Engel JA (1992) Ethanol-induced locomotor activity; involvement of central nicotinic acetylcholine receptors? Brain Res. Bull. 29:173–178PubMedCrossRefGoogle Scholar
  4. Blomqvist O, Ericson M, Engel JA, Söderpalm B (1997) Accumbal dopamine overflow after ethanol: localization of the antagonizing effect of mecamylamine. Eur J Pharmacol 334:149–156PubMedCrossRefGoogle Scholar
  5. Bossert JM, Liu SY, Lu L, Shaham Y (2004) A role of ventral tegmental area glutamate in contextual cue-induced relapse to heroin seeking. J Neurosci 24:10726–10730PubMedCrossRefGoogle Scholar
  6. Braus DF, Wrase J, Grusser S, Hermann D, Ruf M, Flor H, Mann K, Heinz A (2001) Alcohol-associated stimuli activate the ventral striatum in abstinent alcoholics. J Neural Transm 108:887–94PubMedCrossRefGoogle Scholar
  7. Brown J, Bullock D, Grossberg S (1999) How the basal ganglia use parallel excitatory and inhibitory learning pathways to selectively respond to unexpected rewarding cues. J Neurosci 19:10502–10511PubMedGoogle Scholar
  8. Brunzell DH, Chang JR, Schneider B, Olausson P, Taylor JR, Picciotto MR (2005) beta2-Subunit-containing nicotinic acetylcholine receptors are involved in nicotine-induced increases in conditioned reinforcement but not progressive ratio responding for food in C57BL/6 mice. Psychopharmacology (Berl):1–11Google Scholar
  9. Burns LH, Everitt BJ, Kelley AE, Robbins TW (1994) Glutamate-dopamine interactions in the ventral striatum: role in locomotor activity and responding with conditioned reinforcement. Psychopharmacology (Berl) 115:516–28CrossRefGoogle Scholar
  10. Carter BL, Tiffany ST (1999) Meta-analysis of cue-reactivity in addiction research. Addiction 94:327–340PubMedCrossRefGoogle Scholar
  11. Cartier GE, Yoshikami D, Gray WR, Luo S, Olivera BM, McIntosh JM (1996) A new alpha-conotoxin which targets alpha3beta2 nicotinic acetylcholine receptors. J Biol Chem 271:7522–7528PubMedCrossRefGoogle Scholar
  12. Charpantier E, Barneoud P, Moser P, Besnard F, Sgard F (1998) Nicotinic acetylcholine subunit mRNA expression in dopaminergic neurons of the rat substantia nigra and ventral tegmental area. Neuroreport 9:3097–3101PubMedCrossRefGoogle Scholar
  13. Damaj MI, Welch SP, Martin BR (1995) In vivo pharmacological effects of dihydro-beta-erythroidine, a nicotinic antagonist, in mice. Psychopharmacology (Berl) 117:67–73CrossRefGoogle Scholar
  14. Di Ciano P, Everitt BJ (2004) Contribution of the ventral tegmental area to cocaine-seeking maintained by a drug-paired conditioned stimulus in rats. Eur J Neurosci 19:1661–1667PubMedCrossRefGoogle Scholar
  15. Doyon WM, York JL, Diaz LM, Samson HH, Czachowski CL, Gonzales RA (2003) Dopamine activity in the nucleus accumbens during consummatory phases of oral ethanol self-administration. Alcohol Clin Exp Res 27:1573–1582PubMedCrossRefGoogle Scholar
  16. Doyon WM, Anders SK, Ramachandra VS, Czachowski CL, Gonzales RA (2005) Effect of operant self-administration of 10% ethanol plus 10% sucrose on dopamine and ethanol concentrations in the nucleus accumbens. J Neurochem 93:1469–14681PubMedCrossRefGoogle Scholar
  17. Ericson M, Blomqvist O, Engel J, Söderpalm B (1998) Voluntary ethanol intake in the rat and the associated accumbal dopamine overflow are blocked by ventral tegmental mecamylamine. Eur J Pharmacol 358:189–196PubMedCrossRefGoogle Scholar
  18. Ericson M, Molander A, Löf E, Engel JA, Söderpalm B (2003) Ethanol elevates accumbal dopamine levels via indirect activation of ventral tegmental nicotinic acetylcholine receptors. Eur J Pharmacol 467:85–93PubMedCrossRefGoogle Scholar
  19. Everitt BJ, Dickinson A, Robbins TW (2001) The neuropsychological basis of addictive behaviour. Brain Res Brain Res Rev 36:129–138PubMedCrossRefGoogle Scholar
