, Volume 191, Issue 3, pp 579–586 | Cite as

Adenosine A2A receptor antagonism reverses the effects of dopamine receptor antagonism on instrumental output and effort-related choice in the rat: implications for studies of psychomotor slowing

  • Andrew M. Farrar
  • Mariana Pereira
  • Francisco Velasco
  • Jörg Hockemeyer
  • Christa E. Müller
  • John D. Salamone
Original Investigation



Organisms frequently make effort-related decisions based upon assessments of motivational value and response costs. Energy-related dysfunctions such as psychomotor slowing and apathy are critically involved in some clinical syndromes. Dopamine (DA), particularly in the nucleus accumbens, regulates effort-related processes. Dopamine antagonism and accumbens dopamine depletions cause rats performing on choice tasks to reallocate their behavior away from food-reinforced tasks that have high response requirements.


There is evidence of a functional interaction between DA and adenosine A2A receptors in the neostriatum and nucleus accumbens. The present experiments were conducted to determine if adenosine A2A receptor antagonism could reverse the effects of dopamine receptor antagonism on instrumental behavior and effort-related choice.

Materials and methods

The adenosine A2A receptor antagonist MSX-3 was investigated for its ability to reverse the effects of the dopamine receptor antagonist haloperidol (0.1 mg/kg) on fixed ratio 5 instrumental lever-pressing and on response allocation using a concurrent lever-pressing/chow-feeding choice task.


Haloperidol significantly suppressed fixed ratio 5 responding, and with rats responding on the concurrent choice task, it altered choice behavior, significantly reducing lever-pressing for food and increasing chow intake. Injections of MSX-3 (0.5–2.0 mg/kg) produced a dose-related attenuation of the effects of 0.1 mg/kg haloperidol on both tasks. The high dose of MSX-3, when administered in the absence of haloperidol, did not significantly affect responding on either task.


Adenosine and dopamine systems interact to regulate instrumental behavior and effort-related processes, which may have implications for the treatment of psychiatric symptoms such as psychomotor slowing or anergia.


Anergia Motivation Basal ganglia Decision-making Fatigue Depression 



This research was supported by a grant to JDS from the United States NIH/NINDS. Many thanks to Keita Ishiwari for his technical assistance.


