Psychopharmacology

, Volume 193, Issue 1, pp 97–105 | Cite as

Role of serotonin 5-HT1A and opioid receptors in the antiallodynic effect of tramadol in the chronic constriction injury model of neuropathic pain in rats

  • Esther Berrocoso
  • M. Dolores De Benito
  • Juan A. Mico
Original Investigation

Abstract

Rationale

Tramadol (1RS, 2RS)-2-[(dimethylamino)-methyl]-1-(3-methoxyphenyl)-cyclohexanol) is an atypical centrally acting analgesic agent with weak opioid receptor affinity that, like some antidepressants, enhances the extraneuronal concentrations of the monoamine neurotransmitters, noradrenaline and serotonin, by interfering with their re-uptake and release mechanisms.

Objectives

The present study was undertaken to evaluate the potential role of 5-HT1A receptors and opioids receptors in the analgesic effect of tramadol in neuropathic pain. With this aim, the effect of either a selective 5-HT1A receptor antagonist (WAY-100635, N-2-[4-(2-methoxyphenyl-1-piperazinyl]ethyl]-N-2-pyridinylcyclohexane carboxamide) or a selective 5-HT1A receptor agonist (8-OH-DPAT, 8-hydroxy-2-(di-n-propylamine) tetralin hydrobromide) or an opioid receptor antagonist (naloxone; naloxone hydrochloride dihydrate) was investigated in combination with tramadol by means of the cold-plate test in the chronic constriction injury model in rats.

Results

The results showed that WAY-100635 (0.8 mg/kg) significantly enhanced the antiallodynic effect of non-effective doses of tramadol (5–10 mg/kg). In contrast, 8-OH-DPAT (0.5 mg/kg) counteracted the antiallodynic effect of an effective dose of tramadol (22 mg/kg). Naloxone (0.5 mg/kg) partially counteracted the antiallodynic effect of tramadol (22 mg/kg).

Conclusions

These findings suggest the involvement of opioid and 5-HT1A receptors in the antinociceptive effect of tramadol and support the idea that the combination of tramadol with compounds having 5-HT1A antagonist properties could be a new strategy to improve tramadol-induced analgesia in neuropathic pain.

Keywords

Serotonin Serotonin 5-HT1A receptors Neuropathic pain Tramadol Opioid receptors Rat 

Notes

Acknowledgements

This study has been supported by “Fondo de Investigación Sanitaria” (PI031430) from Instituto de Salud Carlos III and “Plan Andaluz de Investigación” (CTS-510) from Junta de Andalucía. The authors thank to Dr. Thomas Christoph for their help and cooperation in the revision of the manuscript.