  20. Garzon M, Vaughan RA, Uhl GR, Kuhar MJ, Pickel VM (1999) Cholinergic axon terminals in the ventral tegmental area target a subpopulation of neurons expressing low levels of the dopamine transporter. J Comp Neurol 410:197–210PubMedCrossRefGoogle Scholar
  21. Gonzales RA, Weiss F (1998) Suppression of ethanol-reinforced behavior by naltrexone is associated with attenuation of the ethanol-induced increase in dialysate dopamine levels in the nucleus accumbens. J Neurosci 18:10663–10671PubMedGoogle Scholar
  22. Gotti C, Clementi F (2004) Neuron al nicotinic receptors: from structure to pathology. Prog Neurobiol 74:363–396PubMedCrossRefGoogle Scholar
  23. Grillner P, Svensson TH (2000) Nicotine-induced excitation of midbrain dopamine neurons in vitro involves ionotropic glutamate receptor activation. Synapse 38:1–9PubMedCrossRefGoogle Scholar
  24. Grimm JW, Lu L, Hayashi T, Hope BT, Su TP, Shaham Y (2003) Time-dependent increases in brain-derived neurotrophic factor protein levels within the mesolimbic dopamine system after withdrawal from cocaine: implications for incubation of cocaine craving. J Neurosci 23:742–747PubMedGoogle Scholar
  25. Grusser SM, Wrase J, Klein S, Hermann D, Smolka MN, Ruf M, Weber-Fahr W, Flor H, Mann K, Braus DF, Heinz A (2004) Cue-induced activation of the striatum and medial prefrontal cortex is associated with subsequent relapse in abstinent alcoholics. Psychopharmacology 175:296–302PubMedCrossRefGoogle Scholar
  26. Inglis WL, Dunbar JS, Winn P (1994) Outflow from the nucleus accumbens to the pedunculopontine tegmental nucleus: a dissociation between locomotor activity and the acquisition of responding for conditioned reinforcement stimulated by d-amphetamine. Neuroscience 62:51–64PubMedCrossRefGoogle Scholar
  27. Inglis WL, Olmstead MC, Robbins TW (2000) Pedunculopontine tegmental nucleus lesions impair stimulus–reward learning in autoshaping and conditioned reinforcement paradigms. Behav Neurosci 114:285–294PubMedCrossRefGoogle Scholar
  28. Jerlhag E, Grotli M, Luthman K, Svensson L, Engel JA (2006) Role of the subunit composition of central nicotinic acetylcholine receptors for the stimulatory and dopamine-enhancing effects of ethanol. Alcohol Alcohol 41:486–493PubMedGoogle Scholar
  29. Kareken DA, Claus ED, Sabri M, Dzemidzic M, Kosobud AE, Radnovich AJ, Hector D, Ramchandani VA, O’Connor SJ, Lowe M, Li TK (2004) Alcohol-related olfactory cues activate the nucleus accumbens and ventral tegmental area in high-risk drinkers: preliminary findings. Alcohol Clin Exp Res 28:550–557PubMedCrossRefGoogle Scholar
  30. Katner SN, Weiss F (1999) Ethanol-associated olfactory stimuli reinstate ethanol-seeking behavior after extinction and modify extracellular dopamine levels in the nucleus accumbens. Alcohol Clin Exp Res 23:1751–1760PubMedGoogle Scholar
  31. Katner SN, Kerr TM, Weiss F (1996) Ethanol anticipation enhances dopamine efflux in the nucleus accumbens of alcohol-preferring (P) but not Wistar rats. Behav Pharmacol 7:669–674PubMedCrossRefGoogle Scholar
  32. Kuryatov A, Olale F, Cooper J, Choi C, Lindstrom J (2000) Human alpha6 AChR subtypes: subunit composition, assembly, and pharmacological responses. Neuropharmacology 39:2570–2590PubMedCrossRefGoogle Scholar
  33. Larsson A, Svensson L, Soderpalm B, Engel JA (2002) Role of different nicotinic acetylcholine receptors in mediating behavioral and neurochemical effects of ethanol in mice. Alcohol 28:157–167PubMedCrossRefGoogle Scholar
  34. Larsson A, Jerlhag E, Svensson L, Soderpalm B, Engel JA (2004) Is an alpha-conotoxin MII-sensitive mechanism involved in the neurochemical, stimulatory, and rewarding effects of ethanol? Alcohol 34:239–250PubMedCrossRefGoogle Scholar
  35. Le AD, Corrigall WA, Harding JW, Juzytsch W, Li TK (2000) Involvement of nicotinic receptors in alcohol self-administration. Alcohol Clin Exp Res 24:155–63PubMedCrossRefGoogle Scholar