  1. Aberman JE, Salamone JD (1999) Nucleus accumbens dopamine depletions make rats more sensitive to high ratio requirements but do not affect primary food reinforcement. Neuroscience 92:545–552PubMedCrossRefGoogle Scholar
  2. Aparicio C (2003a) Efectos del haloperidol en un medio ambiente de reforzamiento variable. Rev Mex Anal Conducta 29:169–190Google Scholar
  3. Aparicio C (2003b) El haloperidol afecta la elección y cambia la preferencia: el Paradigma de Elección con Barrera. Rev Mex Anal Conducta 29:33–63Google Scholar
  4. Barbano MF, Cador M (2006) Differential regulation of the consummatory, motivational and anticipatory aspects of feeding behavior by dopaminergic and opioidergic drugs. Neuropsychopharmacology 31(7):1371–1381PubMedCrossRefGoogle Scholar
  5. Barraco RA, Martens KA, Parizon M, Normile HJ (1993) Adenosine A2a receptors in the nucleus accumbens mediate locomotor depression. Brain Res Bull 31:397–404PubMedCrossRefGoogle Scholar
  6. Baum WM, Rachlin HC (1969) Choice as time allocation. J Exp Anal Behav 12:861–874PubMedCrossRefGoogle Scholar
  7. Brown AS, Gershon S (1993) Dopamine and depression. J Neural Transm 91:75–109CrossRefGoogle Scholar
  8. Caligiuri MP, Elwanger J (2000) Motor and cognitive aspects of motor retardation in depression. J Affect Disord 57:83–93PubMedCrossRefGoogle Scholar
  9. Campbell JJ, Duffy JD (1997) Treatment strategies in amotivated patients. Psychiatr Ann 27:44–49Google Scholar
  10. Chen JF, Moratalla R, Impagnatiello F, Grandy DK, Cuellar B, Rubinstein M, Beilstein MA, Hacket E, Fink JS, Low MJ, Ongini E, Schwarzschild MA (2001) The role of the D2 dopamine receptor (D2R) in A2a adenenosine-receptor (A2aR) mediated behavioral and cellular responses as revealed by A2a and D2 receptor knockout mice. Proc Natl Acad Sci U S A 98:1970–1975PubMedCrossRefGoogle Scholar
  11. Collier GH, Jennings W (1969) Work as a determinant of instrumental performance. J Comp Physiol Psychol 68:659–662CrossRefGoogle Scholar
  12. Correa M, Wisniecki A, Betz A, Dobson DR, O’Neill MF, O’Neill MJ, Salamone JD (2004) The adenosine A2A antagonist KF 17837 reverses the locomotor suppression and tremulous jaw movements induced by haloperidol in rats: possible relevance to parkinsonism. Behav Brain Res 148:47–54PubMedCrossRefGoogle Scholar
  13. Cousins MS, Sokolowski JD, Salamone JD (1993) Different effects of nucleus accumbens and ventrolateral striatal dopamine depletions on instrumental response selection in the rat. Pharmacol Biochem Behav 46:943–951PubMedCrossRefGoogle Scholar
  14. Cousins MS, Wei W, Salamone JD (1994) Pharmacological characterization of performance on a concurrent lever-pressing/feeding choice procedure: effects of dopamine antagonist, cholinomimetic, sedative and stimulant drugs. Psychopharmacology (Berl) 116:529–537CrossRefGoogle Scholar
  15. Cousins MS, Atherton A, Turner L, Salamone JD (1996) Nucleus accumbens dopamine depletions alter relative response allocation in a T-maze cost/benefit task. Behav Brain Res 74:189–197PubMedCrossRefGoogle Scholar
  16. Cousins MS, Trevitt J, Atherton A, Salamone JD (1999) Different behavioral functions of dopamine in the nucleus accumbens and ventrolateral striatum: a microdialysis and behavioral investigation. Neuroscience 91:925–934PubMedCrossRefGoogle Scholar
  17. Denk F, Walton ME, Jennings KA, Sharp T, Rushworth MF, Bannerman DM (2005) Differential involvement of serotonin and dopamine systems in cost–benefit decisions about delay or effort. Psychopharmacology (Berl) 179:587–596CrossRefGoogle Scholar
  18. El Yacoubi M, Costentin J, Vaugeois JM (2003) Adenosine A2A receptors and depression. Neurology 61:S82–S87PubMedGoogle Scholar
  19. Ernst M, Paulus MP (2005) Neurobiology of decision making: a selective review from a neurocognitive and clinical perspective. Biol Psychiatry 58:597–604PubMedCrossRefGoogle Scholar