References

  1. Adell A, Castro E, Celada P, Bortolozzi A, Pazos A, Artigas F (2005) Strategies for producing faster acting antidepressants. Drug Discov Today 10:578–585PubMedCrossRefGoogle Scholar
  2. Alhaider AA, Wilcox GL (1993) Differential roles of 5-hydroxytryptamine1A and 5-hydroxytryptamine1B receptor subtypes in modulating spinal nociceptive transmission in mice. J Pharmacol Exp Ther 265:378–385PubMedGoogle Scholar
  3. Ali Z, Wu G, Kozlov A, Barasi S (1994) The actions of 5-HT1 agonists and antagonists on nociceptive processing in the rat spinal cord: results from behavioural and electrophysiological studies. Brain Res 661:83–90PubMedCrossRefGoogle Scholar
  4. Ardid D, Alloui A, Brousse G, Jourdan D, Picard P, Dubray C, Eschalier A (2001) Potentiation of the antinociceptive effect of clomipramine by a 5-ht(1A) antagonist in neuropathic pain in rats. Br J Pharmacol 132:1118–1126PubMedCrossRefGoogle Scholar
  5. Artigas F (1995) Pindolol, 5-hydroxytryptamine, and antidepressant augmentation. Arch Gen Psychiatry 52:969–971PubMedGoogle Scholar
  6. Azmitia EC, Gannon PJ, Kheck NM, Whitaker-Azmitia PM (1996) Cellular localization of the 5-HT1A receptor in primate brain neurons and glial cells. Neuropsychopharmacology 14:35–46PubMedCrossRefGoogle Scholar
  7. Bamigbade TA, Davidson C, Langford RM, Stamford JA (1997) Actions of tramadol, its enantiomers and principal metabolite, O-desmethyltramadol, on serotonin (5-HT) efflux and uptake in the rat dorsal raphe nucleus. Br J Anaesth 79:352–356PubMedGoogle Scholar
  8. Bardin L, Tarayre JP, Koek W, Colpaert FC (2001) In the formalin model of tonic nociceptive pain, 8-OH-DPAT produces 5-HT1A receptor-mediated, behaviorally specific analgesia. Eur J Pharmacol 421:109–114PubMedCrossRefGoogle Scholar
  9. Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38:1083–1152PubMedCrossRefGoogle Scholar
  10. Bennett GJ, Xie YK (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33:87–107PubMedCrossRefGoogle Scholar
  11. Berrocoso E, Mico JA, Ugedo L (2006a) In vivo effect of tramadol on locus coeruleus neurons is mediated by alpha2-adrenoceptors and modulated by serotonin. Neuropharmacology 51:146–153PubMedCrossRefGoogle Scholar
  12. Berrocoso E, Rojas-Corrales MO, Mico JA (2006b) Differential role of 5-HT(1A) and 5-HT (1B) receptors on the antinociceptive and antidepressant effect of tramadol in mice. Psychopharmacology (Berl) 188:111–118CrossRefGoogle Scholar
  13. Colpaert FC, Tarayre JP, Koek W, Pauwels PJ, Bardin L, Xu XJ, Wiesenfeld-Hallin Z, Cosi C, Carilla-Durand E, Assie MB, Vacher B (2002) Large-amplitude 5-HT1A receptor activation: a new mechanism of profound, central analgesia. Neuropharmacology 43:945–958PubMedCrossRefGoogle Scholar
  14. Colpaert FC, Wu WP, Hao JX, Royer I, Sautel F, Wiesenfeld-Hallin Z, Xu XJ (2004) High-efficacy 5-HT1A receptor activation causes a curative-like action on allodynia in rats with spinal cord injury. Eur J Pharmacol 497:29–33PubMedCrossRefGoogle Scholar
  15. Croul S, Sverstiuk A, Radzievsky A, Murray M (1995) Modulation of neurotransmitter receptors following unilateral L1-S2 deafferentation: NK1, NK3, NMDA, and 5HT1a receptor binding autoradiography. J Comp Neurol 361:633–644PubMedCrossRefGoogle Scholar
  16. Desmeules JA, Piguet V, Collart L, Dayer P (1996) Contribution of monoaminergic modulation to the analgesic effect of tramadol. Br J Clin Pharmacol 41:7–12PubMedCrossRefGoogle Scholar
  17. Driessen B, Reimann W, Giertz H (1993) Effects of the central analgesic tramadol on the uptake and release of noradrenaline and dopamine in vitro. Br J Pharmacol 108:806–811PubMedGoogle Scholar
  18. Evrard A, Laporte AM, Chastanet M, Hen R, Hamon M, Adrien J (1999) 5-HT1A and 5-HT1B receptors control the firing of serotoninergic neurons in the dorsal raphe nucleus of the mouse: studies in 5-HT1B knock-out mice. Eur J Neurosci 11:3823–3831PubMedCrossRefGoogle Scholar
