Psychopharmacology

, Volume 191, Issue 4, pp 995–1004

A pharmaco-EEG study on antipsychotic drugs in healthy volunteers

  • Masafumi Yoshimura
  • Thomas Koenig
  • Satoshi Irisawa
  • Toshiaki Isotani
  • Keizo Yamada
  • Mitsuru Kikuchi
  • Gaku Okugawa
  • Takami Yagyu
  • Toshihiko Kinoshita
  • Werner Strik
  • Thomas Dierks
Original Investigation

Abstract

Rationale

Both psychotropic drugs and mental disorders have typical signatures in quantitative electroencephalography (EEG). Previous studies found that some psychotropic drugs had EEG effects opposite to the EEG effects of the mental disorders treated with these drugs (key–lock principle).

Objectives

We performed a placebo-controlled pharmaco-EEG study on two conventional antipsychotics (chlorpromazine and haloperidol) and four atypical antipsychotics (olanzapine, perospirone, quetiapine, and risperidone) in healthy volunteers. We investigated differences between conventional and atypical drug effects and whether the drug effects were compatible with the key–lock principle.

Methods

Fourteen subjects underwent seven EEG recording sessions, one for each drug (dosage equivalent of 1 mg haloperidol). In a time-domain analysis, we quantified the EEG by identifying clusters of transiently stable EEG topographies (microstates). Frequency-domain analysis used absolute power across electrodes and the location of the center of gravity (centroid) of the spatial distribution of power in different frequency bands.

Results

Perospirone increased duration of a microstate class typically shortened in schizophrenics. Haloperidol increased mean microstate duration of all classes, increased alpha 1 and beta 1 power, and tended to shift the beta 1 centroid posterior. Quetiapine decreased alpha 1 power and shifted the centroid anterior in both alpha bands. Olanzapine shifted the centroid anterior in alpha 2 and beta 1.

Conclusions

The increased microstate duration under perospirone and haloperidol was opposite to effects previously reported in schizophrenic patients, suggesting a key–lock mechanism. The opposite centroid changes induced by olanzapine and quetiapine compared to haloperidol might characterize the difference between conventional and atypical antipsychotics.

Keywords

Pharmaco-EEG Microstates Schizophrenia Key–lock principle Chlorpromazine Haloperidol Olanzapine Perospirone Quetiapine Risperidone 