  20. Ferré S, Freidholm BB, Morelli M, Popoli P, Fuxe K (1997) Adenosine-dopamine receptor–receptor interactions as an integrative mechanism in the basal ganglia. Trends Neurosci 20:482–487PubMedCrossRefGoogle Scholar
  21. Ferré S, Popoli P, Gimenez-Llort L, Rimondini R, Müller CE, Stromberg I, Ogren O, Fuxe K (2001) Adenosine/dopamine interaction: implications for the treatment of Parkinson’s disease. Parkinson Relat Disord 7:235–241CrossRefGoogle Scholar
  22. Floresco SB, Ghods-Sharifi S (2006) Amygdala-prefrontal cortical circuitry regulates effort-based decision making. Cereb Cortex (in press)Google Scholar
  23. Hauber W, Munkle M (1997) Motor depressant effects mediated by dopamine D2 and adenosine A2A receptors in the nucleus accumbens and the caudate-putamen. Eur J Pharmacol 323:127–131PubMedCrossRefGoogle Scholar
  24. Hauber W, Neuscheler P, Nagel J, Muller CE (2001) Catalepsy induced by a blockade of dopamine D1 or D2 receptors was reversed by a concomitant blockade of adenosine A2a receptors in the caudate putamen of rats. Eur J Neurosci 14:1287–1293PubMedCrossRefGoogle Scholar
  25. Hettinger BD, Lee A, Linden J, Rosin DL (2001) Ultrastructural localization of adenosine A2A receptors suggests multiple cellular sites for modulation of GABAergic neurons in rat striatum. J Comp Neurol 431:331–346PubMedCrossRefGoogle Scholar
  26. Hockemeyer J, Burbiel JC, Muller CE (2004) Multigram-scale syntheses, stability, and photoreactions of A2A adenosine receptor antagonists with 8-styrylxanthine structure: potential drugs for Parkinson’s disease. J Org Chem 69:3308–3318PubMedCrossRefGoogle Scholar
  27. Ishiwari K, Weber S, Mingote S, Correa M, Salamone JD (2004) Accumbens dopamine and the regulation of effort in food-seeking behavior: modulation of work output by different ratio or force requirements. Behav Brain Res 151:83–91PubMedCrossRefGoogle Scholar
  28. Jenner P (2003) A2A antagonists as novel non-dopaminergic therapy for motor dysfunction in PD. Neurology 61(Suppl 6):S32–S38PubMedGoogle Scholar
  29. Jenner P (2005) Istradefylline, a novel adenosine A2A receptor antagonist, for the treatment of Parkinson’s disease. Expert Opin Investig Drugs 14:729–738PubMedCrossRefGoogle Scholar
  30. Keppel G (1991) Design and analysis: a researcher’s handbook. Prentice-Hall, Englewood Cliffs, NJGoogle Scholar
  31. Koch M, Schmid A, Schnitzler HU (2000) Role of nucleus accumbens dopamine D1 and D2 receptors in instrumental and Pavlovian paradigms of conditioned reward. Psychopharmacology (Berl) 152:67–73CrossRefGoogle Scholar
  32. Martinez-Martin P, Gil-Nagel A, Gracia LM, Gomez JB, Martinez-Sarries J, Bermejo F (1994) Unified Parkinson’s disease rating scale characteristics and structure. The Cooperative Multicentric Group. Mov Disord 9:76–83PubMedCrossRefGoogle Scholar
  33. Mingote SM, Weber SM, Ishiwari K, Correa M, Salamone JD (2005) Ratio and time requirements on operant schedules: effort-related effects of nucleus accumbens dopamine depletions. Eur J Neuroscience 21:1749–1757CrossRefGoogle Scholar
  34. Mogenson G, Jones D, Yim CY (1980) From motivation to action: Functional interface between the limbic system and the motor system. Prog Neurobiol 14:69–97PubMedCrossRefGoogle Scholar
  35. Moller JC, Oertel WH, Koster J, Pezzoli G, Provinciali L (2005) Long-term efficacy and safety of pramipexole in advanced Parkinson’s disease: results from a European multicenter trial. Mov Disord 20:602–610PubMedCrossRefGoogle Scholar
  36. Morelli M, Pinna A (2001) Interaction between dopamine and adenosine A2A receptors as a basis for the treatment of Parkinson’s disease. Neurol Sci 22:71–72PubMedCrossRefGoogle Scholar
  37. Nagel J, Shladebach H, Kock M, Schwienbacher I, Mueller CE, Hauber W (2003) Effects of an adenosine A2A receptor blockade in the nucleus accumbens on locomotion, feeding, and prepulse inhibition in rats. Synapse 49:279–286PubMedCrossRefGoogle Scholar
