, Volume 194, Issue 4, pp 517–525 | Cite as

Spatial deficits in a mouse model of Parkinson disease

  • Elvira De Leonibus
  • Tiziana Pascucci
  • Sebastien Lopez
  • Alberto Oliverio
  • Marianne Amalric
  • Andrea Mele
Original Investigation



Accumulating evidence in humans demonstrated that visuo-spatial deficits are the most consistently reported cognitive abnormalities in Parkinson disease (PD). These deficits have been generally attributed to cortical dopamine degeneration. However, more recent evidence suggests that dopamine loss in the striatum is responsible for the visuo-spatial abnormalities in PD. Studies based on animal models of PD did not specifically address this question.


Thus, the first goal of this study was to analyze the role of dopamine within the dorsal striatum in spatial memory. We tested bilateral 6-OHDA striatal lesioned CD1 mice in an object–place association spatial task. Furthermore, to see whether the effects were selective for spatial information, we measured how the 6-OHDA-lesioned animals responded to a non-spatial change and learned in the one-trial inhibitory avoidance task.


The results demonstrated that bilateral (approximately 75%) dopamine depletion of the striatum impaired spatial change discrimination. On the contrary, no effect of the lesion was observed on non-spatial novelty detection or on passive avoidance learning.


These results confirm that dopamine depletion is accompanied by cognitive deficits and demonstrate that striatal dopamine dysfunction is sufficient to induce spatial information processing deficits.


Mice Dopamine Spatial memory 6-Hydroxydopamine Passive avoidance Dorsal striatum Parkinson disease Cognitive deficits Novel object task Working memory 


