, Volume 188, Issue 1, pp 42–52 | Cite as

Increased local and decreased remote functional connectivity at EEG alpha and beta frequency bands in opioid-dependent patients

  • Andrew A. FingelkurtsEmail author
  • Alexander A. Fingelkurts
  • Reetta Kivisaari
  • Taina Autti
  • Sergei Borisov
  • Varpu Puuskari
  • Olga Jokela
  • Seppo Kähkönen
Original Investigation



Although researchers now have a working knowledge of key brain structures involved in realization of actions of substance abuse and addiction, deeper understanding will require examination of network interactions between cortical neuronal assemblies and their subcortical tails in the effects of opioid dependence.


Given that repeated exposure to opiates initiates a widespread reorganization of cortical regions, we predict that opioid dependence would result in a considerable reorganization of local and remote functional connectivity in the neocortex.


We applied the novel operational architectonics approach that enables us to estimate two local and remote functional cortex connectivities by means of electroencephalogram structural synchrony measure.


In 22 opioid-dependent patients, we found the evidence that brain functional connectivity was indeed disrupted by chronic opioid abuse (i.e., the local functional connectivity increased and remote functional connectivity decreased in opioid abusers). This significant difference between “opioid” and “control” populations was the same for alpha and beta frequency bands. Additionally, significant negative relations between duration (years) of daily opioid abuse and the number/strength of functional connections in the posterior section of the cortex were found.


Addiction Brain interactions Cortex Metastable states Opiate Opioid dependence Structural synchrony Synchronization 



The authors thank Carlos Neves (computer science specialist) for programming, technical, and IT support. We wish to thank Alexander Ilin for his consultation on the ICA codes. Parts of this work have been supported by Helsinki University Central Hospital, Academy of Finland, The Finnish Medical Foundation, Tekes, and BM-SCIENCE Centre. The experiments comply with the current laws of Finland.