  38. Nowend KL, Arizzi M, Carlson BB, Salamone JD (2001) D1 or D2 antagonism in nucleus accumbens core or dorsomedial shell suppresses lever-pressing for food but leads to compensatory increases in chow consumption. Pharmacol Biochem Behav 69:373–382PubMedCrossRefGoogle Scholar
  39. O’Neill M, Brown VJ (2006) The effect of the adenosine A(2A) antagonist KW-6002 on motor and motivational processes in the rat. Psychopharmacology (Berl) 184:46–55CrossRefGoogle Scholar
  40. Pinna A, Volpini R, Cristalli G, Morelli M (2005) New adenosine A2A receptor antagonists: actions on Parkinson’s disease models. Eur J Pharmacol 512:157–164PubMedCrossRefGoogle Scholar
  41. Robert PH, Clairet S, Benoit M, Koutaich J, Bertogliati C, Tible O, Caci H, Borg M, Brocker P, Bedoucha P (2002) The apathy inventory: assessment of apathy and awareness in Alzheimer’s disease, Parkinson’s disease and mild cognitive impairment. Int J Geriatr Psychiatry 17:1099–1105PubMedCrossRefGoogle Scholar
  42. Rogers D, Lees AJ, Smith E, Trimble M, Stern GM (1987) Bradyphrenia in Parkinson’s disease and psychomotor retardation in depressive illness: an experimental study. Brain 110:761–776PubMedCrossRefGoogle Scholar
  43. Rushworth MF, Walton ME, Kennerley SW, Bannerman DM (2004) Action sets and decisions in the medial frontal cortex. Trends Cogn Sci 8:410–417PubMedCrossRefGoogle Scholar
  44. Salamone JD (1992) Complex motor and sensorimotor functions of striatal and accumbens dopamine: involvement in instrumental behavior processes. Psychopharmacology (Berl) 107:160–174CrossRefGoogle Scholar
  45. Salamone JD, Correa M (2002) Motivational views of reinforcement: implications for understanding the behavioral functions of nucleus accumbens dopamine. Behav Brain Res 137:3–25PubMedCrossRefGoogle Scholar
  46. Salamone JD, Zigmond MJ, Stricker EM (1990) Characterization of the impaired feeding behavior in rats given haloperidol or dopamine-depleting brain lesions. Neuroscience 39:17–24PubMedCrossRefGoogle Scholar
  47. Salamone JD, Steinpreis RE, McCullough LD, Smith P, Grebel D, Mahan K (1991) Haloperidol and nucleus accumbens dopamine depletion suppress lever-pressing for food but increase free food consumption in a novel food-choice procedure. Psychopharmacology (Berl) 104:515–521CrossRefGoogle Scholar
  48. Salamone JD, Kurth PA, McCullough LD, Sokolowski JD, Cousins JD (1993a) The role of brain dopamine in response initiation: effects of haloperidol and regionally specific dopamine depletions on local rate of instrumental responding. Brain Res 628:218–226PubMedCrossRefGoogle Scholar
  49. Salamone JD, Mahan K, Rogers S (1993b) Ventrolateral striatal dopamine depletions impair feeding and food handling in rats. Pharmacol Biochem Behav 44:605–610PubMedCrossRefGoogle Scholar
  50. Salamone JD, Cousins MS, Bucher S (1994) Anhedonia or anergia? Effects of haloperidol and nucleus accumbens dopamine depletion on instrumental response selection in a T-maze cost/benefit procedure. Behav Brain Res 65:221–229PubMedCrossRefGoogle Scholar
  51. Salamone JD, Arizzi M, Sandoval MD, Cervone KM, Aberman JE (2002) Dopamine antagonists alter response allocation but do not suppress appetite for food in rats: contrast between the effects of SKF 83566, raclopride and fenfluramine on a concurrent choice task. Psychopharmacology (Berl) 160:371–380CrossRefGoogle Scholar
  52. Salamone JD, Correa M, Mingote S, Weber S (2003) Accumbens dopamine and the regulation of effort in food-seeking behavior: implications for studies of natural motivation and psychiatry. J Pharmacol Exp Ther 305:1–8PubMedCrossRefGoogle Scholar
  53. Salamone JD, Correa M, Mingote SM, Weber SM (2005) Beyond the reward hypothesis: Alternative functions of nucleus accumbens dopamine. Curr Opin Pharmacol 5:34–41PubMedCrossRefGoogle Scholar
