, Volume 189, Issue 1, pp 95–104 | Cite as

Assessment of cognitive function in the heterozygous reeler mouse

  • Dilja D. Krueger
  • Jessica L. Howell
  • Britni F. Hebert
  • Peter Olausson
  • Jane R. Taylor
  • Angus C. Nairn
Original Investigation



The heterozygous reeler mouse has been proposed as a genetic mouse model of schizophrenia based on several neuroanatomical and behavioral similarities between these mice and patients with schizophrenia. However, the effect of reelin haploinsufficiency on one of the cardinal symptoms of schizophrenia, the impairment of prefrontal-cortex-dependent cognitive function, has yet to be determined.


Here, we investigated multiple aspects of cognitive function in heterozygous reeler mice that are known to be impaired in schizophrenic patients.


Heterozygous reeler mice were assessed for (1) cognitive flexibility in an instrumental reversal learning task, (2) impulsivity in an inhibitory control task, (3) attentional function in a three-choice serial reaction time task, and (4) working memory in a delayed matching-to-position task.


No differences were found between heterozygous reeler mice and wild-type littermate controls in any prefrontal-related cognitive measures. However, heterozygous reeler mice showed deficits in the acquisition of two operant tasks, consistent with a role for reelin in certain forms of learning.


These findings suggest that heterozygous reeler mice may not be an appropriate model for the core prefrontal-dependent cognitive deficits observed in schizophrenia, but may model more general learning deficits that are associated with many psychiatric disorders.


Reelin Prefrontal cortex Schizophrenia Perseveration Attention Impulsivity Working memory 



This work was supported by NIH grants MH 74866, MH 40899, and DA11717, as well as the Scottish Rite Schizophrenia Research Program.