  36. Liu X, Weiss F (2002) Reversal of ethanol-seeking behavior by D1 and D2 antagonists in an animal model of relapse: differences in antagonist potency in previously ethanol-dependent versus nondependent rats. J Pharmacol Exp Ther 300:882–889PubMedCrossRefGoogle Scholar
  37. Mackintosh N (1974) The Psychiogy of Animal Learning. Academic, AcademicGoogle Scholar
  38. Mameli-Engvall M, Evrard A, Pons S, Maskos U, Svensson TH, Changeux JP, Faure P (2006) Hierarchical control of dopamine neuron-firing patterns by nicotinic receptors. Neuron 50:911–921PubMedCrossRefGoogle Scholar
  39. Marks MJ, Burch JB, Collins AC (1983) Effects of chronic nicotine infusion on tolerance development and nicotinic receptors. J Pharmacol Exp Ther 226:817–825PubMedGoogle Scholar
  40. Melendez RI, Rodd-Henricks ZA, Engleman EA, Li TK, McBride WJ, Murphy JM (2002) Microdialysis of dopamine in the nucleus accumbens of alcohol-preferring (P) rats during anticipation and operant self-administration of ethanol. Alcohol Clin Exp Res 26:318–325PubMedGoogle Scholar
  41. Miller AD, Forster GL, Metcalf KM, Blaha CD (2002) Excitotoxic lesions of the pedunculopontine differentially mediate morphine- and d-amphetamine-evoked striatal dopamine efflux and behaviors. Neuroscience 111:351–362PubMedCrossRefGoogle Scholar
  42. Niaura RS, Rohsenow DJ, Binkoff JA, Monti PM, Pedraza M, Abrams DB (1988) Relevance of cue reactivity to understanding alcohol and smoking relapse. J Abnorm Psychol 97:133–152PubMedCrossRefGoogle Scholar
  43. Oakman SA, Faris PL, Kerr PE, Cozzari C, Hartman BK (1995) Distribution of pontomesencephalic cholinergic neurons projecting to substantia nigra differs significantly from those projecting to ventral tegmental area. J Neurosci 15:5859–5869PubMedGoogle Scholar
  44. Olausson P, Jentsch JD, Taylor JR (2004a) Nicotine enhances responding with conditioned reinforcement. Psychopharmacology (Berl) 171:173–178CrossRefGoogle Scholar
  45. Olausson P, Jentsch JD, Taylor JR (2004b) Repeated nicotine exposure enhances responding with conditioned reinforcement. Psychopharmacology (Berl) 173:98–104CrossRefGoogle Scholar
  46. Omelchenko N, Sesack SR (2006) Cholinergic axons in the rat ventral tegmental area synapse preferentially onto mesoaccumbens dopamine neurons. J Comp Neurol 494:863–875PubMedCrossRefGoogle Scholar
  47. Pan WX, Hyland BI (2005) Pedunculopontine tegmental nucleus controls conditioned responses of midbrain dopamine neurons in behaving rats. J Neurosci 25:4725–4732PubMedCrossRefGoogle Scholar
  48. Paxinos S, Watson C (2005) The rat brain in stereotaxic coordinates. 5th edn. Elsevier Academic, AmsterdamGoogle Scholar
  49. Reid MS, Mickalian JD, Delucchi KL, Hall SM, Berger SP (1998) An acute dose of nicotine enhances cue-induced cocaine craving. Drug Alcohol Depend 49:95–104PubMedCrossRefGoogle Scholar
  50. Reid MS, Mickalian JD, Delucchi KL, Berger SP (1999) A nicotine antagonist, mecamylamine, reduces cue-induced cocaine craving in cocaine-dependent subjects. Neuropsychopharmacology 20:297–307PubMedCrossRefGoogle Scholar
  51. Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev. 18:247–291PubMedCrossRefGoogle Scholar
  52. Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1–27PubMedGoogle Scholar
  53. Schwartz RD, Kellar KJ (1985) In vivo regulation of [3H]acetylcholine recognition sites in brain by nicotinic cholinergic drugs. J Neurochem 45:427–433PubMedCrossRefGoogle Scholar
  54. Seppa T, Ruotsalainen M, Laakso I, Tuominen R, Ahtee L (2000) Effect of acute nicotine administration on striatal dopamine output and metabolism in rats kept at different ambient temperatures. Brit J Pharmacol 130:1147–1155CrossRefGoogle Scholar
  55. Spanagel R, Zieglgansberger W (1997) Anti-craving compounds for ethanol: new pharmacological tools to study addictive processes. Trends Pharmacol Sci 18:54–59PubMedCrossRefGoogle Scholar