  1. Berger HJ, Cools AR, Horstink MW, Oyen WJ, Verhoeven EW, van der Werf SP (2004) Striatal dopamine and learning strategy-an (123)I-FP-CIT SPECT study. Neuropsychologia 42:1071–1078PubMedCrossRefGoogle Scholar
  2. Boller F, Passafiume D, Keefe NC, Rogers K, Morrow L, Kim Y (1984) Visuospatial impairment in Parkinson’s disease. Role of perceptual and motor factors. Arch Neurol 41:485–490PubMedGoogle Scholar
  3. Bracs PU, Gregory P, Jackson DM (1984) Passive avoidance in rats: disruption by dopamine applied to the nucleus accumbens. Psychopharmacology (Berl) 83:70–75CrossRefGoogle Scholar
  4. Breen EK (1993) Recall and recognition memory in Parkinson’s disease. Cortex 29:91–102PubMedGoogle Scholar
  5. Buytenhuijs EL, Berger HJ, Van Spaendonck KP, Horstink MW, Borm GF, Cools AR (1994) Memory and learning strategies in patients with Parkinson’s disease. Neuropsychologia 32(3):335–342PubMedCrossRefGoogle Scholar
  6. Coccurello R, Adriani W, Oliverio A, Mele A (2000) Effect of intra-accumbens dopamine receptor agents on reactivity to spatial and non-spatial changes in mice. Psychopharmacology 152(2):189–199PubMedCrossRefGoogle Scholar
  7. Collins P, Wilkinson LS, Everitt BJ, Robbins TW, Roberts AC (2000) The effect of dopamine depletion from the caudate nucleus of the common marmoset (Callithrix jacchus) on tests of prefrontal cognitive function. Behav Neurosci 114:3–17PubMedCrossRefGoogle Scholar
  8. Cools R, Stefanova E, Barker RA, Robbins TW, Owen AM (2002) Dopaminergic modulation of high-level cognition in Parkinson’s disease: the role of the prefrontal cortex revealed by PET. Brain 125(Pt 3):584–594PubMedCrossRefGoogle Scholar
  9. Cools R, Lewis SJ, Clark L, Barker RA, Robbins TW (2007) l-DOPA disrupts activity in the nucleus accumbens during reversal learning in Parkinson’s disease. Neuropsychopharmacology 32(1):180–189PubMedCrossRefGoogle Scholar
  10. Courtiere A, Hardouin J, Locatelli V, Turle-Lorenzo N, Amalric M, Vidal F, Hasbroucq T (2005) Selective effects of partial striatal 6-OHDA lesions on information processing in the rat. Eur J Neurosci 21:1973–1983PubMedCrossRefGoogle Scholar
  11. Crofts HS, Dalley JW, Collins P, Van Denderen JC, Everitt BJ, Robbins TW, Roberts AC (2001) Differential effects of 6-OHDA lesions of the frontal cortex and caudate nucleus on the ability to acquire an attentional set. Cereb Cortex 11:1015–1026PubMedCrossRefGoogle Scholar
  12. De Leonibus E, Costantini VJ, Castellano C, Ferretti V, Oliverio A, Mele A (2003) Distinct roles of the different ionotropic glutamate receptors within the nucleus accumbens in passive-avoidance learning and memory in mice. Eur J Neurosci 18:2365–2373PubMedCrossRefGoogle Scholar
  13. De Leonibus E, Oliverio A, Mele A (2005) A study on the role of the dorsal striatum and the nucleus accumbens in allocentric and egocentric spatial memory consolidation. Learn Memory 12:491–503CrossRefGoogle Scholar
  14. De Leonibus E, Verheij MM, Mele A, Cools A (2006) Distinct kinds of novelty processing differentially increase extracellular dopamine in different brain regions. Eur J Neurosci 23:1332–1340PubMedCrossRefGoogle Scholar
  15. Dubois B, Pillon B (1997) Cognitive deficits in Parkinson’s disease. J Neurol 244:2–8PubMedCrossRefGoogle Scholar
  16. Farina E, Gattellaro G, Pomati S, Magni E, Perretti A, Cannata AP, Nichelli P, Mariani C (2000) Researching a differential impairment of frontal functions and explicit memory in early Parkinson’s disease. Eur J Neurol 7:259–267PubMedCrossRefGoogle Scholar
  17. Franklin BJ, Paxinos G (1997) The mouse brain in stereotaxic coordinates. Academic, San Diego, CAGoogle Scholar
  18. Giraudo MD, Gayraud D, Habib M (1997) Visuospatial ability of parkinsonians and elderly adults in location memory tasks. Brain Cogn 34:259–273PubMedCrossRefGoogle Scholar
  19. Keitz M, Martin-Soelch C, Leenders KL (2003) Reward processing in the brain: a prerequisite for movement preparation? Neural Plast 10:121–128PubMedCrossRefGoogle Scholar
  20. Lewis SJ, Cools R, Robbins TW, Dove A, Barker RA, Owen AM (2003) Using executive heterogeneity to explore the nature of working memory deficits in Parkinson’s disease. Neuropsychologia 41(6):645–654PubMedCrossRefGoogle Scholar
  21. Lewis SJ, Slabosz A, Robbins TW, Barker RA, Owen AM (2004) Dopaminergic basis for deficits in working memory but not attentional set-shifting in Parkinson’s disease. Neuropsychologia 43:823–832PubMedCrossRefGoogle Scholar
  22. Lorenzini CA, Baldi E, Bucherelli C, Tassoni G (1995) Time-dependent deficits of rat’s memory consolidation induced by tetrodotoxin injections into the caudate-putamen, nucleus accumbens, and globus pallidus. Neurobiol Learn Mem 63:87–93PubMedCrossRefGoogle Scholar
  23. Miyoshi E, Wietzikoski S, Camplessei M, Silveira R, Takahashi RN, Da Cunha C (2002) Impaired learning in a spatial working memory version and in a cued version of the water maze in rats with MPTP-induced mesencephalic dopaminergic lesions. Brain Res Bull 58:41–47PubMedCrossRefGoogle Scholar
  24. Mollion H, Ventre-Dominey J, Dominey PF, Broussolle E (2003) Dissociable effects of dopaminergic therapy on spatial versus non-spatial working memory in Parkinson’s disease. Neuropsychologia 41:1442–1451PubMedCrossRefGoogle Scholar