  1. Alcantara S, Ruiz M, D’Arcangelo G, Ezan F, de Lecea L, Curran T, Sotelo C, Soriano E (1998) Regional and cellular patterns of reelin mRNA expression in the forebrain of the developing and adult mouse. J Neurosci 18:7779–7799PubMedGoogle Scholar
  2. Ballmaier M, Zoli M, Leo G, Agnati LF, Spano P (2002) Preferential alterations in the mesolimbic dopamine pathway of heterozygous reeler mice: an emerging animal-based model of schizophrenia. Eur J Neurosci 15:1197–1205PubMedCrossRefGoogle Scholar
  3. Bayer TA, Falkai P, Maier W (1999) Genetic and non-genetic vulnerability factors in schizophrenia: the basis of the “two hit hypothesis”. J Psychiatr Res 33:543–548PubMedCrossRefGoogle Scholar
  4. Beffert U, Weeber EJ, Durudas A, Qiu S, Masiulis I, Sweatt JD, Li WP, Adelmann G, Frotscher M, Hammer RE, Herz J (2005) Modulation of synaptic plasticity and memory by reelin involves differential splicing of the lipoprotein receptor apoer2. Neuron 47:567–579PubMedCrossRefGoogle Scholar
  5. Bowers BJ, Wehner JM (2001) Ethanol consumption and behavioral impulsivity are increased in protein kinase Cgamma null mutant mice. J Neurosci 21:180RCGoogle Scholar
  6. Braver TS, Barch DM, Cohen JD (1999) Cognition and control in schizophrenia: a computational model of dopamine and prefrontal function. Biol Psychiatry 46:312–328PubMedCrossRefGoogle Scholar
  7. Brown VJ, Bowman EM (2002) Rodent models of prefrontal cortical function. Trends Neurosci 25:340–343PubMedCrossRefGoogle Scholar
  8. Carboni G, Tueting P, Tremolizzo L, Sugaya I, Davis J, Costa E, Guidotti A (2004) Enhanced dizocilpine efficacy in heterozygous reeler mice relates to GABA turnover downregulation. Neuropharmacology 46:1070–1081PubMedCrossRefGoogle Scholar
  9. Chen Y, Beffert U, Ertunc M, Tang TS, Kavalali ET, Bezprozvanny I, Herz J (2005) Reelin modulates NMDA receptor activity in cortical neurons. J Neurosci 25:8209–8216PubMedCrossRefGoogle Scholar
  10. Costa E, Davis J, Pesold C, Tueting P, Guidotti A (2002) The heterozygote reeler mouse as a model for the development of a new generation of antipsychotics. Curr Opin Pharmacol 2:56–62PubMedCrossRefGoogle Scholar
  11. Crider A (1997) Perseveration in schizophrenia. Schizophr Bull 23:63–74PubMedGoogle Scholar
  12. D’Arcangelo G (2006) Reelin mouse mutants as models of cortical development disorders. Epilepsy Behav 8:81–90PubMedCrossRefGoogle Scholar
  13. D’Arcangelo G, Miao GG, Chen SC, Soares HD, Morgan JI, Curran T (1995) A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374:719–723PubMedCrossRefGoogle Scholar
  14. D’Arcangelo G, Miao GG, Curran T (1996) Detection of the reelin breakpoint in reeler mice. Brain Res Mol Brain Res 39:234–236PubMedCrossRefGoogle Scholar
  15. Dalley JW, Cardinal RN, Robbins TW (2004) Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci Biobehav Rev 28:771–784PubMedCrossRefGoogle Scholar
  16. Dong E, Caruncho H, Liu WS, Smalheiser NR, Grayson DR, Costa E, Guidotti A (2003) A reelin–integrin receptor interaction regulates Arc mRNA translation in synaptoneurosomes. Proc Natl Acad Sci U S A 100:5479–5484PubMedCrossRefGoogle Scholar
  17. Elvevag B, Goldberg TE (2000) Cognitive impairment in schizophrenia is the core of the disorder. Crit Rev Neurobiol 14:1–21PubMedGoogle Scholar
  18. Estape N, Steckler T (2002) Cholinergic blockade impairs performance in operant DNMTP in two inbred strains of mice. Pharmacol Biochem Behav 72:319–334PubMedCrossRefGoogle Scholar
  19. Evenden JL (1999) Varieties of impulsivity. Psychopharmacology (Berl) 146:348–361CrossRefGoogle Scholar
  20. Fatemi SH (2001) Reelin mutations in mouse and man: from reeler mouse to schizophrenia, mood disorders, autism and lissencephaly. Mol Psychiatry 6:129–133PubMedCrossRefGoogle Scholar
  21. Goldman-Rakic PS (1994) Working memory dysfunction in schizophrenia. J Neuropsychiatry Clin Neurosci 6:348–357PubMedGoogle Scholar
  22. Greco B, Invernizzi RW, Carli M (2005) Phencyclidine-induced impairment in attention and response control depends on the background genotype of mice: reversal by the mGLU2/3 receptor agonist LY379268. Psychopharmacology (Berl) 179:68–76CrossRefGoogle Scholar
  23. Guidotti A, Auta J, Davis JM, Di-Giorgi-Gerevini V, Dwivedi Y, Grayson DR, Impagnatiello F, Pandey G, Pesold C, Sharma R, Uzunov D, Costa E (2000) Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch Gen Psychiatry 57:1061–1069PubMedCrossRefGoogle Scholar
  24. Humby T, Laird FM, Davies W, Wilkinson LS (1999) Visuospatial attentional functioning in mice: interactions between cholinergic manipulations and genotype. Eur J Neurosci 11:2813–2823PubMedCrossRefGoogle Scholar