  54. Salamone JD, Correa M, Mingote SM, Weber SM, Farrar AM (2006) Nucleus accumbens dopamine and the forebrain circuitry involved in behavioral activation and effort-related decision making: implications for understanding anergia and psychomotor slowing in depression. Curr Psychiatry Rev 2:267–280CrossRefGoogle Scholar
  55. Simola N, Fenu S, Baraldi PG, Tabrizi MA, Morelli M (2004) Blockade of adenosine A2A receptors antagonizes parkinsonian tremor in the rat tacrine model by an action on specific striatal regions. Exp Neurol 189:182–188PubMedCrossRefGoogle Scholar
  56. Sokolowski JD, Salamone JD (1998) The role of accumbens dopamine in lever-pressing and response allocation: effects of 6-OHDA injected into core and dorsomedial shell. Pharmacol Biochem Behav 59:557–566PubMedCrossRefGoogle Scholar
  57. Stahl SM (2002) The psychopharmacology of energy and fatigue. J Clin Psychiatry 63:7–8PubMedGoogle Scholar
  58. Svenningsson P, Le Moine C, Fisone G, Fredholm BB (1999) Distribution, biochemistry and function of striatal adenosine A2A receptors. Prog Neurobiol 59:355–396PubMedCrossRefGoogle Scholar
  59. Trevitt JT, Lyons M, Aberman J, Carriero D, Finn M, Salamone JD (1997) Effects of clozapine, thioridazine, risperidone and haloperidol on behavioral tests related to extrapyramidal motor function. Psychopharmacology (Berl) 132:74–81CrossRefGoogle Scholar
  60. Tylee A, Gastpar M, Lepine JP, Mendlewicz J (1999) DEPRES II (Depression Research in European Society II): a patient survey of the symptoms, disability and current management of depression in the community. Int Clin Psychopharmacol 14:139–151PubMedCrossRefGoogle Scholar
  61. van den Bos R, van der Harst J, Jonkman S, Schilders M, Spruijt B (2006) Rats assess costs and benefits according to an internal standard. Behav Brain Res 171(2):350–354PubMedCrossRefGoogle Scholar
  62. Vezina P, Lorrain DS, Arnold GM, Austin JD, Suto N (2002) Sensitization of midbrain dopamine neuron reactivity promotes the pursuit of amphetamine. J Neurosci 22:4654–4662PubMedGoogle Scholar
  63. Wakabayashi KT, Fields HL, Nicola SM (2004) Dissociation of the role of nucleus accumbens dopamine in responding to reward-predictive cues and waiting for reward. Behav Brain Res 154:19–30PubMedCrossRefGoogle Scholar
  64. Walton ME, Bannerman DM, Rushworth MFS (2002) The role of medial frontal cortex in effort-related decisions. J Neurosci 22:10996–11003PubMedGoogle Scholar
  65. Walton ME, Bannerman DM, Alterescu K, Rushworth MFS (2003) Functional specialization within medial frontal cortex of the anterior cingulated for evaluating effort-related decisions. J Neurosci 2003 23:6475–6479PubMedGoogle Scholar
  66. Wang WF, Ishiwata K, Nonaka H, Ishii S, Kiyosawa M, Shimada J, Suzuki F, Send M. (2000) Carbon-11-labeled KF21213: a highly selective ligand for mapping CNS adenosine A(2A) receptors with positron emission tomography. Nucl Med Biol 27:541–546PubMedCrossRefGoogle Scholar
  67. Wardas J, Konieczny J, Lorenc-Koci E (2001) SCH 58261, an A(2A) adenosine receptor antagonist, counteracts parkinsonian-like muscle rigidity in rats. Synapse 41:160–171PubMedCrossRefGoogle Scholar
  68. Zhang M, Balmadrid C, Kelley AE (2003) Nucleus accumbens opioid, GABaergic, and dopaminergic modulation of palatable food motivation: contrasting effects revealed by a progressive ratio study in the rat. Behav Neurosci 117:202–211PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Andrew M. Farrar
    • 1
  • Mariana Pereira
    • 3
  • Francisco Velasco
    • 4
  • Jörg Hockemeyer
    • 2
  • Christa E. Müller
    • 2
  • John D. Salamone
    • 1
  1. 1.Department of PsychologyUniversity of ConnecticutStorrsUSA
  2. 2.Pharmazeutisches InstitutUniversität Bonn, Pharmazeutische Chemie, PoppelsdorfBonnGermany
  3. 3.Seccion Fisiologia y Nutricion, Facultad de CienciasUniversidad de la RepublicaMontevideoUruguay
  4. 4.University of GuadalajaraGuadalajaraMexico

Personalised recommendations