References

  1. Borbely AA, Achermann P (1999) Sleep homeostasis and models of sleep regulation. J Biol Rhythms 14:557–568PubMedCrossRefGoogle Scholar
  2. de Paulis T (2002) Perospirone (Sumitomo Pharmaceuticals). Curr Opin Investig Drugs 3:121–129PubMedGoogle Scholar
  3. Dierks T, Strik WK, Maurer K (1995) Electrical brain activity in schizophrenia described by equivalent dipoles of FFT-data. Schizophr Res 14:145–154PubMedCrossRefGoogle Scholar
  4. Farde L, Nordstroem AL, Wiesel FA, Pauli S, Halldin C, Sedvall G (1992) Positron emission tomographic analysis of central D1- and D2- dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine: relation to extrapyramidal side effects. Arch Gen Psychiatry 49:538–544PubMedGoogle Scholar
  5. Fink M (1968) EEG classification of psychoactive compounds in man: review and therapy of behavioral associations. In: Efron DH, Cole JO (eds) Psychopharmacology: a review of progress 1957–1967. US Government Printing Office, Washington, pp 497–507Google Scholar
  6. Galderisi S, Mucci A, Bucci P, Mignone ML, Maj M (1996) Multilead quantitative EEG profile of clozapine in resting and vigilance-controlled conditions. Psychiatry Res 67:113–122PubMedCrossRefGoogle Scholar
  7. Hubl D, Kleinlogel H, Froelich L, Weinandi T, Maurer K, Holstein W, Czekalla J, Dierks T (2001) Multilead quantitative electroencephalogram profile and cognitive evoked potentials (P300) in healthy subjects after a single dose of olanzapine. Psychopharmacology 158:281–288PubMedCrossRefGoogle Scholar
  8. Hughes JR, John ER (1999) Conventional and quantitative electroencephalography in psychiatry. J Neuropsychiatry Clin Neurosci 11:190–208PubMedGoogle Scholar
  9. Isotani T, Tanaka H, Lehmann D, Pascual-Marqui RD, Kochi K, Saito N, Yagyu T, Kinoshita T, Sasada K (2001) Source localization of EEG activity during hypnotically induced anxiety and relaxation. Int J Psychophysiol 41:143–153PubMedCrossRefGoogle Scholar
  10. Itil TM (1961) Electroencephalographische Befunde zur Klassifikation neuro- und thymoleptischer Medikamente. Med Exp 5:347–363Google Scholar
  11. Itil TM, Saletu B, Davis S (1972) EEG findings in chronic schizophrenics based on digital computer period analysis and analog power spectra. Biol Psychiatry 5:1–13PubMedGoogle Scholar
  12. John ER, Ahn H, Prichep LS, Trepetin M, Brown D, Kaye H (1980) Developmental equations for the electroencephalogram. Science 210:1255–1258PubMedCrossRefGoogle Scholar
  13. Kasper S, Tauscher J, Willeit M, Stamenkovic M, Neumeister A, Kuefferle B, Barnas C, Stastny J, Praschak-Rieder N, Pezawas L, de Zwaan M, Quiner S, Pirker W, Asenbaum S, Podreka I, Bruecke T (2002) Receptor and transporter imaging studies in schizophrenia, depression, bulimia and Tourette’s disorder: implications for psychopharmacology. World J Biol Psychiatry 3:133–146PubMedCrossRefGoogle Scholar
  14. Kato T, Hirose A, Ohno Y, Shimuzu H, Tanaka H, Nakamura M (1990) Binding profile of SM-9018, a novel antipsychotic candidate. Jpn J Pharmacol 54:478–481PubMedCrossRefGoogle Scholar
  15. Koenig T, Lehmann D, Merlo MCG, Kochi K, Hell D, Koukkou M (1999) A deviant EEG brain microstate in acute, neuroleptic-naïve schizophrenics at rest. Eur Arch Psychiatry Clin Neurosci 249:205–211PubMedCrossRefGoogle Scholar
  16. Koenig T, Prichep L, Lehmann D, Sosa PV, Braeker E, Kleinlogel H, Isenhart R, John ER (2002) Millisecond and millisecond, year by year: normative EEG microstates and developmental stages. NeuroImage 16:41–48PubMedCrossRefGoogle Scholar
  17. Kubicki S, Herrmann WM, Fichte K, Freund G (1979) Reflections on the topics: EEG frequency bands and regulation of vigilance. Pharmakopsychiatr Neuropsychopharmakol 12:237–245PubMedGoogle Scholar
  18. Lehmann D, Michel CM (1989) Intracerebral dipole sources of EEG FFT power maps. Brain Topogr Fall–Winter 2:155–164 (erratum in: Brain Topogr 1990 Summer 2:311)CrossRefGoogle Scholar
  19. Lehmann D and Skrandies W (1980) Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electroencephalogr Clin Neurophysiol 48:609–621PubMedCrossRefGoogle Scholar
  20. Lehmann D, Ozaki H, Pal I (1987) EEG alpha map series: brain micro-states by space-oriented adaptive segmentation. Electroencephalogr Clin Neurophysiol 67:271–288PubMedCrossRefGoogle Scholar
  21. Lehmann D, Faber PL, Galderisi S, Hermann WM, Kinoshita T, Koukkou M, Mucci A, Pascual-Marqui RD, Saito N, Wackermann J, Winterer G, Koenig T (2005) EEG microstate duration and syntax in acute, medication-naïve, first-episode schizophrenia: a multi-center study. Psychiatry Res 138:141–156PubMedCrossRefGoogle Scholar
  22. Manly BFJ (1991) Randomization and Monte Carlo methods in biology. Chapman and Hall, LondonGoogle Scholar
  23. Mucci A, Volpe U, Merlotti E, Bucci P, Galderisi S (2006) Pharmaco-EEG in psychiatry. Clin EEG Neurosci 37:81–98PubMedGoogle Scholar
  24. Mueller TJ, Koenig T, Wackermann J, Kalus P, Fallgatter A, Strik WK, Lehmann D (2005) Subsecond changes of global brain state in illusory multistable motion perception. J Neural Transm 112:565–576CrossRefGoogle Scholar