  25. Impagnatiello F, Guidotti AR, Pesold C, Dwivedi Y, Caruncho H, Pisu MG, Uzunov DP, Smalheiser NR, Davis JM, Pandey GN, Pappas GD, Tueting P, Sharma RP, Costa E (1998) A decrease of reelin expression as a putative vulnerability factor in schizophrenia. Proc Natl Acad Sci U S A 95:15718–15723PubMedCrossRefGoogle Scholar
  26. Izquierdo A, Wiedholz LM, Millstein RA, Yang RJ, Bussey TJ, Saksida LM, Holmes A (2006) Genetic and dopaminergic modulation of reversal learning in a touchscreen-based operant procedure for mice. Behav Brain Res 171(2):181–188PubMedCrossRefGoogle Scholar
  27. Larson J, Hoffman JS, Guidotti A, Costa E (2003) Olfactory discrimination learning deficit in heterozygous reeler mice. Brain Res 971:40–46PubMedCrossRefGoogle Scholar
  28. Lewejohann L, Reinhard C, Schrewe A, Brandewiede J, Haemisch A, Gortz N, Schachner M, Sachser N (2006) Environmental bias? Effects of housing conditions, laboratory environment and experimenter on behavioral tests. Genes Brain Behav 5:64–72PubMedCrossRefGoogle Scholar
  29. Lidow MS, Koh PO, Arnsten AF (2003) D1 dopamine receptors in the mouse prefrontal cortex: immunocytochemical and cognitive neuropharmacological analyses. Synapse 47:101–108PubMedCrossRefGoogle Scholar
  30. Liu WS, Pesold C, Rodriguez MA, Carboni G, Auta J, Lacor P, Larson J, Condie BG, Guidotti A, Costa E (2001) Down-regulation of dendritic spine and glutamic acid decarboxylase 67 expressions in the reelin haploinsufficient heterozygous reeler mouse. Proc Natl Acad Sci U S A 98:3477–3482PubMedCrossRefGoogle Scholar
  31. Miller E, Freedman D, Wallis J (2002) The prefrontal cortex: categories, concepts and cognition. Philos Trans R Soc Lond B 357:1123–1136CrossRefGoogle Scholar
  32. Pappas GD, Kriho V, Pesold C (2002) Reelin in the extracellular matrix and dendritic spines of the cortex and hippocampus: a comparison between wild type and heterozygous reeler mice by immunoelectron microscopy. J Neurocytol 30:413–425CrossRefGoogle Scholar
  33. Podhorna J, Didriksen M (2004) The heterozygous reeler mouse: behavioural phenotype. Behav Brain Res 153:43–54PubMedCrossRefGoogle Scholar
  34. Qiu S, Korwek KM, Pratt-Davis AR, Peters M, Bergman MY, Weeber EJ (2006) Cognitive disruption and altered hippocampus synaptic function in Reelin haploinsufficient mice. Neurobiol Learn Mem 85:228–242PubMedCrossRefGoogle Scholar
  35. Robbins TW (2000) Chemical neuromodulation of frontal-executive functions in humans and other animals. Exp Brain Res 133:130–138PubMedCrossRefGoogle Scholar
  36. Royall DR, Lauterbach EC, Cummings JL, Reeve A, Rummans TA, Kaufer DI, LaFrance WC Jr, Coffey CE (2002) Executive control function: a review of its promise and challenges for clinical research. a report from the Committee on Research of the American Neuropsychiatric Association. J Neuropsychiatry Clin Neurosci 14:377–405PubMedGoogle Scholar
  37. Salinger WL, Ladrow P, Wheeler C (2003) Behavioral phenotype of the reeler mutant mouse: effects of RELN gene dosage and social isolation. Behav Neurosci 117:1257–1275PubMedCrossRefGoogle Scholar
  38. Söderpalm B, Engel JA (1988) Biphasic effects of clonidine on conflict behavior: involvement of different alpha-adrenoceptors. Pharmacol Biochem Behav 30:471–477PubMedCrossRefGoogle Scholar
  39. Tueting P, Costa E, Dwivedi Y, Guidotti A, Impagnatiello F, Manev R, Pesold C (1999) The phenotypic characteristics of heterozygous reeler mouse. Neuroreport 10:1329–1334PubMedGoogle Scholar
  40. Volk DW, Lewis DA (2002) Impaired prefrontal inhibition in schizophrenia: relevance for cognitive dysfunction. Physiol Behav 77:501–505PubMedCrossRefGoogle Scholar
  41. Wahlsten D, Metten P, Phillips TJ, Boehm SL, Burkhart-Kasch S, Dorow J, Doerksen S, Downing C, Fogarty J, Rodd-Henricks K, Hen R, McKinnon CS, Merrill CM, Nolte C, Schalomon M, Schlumbohm JP, Sibert JR, Wenger CD, Dudek BC, Crabbe JC (2003) Different data from different labs: lessons from studies of gene–environment interaction. J Neurobiol 54:283–311PubMedCrossRefGoogle Scholar
  42. Weeber EJ, Beffert U, Jones C, Christian JM, Forster E, Sweatt JD, Herz J (2002) Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. J Biol Chem 277:39944–39952PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Dilja D. Krueger
    • 1
  • Jessica L. Howell
    • 1
  • Britni F. Hebert
    • 1
  • Peter Olausson
    • 1
  • Jane R. Taylor
    • 1
  • Angus C. Nairn
    • 1
  1. 1.Department of Psychiatry, Division of Molecular PsychiatryYale University School of MedicineNew HavenUSA

Personalised recommendations