  25. Mura A, Feldon J (2003) Spatial learning in rats is impaired after degeneration of the nigrostriatal dopaminergic system. Mov Disord 18:860–871PubMedCrossRefGoogle Scholar
  26. Owen AM, James M, Leigh PN, Summers BA, Marsden CD, Quinn NP, Lance KW, Robbins TW(1992) Fronto-striatal cognitive deficits at different stages of Parkinson’s disease. Brain 115:1727–1751PubMedCrossRefGoogle Scholar
  27. Owen AM, Roberts AC, Hodges JR, Summers BA, Polkey CE, Robbins TW (1993) Contrasting mechanisms of impaired attentional set-shifting in patients with frontal lobe damage or Parkinson’s disease. Brain 116:1159–1175PubMedCrossRefGoogle Scholar
  28. Owen AM, Iddon JL, Hodges JR, Summers BA, Robbins TW (1997) Spatial and non-spatial working memory at different stages of Parkinson’s disease. Neuropsychologia 35:519–532PubMedCrossRefGoogle Scholar
  29. Owen AM, Doyon J, Dagher A, Sadikot A, Evans AC (1998) Abnormal basal ganglia outflow in Parkinson’s disease identified with PET. Implications for higher cortical functions. Brain 121(Pt 5):949–965PubMedCrossRefGoogle Scholar
  30. Pillon B, Ertle S, Deweer B, Sarazin M, Agid Y, Dubois B (1996) Memory for spatial location is affected in Parkinson’s disease. Neuropsychologia 34:77–85PubMedCrossRefGoogle Scholar
  31. Pillon B, Ertle S, Deweer B, Bonnet AM, Vidailhet M, Dubois B (1997) Memory for spatial location in ‘de novo’ parkinsonian patients. Neuropsychologia 35:221–228PubMedCrossRefGoogle Scholar
  32. Postle BR, Locascio JJ, Corkin S, Growdon JH (1997) The time course of spatial and object learning in Parkinson’s disease. Neuropsychologia 35(10):1413–1422PubMedCrossRefGoogle Scholar
  33. Puglisi-Allegra S, Cabib S, Pascucci T, Ventura R, Cali F, Romano V (2000) Dramatic brain aminergic deficit in a genetic mouse model of phenylketonuria. Neuroreport 27:1361–1364CrossRefGoogle Scholar
  34. Reyes Vazquez C, Zarco-Coronado I, Brust-Carmona H (1978) Effects of intracaudate microinjections of 6-hydroxydopamine upon the suppression of lever pressing and upon passive avoidance conditioning in cats. Pharmacol Biochem Behav 9:747–751PubMedCrossRefGoogle Scholar
  35. Rinaldi A, Mandillo S, Oliverio A, Mele A (2007) D1 and D2 receptor antagonist injections in the prefrontal cortex selectively impair spatial learning in mice. Neuropsychopharmacology 32(2):309–319PubMedCrossRefGoogle Scholar
  36. Robbins TW, Everitt BJ (1996) Neurobehavioural mechanisms of reward and motivation. Curr Opin Neurobio 6:228–236CrossRefGoogle Scholar
  37. Roesler R, Vianna MR, Schroder N, Ferreira MB, Quevedo J (2006) Aversive learning under different training conditions: effects of NMDA receptor blockade in area CA1 of the hippocampus. Neurochem Res 31:679–683PubMedCrossRefGoogle Scholar
  38. Roullet P, Sargolini F, Oliverio A, Mele A (2001) NMDA and AMPA antagonist infusions into the ventral striatum impair different steps of spatial information processing in a nonassociative task in mice. J Neurosci 21:2143–2149PubMedGoogle Scholar
  39. Sahakian BJ, Morris RG, Evenden JL, Heald A, Levy R, Philpot M (1988) A comparative study of visuospatial memory and learning in Alzheimer-type dementia and Parkinson’s disease. Brain 111:695–718PubMedCrossRefGoogle Scholar
  40. Sargolini F, Roullet P, Oliverio A, Mele A (1999) Effects of lesions to the glutamatergic afferents to the nucleus accumbens in the modulation of reactivity to spatial and non-spatial novelty in mice. Neuroscience 93:855–867PubMedCrossRefGoogle Scholar
  41. Smith-Roe SL, Sadeghian K, Kelley AE (1999) Spatial learning and performance in the radial maze is impaired after N-methyl-d-aspartate (NMDA) receptor blockade in striatal subregions. Behav Neurosci 113:703–717PubMedCrossRefGoogle Scholar
  42. Weingartner H, Burns S, Diebel R, LeWitt PA (1984) Cognitive impairments in Parkinson’s disease: distinguishing between effort-demanding and automatic cognitive processes. Psychiatry Res 11:223–235PubMedCrossRefGoogle Scholar
  43. Whishaw IQ, Dunnett SB (1985) Dopamine depletion, stimulation or blockade in the rat disrupts spatial navigation and locomotion dependent upon beacon or distal cues. Behav Brain Res 18:11–29PubMedCrossRefGoogle Scholar
  44. White NM, Salinas JA (2003) Mnemonic functions of dorsal striatum and hippocampus in aversive conditioning. Behav Brain Res 142:99–107PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Elvira De Leonibus
    • 1
    • 2
  • Tiziana Pascucci
    • 2
    • 3
  • Sebastien Lopez
    • 4
  • Alberto Oliverio
    • 1
    • 2
    • 5
  • Marianne Amalric
    • 4
  • Andrea Mele
    • 1
    • 2
    • 5
  1. 1.Dipartimento di Genetica e Biologia Molecolare “C.Darwin”Università degli Studi di Roma “La Sapienza”RomeItaly
  2. 2.Centro di Ricerca in Neurobiologia-D. BovetUniversità degli Studi di Roma “La Sapienza”RomeItaly
  3. 3.IRCCSFondazione Santa LuciaRomeItaly
  4. 4.Laboratoire de Neurobiologie de la CognitionUniversités Aix-MarseilleMarseilleFrance
  5. 5.Istituto di Neuroscienze-CNRCERCRomeItaly

Personalised recommendations