  25. Ozaki H, Lehmann D (2000) EEG reconsidered: from neuroelectric signals to human conscious experience. Jpn J Clin Neurophysiol 28:15–17Google Scholar
  26. Pascual-Marqui RD, Michel CM, Lehmann D (1994) Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol 18:49–65PubMedCrossRefGoogle Scholar
  27. Pascual-Marqui RD, Michel CM, Lehmann D (1995) Segmentation of brain electrical activity into microstates: model estimation and validation. IEEE Trans Biomed Eng 42:658–665PubMedCrossRefGoogle Scholar
  28. Pascual-Marqui RD, Lehmann D, Koenig T (1999) Low resolution brain electromagnetic tomography (LORETA) functional imaging in acute, neuroleptic-naive, first-episode, productive schizophrenia. Psychiatry Res 30:169–179Google Scholar
  29. Saito M, Kagono Y, Suitsu N, Yamamoto Y, Kinoshita T, Ohya D, Fukui Y, Hashimoto C (1983) A study on anti-psychotic drugs by the aid of quantitative EEG and multivariate analysis–doses and action trait of haloperidol. Jpn J Neuropsychopharmacol 5:843–856Google Scholar
  30. Saito N, Okajima Y, Isotani T, Yagyu T, Nobuhara K, Nishimura T, Fukushima M, Kuginuki T, Kinoshita T, Saito M (1993) Early prediction and orientation of the clinical effects of a new antipsychotic compound, risperidone, in human: a quantitative pharmaco-EEG study. Jpn J Neuropsychopharmacol 15:693–703Google Scholar
  31. Saito A, Kuginuki T, Fukushima M, Saito M (1998) Pharmaco-EEG study of perospirone, a D2 and 5-HT2 antagonist, in healthy male volunteers. Jpn J EEG EMG 26:205–215Google Scholar
  32. Saletu B (1980) Central measures in schizophrenia. In: Van Praag HM, Lader MH, Rafaelsen OJ, Sachar EJ (eds) Handbook of biological psychiatry part II. Brain mechanisms and abnormal behavior—psychophysiology. Marcel Dekker, New York, pp 97–144Google Scholar
  33. Saletu B (1987) The use of pharmaco-EEG in drug profiling. In: Hindmarch I, Stonier PD (eds) Human psychopharmacology: measures and methods, vol 1. Wiley, Chichester, pp 172–200Google Scholar
  34. Saletu B, Kuefferle B, Gruenberger J, Anderer P (1986) Quantitative EEG, SPEM, and psychometric studies in schizophrenics before and during differential neuroleptic therapy. Pharmacopsychiatry 19:434–437PubMedCrossRefGoogle Scholar
  35. Saletu B, Anderer P, Kinsperger K, Gruenberger J (1987) Topographic brain mapping of EEG in neuropsychopharmacology: part II. Clinical applications (pharmaco EEG imaging). Methods Find Exp Clin Pharmacol 9:385–408PubMedGoogle Scholar
  36. Saletu B, Anderer P, Saletu-Zyhlarz GM, Pascual-Marqui RD (2002) EEG topography and tomography in diagnosis and treatment of mental disorders: evidence for a key–lock principle. Methods Find Exp Clin Pharmacol 24(Suppl D):97–106Google Scholar
  37. Saletu-Zyhlarz GM, Anderer P, Berger P, Gruber G, Oberndorfer S, Saletu B (2000) Nonorganic insomnia in panic disorder: comparative sleep laboratory studies with normal controls and placebo-controlled trials with alprazolam. Hum Psychopharmacol 15:241–254PubMedCrossRefGoogle Scholar
  38. Shiwa T, Amano T, Matsubayashi H, Seki T, Sasa M, Sakai N (2003) Perospirone, a novel antipsychotic agent, hyperpolarizes rat dorsal raphe neurons via 5-HT1A receptor. J Pharmacol Sci 93:114–117PubMedCrossRefGoogle Scholar
  39. Stahl SM (2000) Antypsychotic agents. In: Essential psychopharmacology: neuroscientific basis and practical applications, 2nd edn. Cambridge University Press, Cambridge, pp 401–458Google Scholar
  40. Strelets V, Faber PL, Golikova J, Novototsky-Vlasov V, Koenig T, Gianotti LRR, Gruzelier JH, Lehmann D (2003) Chronic schizophrenics with positive symptomatology have shortened EEG microstate durations. Clin Neurophysiol 114:2043–2051PubMedCrossRefGoogle Scholar
  41. Strik WK, Lehmann D (1993) Data-determined window size and space-oriented segmentation of spontaneous EEG map series. Electroencephalogr Clin Neurophysiol 87:169–174PubMedCrossRefGoogle Scholar
  42. Strik WK, Fallgatter AJ, Brandeis D, Pascual-Marqui RD (1998) Three-dimensional tomography of event-related potentials during response inhibition: evidence for phasic frontal lobe activation. Electroencephalogr Clin Neurophysiol 108:406–413PubMedCrossRefGoogle Scholar
  43. Wackermann J, Lehmann D, Michel CM, Strik WK (1993) Adaptive segmentation of spontaneous EEG map series into spatially defined microstates. Int J Psychophysiol 14:269–283PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Masafumi Yoshimura
    • 1
    • 2
  • Thomas Koenig
    • 1
  • Satoshi Irisawa
    • 2
  • Toshiaki Isotani
    • 2
    • 3
  • Keizo Yamada
    • 2
  • Mitsuru Kikuchi
    • 1
    • 4
  • Gaku Okugawa
    • 2
  • Takami Yagyu
    • 2
    • 5
  • Toshihiko Kinoshita
    • 2
  • Werner Strik
    • 1
  • Thomas Dierks
    • 1
  1. 1.Department of Psychiatric NeurophysiologyUniversity Hospital of PsychiatryBernSwitzerland
  2. 2.Department of NeuropsychiatryKansai Medical UniversityOsakaJapan
  3. 3.Department of PsychiatryKansai Memorial HospitalOsakaJapan
  4. 4.Department of Psychiatry and Neurobiology, Graduate School of Medical ScienceKanazawa UniversityKanazawaJapan
  5. 5.Department of PsychiatryNeyagawa SanatoriumOsakaJapan

Personalised recommendations