Psychopharmacology

, Volume 195, Issue 2, pp 255–264

Behavioural and neurochemical effects of combined MDMA and THC administration in mice

  • Patricia Robledo
  • Jose M. Trigo
  • Fany Panayi
  • Rafael de la Torre
  • Rafael Maldonado
Original Investigation

Abstract

Rationale

Cannabis is the most widely consumed drug associated with 3,4-methylenedioxymethamphetamine (MDMA) use.

Objectives

This study examines whether low doses of MDMA and delta-9-tetrahydrocannabinol (THC) produce synergistic rewarding/reinforcing effects in mice using the conditioned place preference (CPP) and operant self-administration paradigms. Changes in dopamine (DA) outflow were monitored in the nucleus accumbens (NAC) after single or combined administration of these compounds.

Results

MDMA induced a significant CPP at the dose of 10 mg/kg but not at the dose of 3 mg/kg. THC (0.3 mg/kg) by itself was also ineffective in this paradigm. The combined administration of the low dose of MDMA (3 mg/kg) and THC (0.3 mg/kg) produced CPP, whereas the combination of MDMA (10 mg/kg) and THC (0.3 mg/kg) significantly decreased CPP. Animals treated with THC self-administered a sub-threshold dose of MDMA (0.06 mg/kg per infusion), while animals receiving vehicle did not. However, THC did not modify the self-administration of an effective dose of MDMA (0.125 mg/kg per infusion). In microdialysis studies, a low dose of THC significantly increased DA outflow in the NAC, while a low dose of MDMA did not. When MDMA was administered before THC, DA levels decreased with respect to THC. However, when THC was administered before MDMA, DA levels were not significantly modified with respect to THC.

Conclusions

These results demonstrate that a low dose of THC modifies in different ways (increases and decreases) the sensitivity of animals to the behavioural effects of MDMA and that THC and MDMA converge at a common mechanism modulating DA outflow in the NAC of mice.

Keywords

Ecstasy Cannabis Reward/reinforcement Self-administration CPP Microdialysis Dopamine Nucleus accumbens 

