Psychopharmacology

, Volume 190, Issue 4, pp 507–516 | Cite as

Effects of olanzapine, risperidone and haloperidol on sleep after a single oral morning dose in healthy volunteers

  • Sandra Giménez
  • Susana Clos
  • Sergio Romero
  • Eva Grasa
  • Adelaida Morte
  • Manuel J. Barbanoj
Original Investigation

Abstract

Objectives

To compare the effects of typical and atypical antipsychotic drugs on sleep activity and subjective sleep quality.

Design

Randomised, double-blind, placebo-controlled, four-period cross-over, clinical trial was used to evaluate the effects of active treatments on objective and subjective sleep variables.

Setting

Sleep laboratory evaluation.

Participants

Twenty healthy young volunteers, both sexes.

Interventions

Single oral morning administrations of olanzapine 5 mg, risperidone 1 mg, haloperidol 3 mg and placebo.

Measurements and results

Five polysomnographic nights were evaluated: one control night and one after each intervention. Significant increase in total sleep time, sleep efficiency, slow wave sleep (SWS) and rapid eye movement (REM) sleep with decreases in wake time were observed after olanzapine. Decreases in wake time, REM sleep and stage shifts together with increases in stage 2 were obtained after risperidone. Haloperidol showed only a tendency to increase sleep efficiency and stage 2 and to decrease wake time. Olanzapine showed decreases in power density in frequencies higher than 10 Hz during all sleep stages and in frequencies lower than 5 Hz range in SWS; decreases in the dynamics of spindle frequency activity (SFA) in the second and fourth non-rapid eye movement (NREM) episodes were also obtained. Risperidone presented increases in the 3.6–10.8 Hz frequency range in NREM sleep stages and in stage 2. Haloperidol also showed increases in NREM sleep stages and in stage 2, but these were in frequencies higher than 10 Hz, with increases in the dynamics of SFA in the first NREM episode. Only a significant improvement in subjective sleep quality was observed after olanzapine.

Conclusions

Antipsychotics showed different sleep changes as their neurochemical profiles were distinct. These changes were observed even when the drug was administered 15 h before going to bed.

Keywords

Antipsychotics Polysomnography Spectral analysis Subjective evaluations Healthy volunteers Single morning oral intake 