  19. Gobert A, Lejeune F, Rivet JM, Audinot V, Newman-Tancredi A, Millan MJ (1995) Modulation of the activity of central serotoninergic neurons by novel serotonin1A receptor agonists and antagonists: a comparison to adrenergic and dopaminergic neurons in rats. J Pharmacol Exp Ther 273:1032–1046PubMedGoogle Scholar
  20. Harati Y, Gooch C, Swenson M, Edelman S, Greene D, Raskin P, Donofrio P, Cornblath D, Sachdeo R, Siu CO, Kamin M (1998) Double-blind randomized trial of tramadol for the treatment of the pain of diabetic neuropathy. Neurology 50:1842–1846PubMedGoogle Scholar
  21. National Institutes of Health (1996) Principles of animal laboratory care. National Academy Press, Washington, DC, USAGoogle Scholar
  22. Hennies HH, Friderichs E, Schneider J (1988) Receptor binding, analgesic and antitussive potency of tramadol and other selected opioids. Arzneimittelforschung 38:877–880PubMedGoogle Scholar
  23. Hollingshead J, Duhmke R, Cornblath D (2006) Tramadol for neuropathic pain. Cochrane Database Syst Rev 3:CD003726PubMedGoogle Scholar
  24. Ide S, Minami M, Ishihara K, Uhl GR, Sora I, Ikeda K (2006) Mu opioid receptor-dependent and independent components in effects of tramadol. Neuropharmacology 51:651–658PubMedCrossRefGoogle Scholar
  25. Jasmin L, Kohan L, Franssen M, Janni G, Goff JR (1998) The cold plate as a test of nociceptive behaviors: description and application to the study of chronic neuropathic and inflammatory pain models. Pain 75:367–382PubMedCrossRefGoogle Scholar
  26. Marlier L, Teilhac JR, Cerruti C, Privat A (1991) Autoradiographic mapping of 5-HT1, 5-HT1A, 5-HT1B and 5-HT2 receptors in the rat spinal cord. Brain Res 550:15–23PubMedCrossRefGoogle Scholar
  27. Mico JA, Ardid D, Berrocoso E, Eschalier A (2006a) Antidepressants and pain. Trends Pharmacol Sci 27:348–354PubMedCrossRefGoogle Scholar
  28. Mico JA, Berrocoso E, Ortega-Alvaro A, Gibert-Rahola J, Rojas-Corrales MO (2006b) The role of 5-HT1A receptors in research strategy for extensive pain treatment. Curr Top Med Chem 6:1997–2003PubMedCrossRefGoogle Scholar
  29. Millan MJ (2002) Descending control of pain. Prog Neurobiol 66:355–474PubMedCrossRefGoogle Scholar
  30. Palazzo E, Genovese R, Mariani L, Siniscalco D, Marabese I, De Novellis V, Rossi F, Maione S (2004) Metabotropic glutamate receptor 5 and dorsal raphe serotonin release in inflammatory pain in rat. Eur J Pharmacol 492:169–176PubMedCrossRefGoogle Scholar
  31. Pan ZZ, Wessendorf MW, Williams JT (1993) Modulation by serotonin of the neurons in rat nucleus raphe magnus in vitro. Neuroscience 54:421–429PubMedCrossRefGoogle Scholar
  32. Raffa RB, Friderichs E, Reimann W, Shank RP, Codd EE, Vaught JL (1992) Opioid and nonopioid components independently contribute to the mechanism of action of tramadol, an ‘atypical’ opioid analgesic. J Pharmacol Exp Ther 260:275–285PubMedGoogle Scholar
  33. Raffa RB, Friderichs E, Reimann W, Shank RP, Codd EE, Vaught JL, Jacoby HI, Selve N (1993) Complementary and synergistic antinociceptive interaction between the enantiomers of tramadol. J Pharmacol Exp Ther 267:331–340PubMedGoogle Scholar
  34. Roca-Vinardell A, Ortega-Alvaro A, Gibert-Rahola J, Mico JA (2003) The role of 5-HT1A/B autoreceptors in the antinociceptive effect of systemic administration of acetaminophen. Anesthesiology 98:741–747PubMedCrossRefGoogle Scholar
  35. Rojas-Corrales MO, Berrocoso E, Gibert-Rahola J, Mico JA (2002) Antidepressant-like effects of tramadol and other central analgesics with activity on monoamines reuptake, in helpless rats. Life Sci 72:143–152PubMedCrossRefGoogle Scholar
  36. Rojas-Corrales MO, Berrocoso E, Gibert-Rahola J, Mico JA (2004) Antidepressant-like effect of tramadol and its enantiomers in reserpinized mice: comparative study with desipramine, fluvoxamine, venlafaxine and opiates. J Psychopharmacol 18:404–411PubMedCrossRefGoogle Scholar