References

  1. Beardsley PM, Balster RL, Harris LS (1986) Self-administration of methylenedioxy-methamphetamine (MDMA) by rhesus monkeys. Drug Alcohol Depend 18:149–57PubMedCrossRefGoogle Scholar
  2. Berrendero F, Maldonado R (2002) Involvement of the opioid system in the anxiolytic-like effects induced by delta(9)-tetrahydrocannabinol. Psychopharmacology 163:111–117PubMedCrossRefGoogle Scholar
  3. Bilsky EJ, Reid LD (1991) MDL72222, a serotonin 5-HT3 receptor antagonist, blocks MDMA’s ability to establish a conditioned place preference. Pharmacol Biochem Behav 39:509–512PubMedCrossRefGoogle Scholar
  4. Bilsky EJ, Hui Y, Hubbell CL, Reid LD (1990) Methylenedioxymethamphetamine’s capacity to establish place preferences and modify intake of an alcoholic beverage. Pharmacol Biochem Behav 37:633–638PubMedCrossRefGoogle Scholar
  5. Braida D, Sala M (2002) Role of the endocannabinoid system in MDMA intracerebral self-administration in rats. Br J Pharmacol 136:1089–1092PubMedCrossRefGoogle Scholar
  6. Braida D, Iosue S, Pegorini S, Sala M (2005) 3,4 Methylenedioxymethamphetamine-induced conditioned place preference (CPP) is mediated by endocannabinoid system. Pharmacol Res 51:177–182PubMedCrossRefGoogle Scholar
  7. Carboni E, Spielewoy C, Vacca C, Nosten-Bertrand M, Giros B, Di Chiara G (2001) Cocaine and amphetamine increase extracellular dopamine in the nucleus accumbens of mice lacking the dopamine transporter gene. J Neurosci 21(RC141):1–4PubMedGoogle Scholar
  8. Chen JP, Paredes W, Li J, Smith D, Lowinson J, Gardner EL (1990) Delta 9-tetrahydrocannabinol produces naloxone-blockable enhancement of presynaptic basal dopamine efflux in nucleus accumbens of conscious, freely-moving rats as measured by intracerebral microdialysis. Psychopharmacology 102:156–162PubMedCrossRefGoogle Scholar
  9. Fantegrossi WE, Ullrich T, Rice KC, Woods JH, Winger G (2002) 3,4-Methylenedioxymethamphetamine (MDMA, “ecstasy”) and its stereoisomers as reinforcers in rhesus monkeys: serotoninergic involvement. Psychopharmacology 161:356–364PubMedCrossRefGoogle Scholar
  10. Gouzoulis-Mayfrank E, Daumann J (2006) The confounding problem of polydrug use in recreational ecstasy/MDMA users: a brief overview. J Psychopharmacol 20:188–193PubMedCrossRefGoogle Scholar
  11. Justinova Z, Tanda G, Redhi GH, Goldberg SR (2003) Self-administration of delta9-tetrahydrocannabinol (THC) by drug naive squirrel monkeys. Psychopharmacology (Berl) 169:135–140CrossRefGoogle Scholar
  12. Kankaanpää A, Meririnne E, Lillsunde P, Seppala T (1998) The acute effects of amphetamine derivatives on extracellular serotonin and dopamine levels in rat nucleus accumbens. Pharmacol Biochem Behav 59:1003–1009PubMedCrossRefGoogle Scholar
  13. Lamb RJ, Griffiths RR (1987) Self-injection of d,1–3,4-methylenedioxymethamphetamine (MDMA) in the baboon. Psychopharmacology 91:268–272PubMedCrossRefGoogle Scholar
  14. Lepore M, Vorel SR Lowinson J, Gardner EL (1995) Conditioned place preference induced by delta 9-tetrahydrocannabinol: comparison with cocaine, morphine, and food reward. Life Sci 56:2073–2080PubMedCrossRefGoogle Scholar
  15. Malone DT, Taylor DA (1999) Modulation by fluoxetine of striatal dopamine release following Delta9-tetrahydrocannabinol: a microdialysis study in conscious rats. Br J Pharmacol 128:21–26PubMedCrossRefGoogle Scholar
  16. Marona-Lewicka D, Rhee GS, Sprague JE, Nichols DE (1996) Reinforcing effects of certain serotonin-releasing amphetamine derivatives. Pharmacol Biochem Behav 53:99–105PubMedCrossRefGoogle Scholar
  17. Morley KC, Li KM, Hunt GE, Mallet PE, McGregor IS (2004) Cannabinoids prevent the acute hyperthermia and partially protect against the 5-HT depleting effects of MDMA (“Ecstasy”) in rats. Neuropharmacology 46:954–965PubMedCrossRefGoogle Scholar
  18. Paxinos G, Franklin KBJ (1997) The mouse brain in stereotaxic coordinates. Academic, San DiegoGoogle Scholar
  19. Ratzenboeck E, Saria A, Kriechbaum N, Zernig G (2001) Reinforcing effects of MDMA (“ecstasy”) in drug-naive and cocaine-trained rats. Pharmacology 62:138–144PubMedCrossRefGoogle Scholar
  20. Robledo P, Balerio G, Berrendero F, Maldonado R (2004a) Study of the behavioural responses related to the potential addictive properties of MDMA in mice. Naunyn Schmiedebergs Arch Pharmacol 369:338–349CrossRefGoogle Scholar
  21. Robledo P, Mendizabal V, Ortuno J, de la Torre R, Kieffer BL, Maldonado R (2004b) The rewarding properties of MDMA are preserved in mice lacking mu-opioid receptors. Eur J Neurosci 20:853–858CrossRefGoogle Scholar
  22. Salzmann J, Marie-Claire C, Le Guen S, Roques BP, Noble F (2003) Importance of ERK activation in behavioural and biochemical effects induced by MDMA in mice. Br J Pharmacol 140:831–838PubMedCrossRefGoogle Scholar
  23. Schenk S, Gittings D, Johnstone M, Daniela E (2003) Development, maintenance and temporal pattern of self-administration maintained by ecstasy (MDMA) in rats. Psychopharmacology 169:21–27PubMedCrossRefGoogle Scholar
  24. Soria G, Mendizabal V, Tourino C, Robledo P, Ledent C, Parmentier M, Maldonado R, Valverde O (2005) Lack of CB1 cannabinoid receptor impairs cocaine self-administration. Neuropsychopharmacology 30:1670–1680PubMedCrossRefGoogle Scholar
  25. Tanda G, Pontieri FE, Di Chiara G (1997) Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common mu1 opioid receptor mechanism. Science 276:2048–2050PubMedCrossRefGoogle Scholar
  26. Tossmann P, Boldt S, Tensil MD (2001) The use of drugs within the techno party scene in European metropolitan cities. Eur Addict Res 7:2–23PubMedCrossRefGoogle Scholar
  27. Trigo JM, Panayi F, Soria G, Maldonado R, Robledo P (2006) A reliable model of intravenous MDMA self-administration in naive mice. Psychopharmacology 184:212–220PubMedCrossRefGoogle Scholar
  28. Trigo JM, Renoir T, Lanfumey L, Hamon M, Lesch KP, Robledo P, Maldonado R (2007) MDMA self-administration is abolished in serotonin transporter knock-out mice. Biological Psychiatry (in press) Google Scholar
  29. Valjent E, Maldonado R (2000) A behavioural model to reveal place preference to delta 9-tetrahydrocannabinol in mice. Psychopharmacology 147:436–438PubMedCrossRefGoogle Scholar
  30. Valjent E, Mitchell JM, Besson MJ, Caboche J, Maldonado R (2002) Behavioural and biochemical evidence for interactions between Delta 9-tetrahydrocannabinol and nicotine. Br J Pharmacol 135:564–578PubMedCrossRefGoogle Scholar
  31. White SR, Obradovic T, Imel KM, Wheaton MJ (1996) The effects of methylenedioxymethamphetamine (MDMA, “Ecstasy”) on monoaminergic neurotransmission in the central nervous system. Prog Neurobiol 49:455–479PubMedCrossRefGoogle Scholar
  32. Yamamoto BK, Spanos LJ (1988) The acute effects of methylenedioxymethamphetamine on dopamine release in the awake-behaving rat. Eur J Pharmacol 148:195–203PubMedCrossRefGoogle Scholar
  33. Zimmermann P, Wittchen HU, Waszak F, Nocon A, Hofler M, Lieb R (2005) Pathways into ecstasy use: the role of prior cannabis use and ecstasy availability. Drug Alcohol Depend 79:331–341PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Patricia Robledo
    • 1
    • 2
    • 3
  • Jose M. Trigo
    • 1
  • Fany Panayi
    • 1
  • Rafael de la Torre
    • 2
  • Rafael Maldonado
    • 1
  1. 1.Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de la SalutUniversitat Pompeu FabraBarcelonaSpain
  2. 2.Institut Municipal d’Investigació Mèdica (IMIM)BarcelonaSpain
  3. 3.Universitat Pompeu FabraBarcelonaSpain

Personalised recommendations