References

  1. Aeschbach D, Borbély AA (1993) All night dynamics of the human sleep EEG. J Sleep Res 2:70–81PubMedGoogle Scholar
  2. Åkerstedt T, Hume K, Minors D, Waterhouse J (1994a) The meaning of good sleep: a longitudinal study of polysomnography and subjective sleep quality. J Sleep Res 3:152–158PubMedCrossRefGoogle Scholar
  3. Åkerstedt T, Hume K, Minors D, Waterhouse J (1994b) The subjective meaning of good sleep—an intraindividual approach using the Karolinska Sleep Diary. Percept Mot Skills 79:287–296PubMedGoogle Scholar
  4. Åkerstedt T, Hume K, Minors D, Waterhouse J (1997) Good sleep—its timing and physiological characteristics. J Sleep Res 6:221–229PubMedCrossRefGoogle Scholar
  5. Barbanoj MJ, Grasa E, Morte A, Romero S, Clos S, Giménez S, Benito Ll, Yritia M, Pérez V, Anderer P (2004) Topographic EEG changes after single oral doses of atypical neuroleptics with different pharmacological profile in healthy young subjects (abstract). 13th meeting of the IPEG (International Pharmaco–EEG Society), Amberes, Belgium (8–12 September)Google Scholar
  6. Borbély AA, Mattmann P, Loepfe M, Strauch I, Lehmann D (1983) Effect of benzodiazepine hypnotics on all-night sleep EEG spectra. Hum Neurobiol 4:189–194Google Scholar
  7. Bobérly AA, Trachsel L, Tobler I (1988) Effect of ritanserin on sleep stages and sleep EEG in the rat. Eur J Pharmacol 156:275–278CrossRefGoogle Scholar
  8. Dijk DJ, Beersma DGM, Daan S, Van den Hoofdakker RH (1989) Effects of seganserin, a 5HT2 antagonist, and temazepam on human sleep stages and EEG power spectra. Eur J Pharmacol 171:207–218PubMedCrossRefGoogle Scholar
  9. Dugovic C, Wauquier A, Janssen PAJ (1989) Differential effects of the new antipsychotic risperidone on sleep and wakefulness in the rat. Neuropharmacology 28:1431–1433PubMedCrossRefGoogle Scholar
  10. Feinberg I, Floyd TC (1979) Systematic trends across the night in human sleep cycles. Psychophysiology 16:282–291CrossRefGoogle Scholar
  11. Itil TM, Gannon P, Hsu W, Klingenberg H (1970) Digital computer analyzed sleep and resting EEG during haloperidol treatment. Am J Psychiatry 127:462–471PubMedGoogle Scholar
  12. Janssen P, Niemeggeers CJ, Awouters F, Schellekens KH, Megens AA, Meert TF (1988) Pharmacology of risperidone (R64766), a new antipsychotic with serotonin-S2 and dopamine-D2 antagonistic properties. J Pharmacol Exp Ther 244:685–693PubMedGoogle Scholar
  13. Lee DY, Lee KU, Kwon JS, Jang IJ, Cho MJ, Shin SG, Woo JI (1999) Pharmacokinetic–pharmacodynamic modeling of risperidone effects on electroencephalography in healthy volunteers. Psychopharmacology 144:272–278PubMedCrossRefGoogle Scholar
  14. Lindberg N, Virkkunen M, Tani P, Appelberg B, Virkkala J, Rimón R, Porkka-Heiskanen T (2002) Effect of a single-dose of olanzapine on sleep in healthy females and males. Int Clin Psychopharmacol 17:177–184PubMedCrossRefGoogle Scholar
  15. Maixner S, Tandon R, Eiser A, Taylor S, DeQuardo JR, Shipley J (1998) Effects of antipsychotic treatment on polysomnographic measures in schizophrenia: a replication and extension. Am J Psychiatry 155:1600–1602PubMedGoogle Scholar
  16. Miyamoto S, Duncan GE, Goff DC, Lieberman JA (2002) Therapeutics of schizophrenia. In: Davis KL, Charney D, Coyle JT, Nemeroff C (eds) American College of Neuropsychopharmacology: the fifth generation of progress. Lippincott, Williams and Wilkins, Philadelphia, PA, pp 775–807Google Scholar
  17. Nicholson AN, Pascoe PA (1991) Presynaptic alpha 2-adrenoceptor function and sleep in man: studies with clonidine and idazoxan. Neuropharmacology 30:367–372PubMedCrossRefGoogle Scholar
  18. Pace-Schott EF, Hobson JA (2002) Basic mechanisms of sleep: new evidence on the neuroanatomy and neuromodulation of the NREM–REM cycle. In: Davis KL, Charney D, Coyle JT, Nemeroff C (eds) American College of Neuropsychopharmacology: the fifth generation of progress. Lippincott, Williams and Wilkins, Philadelphia, PA, pp 1859–1877Google Scholar