  56. Spanagel R, Weiss F (1999) The dopamine hypothesis of reward: past and current status. Trends Neurosci 22:521–527PubMedCrossRefGoogle Scholar
  57. Stolerman IP, Chandler CJ, Garcha HS, Newton JM (1997) Selective antagonism of behavioural effects of nicotine by dihydro-ß-erythroidine in rats. Psychopharmacology 129:390–397PubMedCrossRefGoogle Scholar
  58. Taylor JR, Robbins TW (1984) Enhanced behavioural control by conditioned reinforcers following microinjections of d-amphetamine into the nucleus accumbens. Psychopharmacology (Berl) 84:405–12CrossRefGoogle Scholar
  59. Taylor JR, Robbins TW (1986) 6-Hydroxydopamine lesions of the nucleus accumbens, but not of the caudate nucleus, attenuate enhanced responding with reward-related stimuli produced by intra-accumbens d-amphetamine. Psychopharmacology (Berl) 90:390–397Google Scholar
  60. Taylor JR, Horger BA (1999) Enhanced responding for conditioned reward produced by intra-accumbens amphetamine is potentiated after cocaine sensitization. Psychopharmacology (Berl) 142:31–40CrossRefGoogle Scholar
  61. Waters N, Lagerkvist S, Lofberg L, Piercey M, Carlsson A (1993) The dopamine D3 receptor and autoreceptor preferring antagonists (+)-AJ76 and (+)-UH232; a microdialysis study. Eur J Pharmacol 242:151–163PubMedCrossRefGoogle Scholar
  62. Weiss F, Lorang MT, Bloom FE, Koob GF (1993) Oral alcohol self-administration stimulates dopamine release in the rat nucleus accumbens: genetic and motivational determinants. J Pharmacol Exp Ther 267:250–258PubMedGoogle Scholar
  63. Westerink BH, Kwint HF, deVries JB (1996) The pharmacology of mesolimbic dopamine neurons: a dual-probe microdialysis study in the ventral tegmental area and nucleus accumbens of the rat brain. J Neurosci 16:2605–2611PubMedGoogle Scholar
  64. Wolterink G, Phillips G, Cador M, Donselaar-Wolterink I, Robbins TW, Everitt BJ (1993) Relative roles of ventral striatal D1 and D2 dopamine receptors in responding with conditioned reinforcement. Psychopharmacology (Berl) 110:355–364CrossRefGoogle Scholar
  65. Wyvell CL, Berridge KC (2000) Intra-accumbens amphetamine increases the conditioned incentive salience of sucrose reward: enhancement of reward “Wanting” without enhanced “Liking” or response reinforcement. J Neurosci 20:8122–8130PubMedGoogle Scholar
  66. Yun IA, Wakabayashi KT, Fields HL, Nicola SM (2004) The ventral tegmental area is required for the behavioral and nucleus accumbens neuronal firing responses to incentive cues. J Neurosci 24:2923–2933PubMedCrossRefGoogle Scholar
  67. Zachariou V, Caldarone BJ, Weathers-Lowin A, George TP, Elsworth JD, Roth RH, Changeux JP, Picciotto MR (2001) Nicotine receptor inactivation decreases sensitivity to cocaine. Neuropsychopharmacology 24:576–589PubMedCrossRefGoogle Scholar
  68. Zhou W, Liu H, Zhang F, Tang S, Zhu H, Lai M, Kalivas PW (2007) Role of acetylcholine transmission in nucleus accumbens and ventral tegmental area in heroin-seeking induced by conditioned cues. Neuroscience 144:1209–1218PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Elin Löf
    • 1
    • 5
  • Peter Olausson
    • 2
  • Andrea deBejczy
    • 1
  • Rosita Stomberg
    • 1
  • J. Michael McIntosh
    • 3
    • 4
  • Jane R. Taylor
    • 2
  • Bo Söderpalm
    • 1
  1. 1.Inst. Neuroscience and Physiology, Sect. Psychiatry and Neurochemistry, Sahlgrenska Academy, Göteborg University and BeroendeklinikenSahlgrenska University HospitalGothenburgSweden
  2. 2.Department of Psychiatry, Div. of Molecular Psychiatry, School of MedicineYale UniversityNew HavenUSA
  3. 3.Department of PsychiatryUniversity of UtahSalt Lake CityUSA
  4. 4.Department of BiologyUniversity of UtahSalt Lake CityUSA
  5. 5.Göteborg UniversityGothenburgSweden

Personalised recommendations