  37. Rojas-Corrales MO, Berrocoso E, Mico JA (2005) Role of 5-HT1A and 5-HT1B receptors in the antinociceptive effect of tramadol. Eur J Pharmacol 511:21–26PubMedCrossRefGoogle Scholar
  38. Rojas-Corrales MO, Gibert-Rahola J, Mico JA (1998) Tramadol induces antidepressant-type effects in mice. Life Sci 63:L175–L180CrossRefGoogle Scholar
  39. Rojas-Corrales MO, Ortega-Alvaro A, Gibert-Rahola J, Roca-Vinardell A, Mico JA (2000) Pindolol, a beta-adrenoceptor blocker/5-hydroxytryptamine(1A/1B) antagonist, enhances the analgesic effect of tramadol. Pain 88:119–124PubMedCrossRefGoogle Scholar
  40. Romero L, Artigas F (1997) Preferential potentiation of the effects of serotonin uptake inhibitors by 5-HT1A receptor antagonists in the dorsal raphe pathway: role of somatodendritic autoreceptors. J Neurochem 68:2593–2603PubMedCrossRefGoogle Scholar
  41. Sindrup SH, Andersen G, Madsen C, Smith T, Brosen K, Jensen TS (1999) Tramadol relieves pain and allodynia in polyneuropathy: a randomised, double-blind, controlled trial. Pain 83:85–90PubMedCrossRefGoogle Scholar
  42. Sounvoravong S, Nakashima MN, Wada M, Nakashima K (2004) Decrease in serotonin concentration in raphe magnus nucleus and attenuation of morphine analgesia in two mice models of neuropathic pain. Eur J Pharmacol 484:217–223PubMedCrossRefGoogle Scholar
  43. Sprouse JS, Aghajanian GK (1987) Electrophysiological responses of serotoninergic dorsal raphe neurons to 5-HT1A and 5-HT1B agonists. Synapse 1:3–9PubMedCrossRefGoogle Scholar
  44. Stamford JA, Davidson C, McLaughlin DP, Hopwood SE (2000) Control of dorsal raphe 5-HT function by multiple 5-HT(1) autoreceptors: parallel purposes or pointless plurality? Trends Neurosci 23:459–465PubMedCrossRefGoogle Scholar
  45. Sun RQ, Wang HC, Wan Y, Jing Z, Luo F, Han JS, Wang Y (2004) Suppression of neuropathic pain by peripheral electrical stimulation in rats: mu-opioid receptor and NMDA receptor implicated. Exp Neurol 187:23–29PubMedCrossRefGoogle Scholar
  46. Tsai YC, Sung YH, Chang PJ, Kang FC, Chu KS (2000) Tramadol relieves thermal hyperalgesia in rats with chronic constriction injury of the sciatic nerve. Fundam Clin Pharmacol 14:335–340PubMedCrossRefGoogle Scholar
  47. Wei H, Pertovaara A (2006) 5-HT(1A) receptors in endogenous regulation of neuropathic hypersensitivity in the rat. Eur J Pharmacol 535:157–165PubMedCrossRefGoogle Scholar
  48. Zemlan FP, Kow LM, Pfaff DW (1983) Spinal serotonin (5-HT) receptor subtypes and nociception. J Pharmacol Exp Ther 226:477–485PubMedGoogle Scholar
  49. Zhang B, Goldberger ME, Murray M (1993) Proliferation of SP- and 5HT-containing terminals in lamina II of rat spinal cord following dorsal rhizotomy: quantitative EM-immunocytochemical studies. Exp Neurol 123:51–63PubMedCrossRefGoogle Scholar
  50. Zhang Y, Yang Z, Gao X, Wu G (2001) The role of 5-hydroxytryptamine1A and 5-hydroxytryptamine1B receptors in modulating spinal nociceptive transmission in normal and carrageenan-injected rats. Pain 92:201–211PubMedCrossRefGoogle Scholar
  51. Zhang YQ, Gao X, Huang YL, Wu GC (2000) Expression of 5-HT1A receptor mRNA in rat dorsal raphe nucleus and ventrolateral periaqueductal gray neurons after peripheral inflammation. Neuroreport 11:3361–3365PubMedCrossRefGoogle Scholar
  52. Zhang YQ, Gao X, Ji GC, Huang YL, Wu GC, Zhao ZQ (2002) Expression of 5-HT1A receptor mRNA in rat lumbar spinal dorsal horn neurons after peripheral inflammation. Pain 98:287–295PubMedCrossRefGoogle Scholar
  53. Zimmermann M (2001) Pathobiology of neuropathic pain. Eur J Pharmacol 429:23–37PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Esther Berrocoso
    • 1
  • M. Dolores De Benito
    • 1
  • Juan A. Mico
    • 1
  1. 1.Pharmacology and Neuroscience Research Group, Department of Neuroscience (Pharmacology and Psychiatry), School of MedicineUniversity of CádizCadizSpain

Personalised recommendations