  19. Rechtschaffen A, Kales A (1968) A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. U.S. Government Printing Office, Washington, DCGoogle Scholar
  20. Saletu B, Wessely P, Grünberger J, Schultes M (1987a). Erste klinische Erfahrungen mit einem neuen schlafanstossenden Benzodiacepin Cinolazepam mittels eines Selbstbeurteilungsbogens für Schalf—und Aufwachqualität (SSA). Neuropsychiatrie 1:169–176Google Scholar
  21. Saletu B, Anderer P, Kinsperger K, Grünberger J (1987b). Topographic brain mapping of EEG in neuropsychopharmacology—Part II. Clinical applications (pharmaco-EEG imaging). Methods Find Exp Clin Pharmacol 9:385–408PubMedGoogle Scholar
  22. Salin-Pascual RJ, Herrera-Estrella M, Galicia-Polo L, Rosas-Laurrabaquio M (1999) Olanzapine acute administration in schizophrenic patients increases delta sleep and sleep efficiency. Biol Psychiatry 46:141–143PubMedCrossRefGoogle Scholar
  23. Salin-Pascual RJ, Herrera-Estrella M, Galicia-Polo L, Rosas M, Brunner E (2004) Low delta sleep predicted a good clinical response to olanzapine administration in schizophrenic patients. Rev Invest Clin 56:345–350PubMedGoogle Scholar
  24. Schlösser R, Röschker J, Rossbach W, Benkert O (1998) Conventional and spectral power analysis of all-night sleep EEG after subchronic treatment with paroxetine in healthy male volunteers. Eur Neuropsychopharmacol 8:273–278PubMedCrossRefGoogle Scholar
  25. Sharpley AL, Elliott JM, Attenburrow MJ, Cowen PJ (1994) Slow wave sleep in humans: Role of 5-HTA and 5HT2C receptors. Neuropharmacology 33:467–471PubMedCrossRefGoogle Scholar
  26. Sharpley AL, Vassallo CM, Cowen PJ (2000) Olanzapine increases slow-wave sleep: evidence for blockade of central 5-HT2c receptors in vivo. Biol Psychiatry 47:468–470PubMedCrossRefGoogle Scholar
  27. Sharpley AL, Bhagwagar Z, Hafizi S, Whale WR, Gijsman HJ, Cowen PJ (2003) Risperidone augmentation decreases rapid eye movement sleep and decreases wake in treatment-resistant depressed patients. J Clin Psychiatry 64:192–196PubMedCrossRefGoogle Scholar
  28. Stephan FT, Tandon R, Shipley JE, Eiser AS (1991) Effect of neuroleptic treatment on polysomnographic measures in schizophrenia. Biol Psychiatry 30:904–912CrossRefGoogle Scholar
  29. Tandon R (1998) Antipsychotic agents. In: Klein DF, Rowland LP (eds) Current psychotherapeutic drugs. Brunner/Mazel Publishers, New York, pp 120–154Google Scholar
  30. Viola AU, Brandenberger G, Toussaint M, Bouhours P, Macher JP, Luthringer R (2002) Ritanserin, a serotonin-2 receptor antagonist, improves ultradian sleep rhythmicity in young poor sleepers. Clin Neurophysiol 113:429–434PubMedCrossRefGoogle Scholar
  31. Warrington SJ (1997) Ethical aspects of research in healthy volunteers. In: O’Grady J, Joubert PH (eds) Handbook of phase I/II clinical drug trials. CRS Press, Boca Raton, pp 103–110Google Scholar
  32. Worrel JA, Marken PA, Beckman SE, Ruether VL (2000) Atypical antipsychotic agents: a critical review. Am J Health—Syst Pharm 57:238–255PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Sandra Giménez
    • 1
    • 3
  • Susana Clos
    • 1
  • Sergio Romero
    • 1
    • 4
  • Eva Grasa
    • 1
  • Adelaida Morte
    • 1
  • Manuel J. Barbanoj
    • 1
    • 2
    • 3
  1. 1.Centre d’Investigació del MedicamentInstitut de Recerca de l’Hospital de la Santa Creu i Sant PauBarcelonaSpain
  2. 2.Servei de Farmacologia ClínicaHospital de la Santa Creu i Sant PauBarcelonaSpain
  3. 3.Departament de Farmacologia i TerapèuticaUABBarcelonaSpain
  4. 4.Centre de Recerca en Enginyeria Biomèdica, Departament ESAIIUPCBarcelonaSpain

Personalised recommendations