  1. American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Association, Washington, DCGoogle Scholar
  2. Basar E, Özgören M, Karakas S, Basar-Eroglu C (2004) Super-synergy in the brain: the grandmother percept is manifested by multiple oscillations. Int J Bifurc Chaos Appl Sci Eng 14:453–491CrossRefGoogle Scholar
  3. Baxter MG, Parker A, Lindner CC, Izquierdo AD, Murray EA (2000) Control of response selection by reinforcer value requires interaction of amygdala and orbital prefrontal cortex. J Neurosci 20:4311–4319PubMedGoogle Scholar
  4. Breakspear M, Terry JR (2002) Topographic organization of nonlinear interdependence in multichannel human EEG. NeuroImage 16:822–835PubMedCrossRefGoogle Scholar
  5. Bressler SL (2003) Cortical coordination dynamics and the disorganization syndrome in schizophrenia. Neuropsychopharmacology 28:S35–S39PubMedCrossRefGoogle Scholar
  6. Cipolli C, Galliani I (1990) Addiction time and value of Z indicators in Rorschachs of heroin users. Percept Mot Skills 70:1105–1106PubMedGoogle Scholar
  7. Cook IA, O’Hara R, Uijtdehaage SH, Mandelkern M, Leuchter AF (1998) Assessing the accuracy of topographic EEG mapping for determining local brain function. Electroencephalogr Clin Neurophysiol 107:408–414PubMedCrossRefGoogle Scholar
  8. Damasio AR (2000) The feeling of what happens. Body, emotion and the making of consciousness. Vintage, LondonGoogle Scholar
  9. Davis PE, Liddiard H, McMillan TM (2002) Neuropsychological deficits and opiate abuse. Drug Alcohol Depend 67:105–108PubMedCrossRefGoogle Scholar
  10. Davydov DM, Polunina AG (2004) Heroin abusers’ performance on the Tower of London Test relates to the baseline EEG alpha2 mean frequency shifts. Prog Neuropsychopharmacol Biol Psychiatry 28:1143–1152PubMedCrossRefGoogle Scholar
  11. deCharms RC, Merzenich MM (1996) Primary cortical representation of sounds by the coordination of action-potential timing. Nature 381:610–613PubMedCrossRefGoogle Scholar
  12. Fingelkurts AnA, Fingelkurts AlA (2001) Operational architectonics of the human brain biopotential field: towards solving the mind–brain problem. Brain Mind 2:261–296.
  13. Fingelkurts AnA, Fingelkurts AlA (2003) Operational architectonics of perception and cognition: a principle of self-organized metastable brain states. VI Parmenides Workshop, Institute of Medical Psychology, Elba, Italy, 5–10 April 2003 (invited full-text contribution).
  14. Fingelkurts AnA, Fingelkurts AlA (2004) Making complexity simpler: multivariability and metastability in the brain. Int J Neurosci 114:843–862PubMedCrossRefGoogle Scholar
  15. Fingelkurts AnA, Fingelkurts AlA (2005) Mapping of the brain operational architectonics. In: Chen FJ (ed) Focus on brain mapping research, chap 2. Nova, pp 59–98.
  16. Fingelkurts AnA, Fingelkurts AlA, Kähkönen S (2005a) Functional connectivity in the brain—is it an elusive concept? Neurosci Biobehav Rev 28:827–836PubMedCrossRefGoogle Scholar
  17. Fingelkurts AnA, Fingelkurts AlA, Kähkönen S (2005b) New perspectives in pharmaco-electroencephalography. Prog Neuropsychopharmacol Biol Psychiatry 29:193–199PubMedCrossRefGoogle Scholar
  18. Fingelkurts AlA, Fingelkurts AnA, Krause CM, Kaplan AYa (2003) Systematic rules underlying spectral pattern variability: experimental results and a review of the evidences. Int J Neurosci 113:1447–1473PubMedCrossRefGoogle Scholar
  19. Fingelkurts AnA, Fingelkurts AlA, Kivisaari R, Pekkonen E, Ilmoniemi RJ, Kähkönen SA (2004) Local and remote functional connectivity of neocortex under the inhibition influence. NeuroImage 22:1390–1406PubMedCrossRefGoogle Scholar
  20. Fingelkurts AnA, Fingelkurts AlA, Rytsälä H, Suominen K, Isometsä E, Kähkönen S (2006a) Impaired functional connectivity at EEG alpha and theta frequency bands in major depression. Hum Brain Map (in press) DOI 10.1002/hbm.20275
  21. Fingelkurts AlA, Fingelkurts AnA, Kivisaari R, Autti T, Borisov S, Puuskari V, Jokela O, Kähkönen S (2006b) Reorganization of the composition of brain oscillations and their temporal characteristics in opioid dependent patients. Prog Neuropsychopharmacol Biol Psychiatry (in press)Google Scholar
  22. First MB, Spitzer RL, Gibbon M, Williams JBW, Benjamin L (1994a) Structured clinical interview for DSM-IV axis II personality disorders, version 2.0. New York State Psychiatric Institute, New YorkGoogle Scholar
  23. First MB, Spitzer RL, Gibbon M, Williams JBW (1994b) Structured clinical interview for DSM-IV axis I disorders, version 2.0. New York State Psychiatric Institute, New YorkGoogle Scholar
  24. Franken IH, Stam CJ, Hendriks VM, van den Brink W (2004) Electroencephalographic power and coherence analyses suggest altered brain function in abstinent male heroin-dependent patients. Neuropsychobiology 49:105–110PubMedCrossRefGoogle Scholar
  25. Freeman WJ (2000) Brains create macroscopic order from microscopic disorder by neurodynamics in perception, chap 7. In: Århem P, Blomberg C, Liljenström H (eds) Disorder versus order in brain function: Essays in theoretical neurobiology. World Scientific, Singapore, pp 205–219Google Scholar
  26. Freeman WJ (2003) Evidence from human scalp electroencephalograms of global chaotic itinerancy. Chaos 13:1067–1077PubMedCrossRefGoogle Scholar
  27. Freeman WJ, Kozma R, Werbos PJ (2001) Biocomplexity: adaptive behavior in complex stochastic dynamical systems. Biosystems 59:109–123PubMedCrossRefGoogle Scholar
  28. Goldstein RZ, Volkow ND (2002) Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry 159:1642–1652PubMedCrossRefGoogle Scholar
  29. Gossop M (1990) The development of short opiate withdrawal scale (SOWS). Addict Behav 15:487–490PubMedCrossRefGoogle Scholar
  30. Grün S, Diesmann M, Aertsen A (2002) Unitary events in multiple single-neuron spiking activity: I. Detection and significance, II. Nonstationary data. Neural Comput 14:43–119PubMedCrossRefGoogle Scholar
  31. Hyman SE, Malenka RC (2001) Addiction and the brain: the neurobiology of compulsion and its persistence. Nat Rev Neurosci 2:695–703PubMedCrossRefGoogle Scholar
  32. Hyvärinen A, Karhunen J, Oja E (2001) Independent component analysis. Wiley, New YorkGoogle Scholar
  33. Jensen O, Goel P, Kopell N, Pohja M, Hari R, Ermentrout B (2005) On the human sensorimotor-cortex beta rhythm: sources and modeling. NeuroImage 26:347–355PubMedCrossRefGoogle Scholar
  34. John ER (2001) A field theory of consciousness. Conscious Cogn 9:184–213CrossRefGoogle Scholar
  35. Joyce CA, Gorodnitsky IF, Kutas M (2004) Automatic removal of eye movement and blink artifacts from EEG data using blind component separation. Psychophysiology 41:313–325PubMedCrossRefGoogle Scholar
  36. Kaplan AYa (1998) Nonstationary EEG: methodological and experimental analysis. Usp Physiol Nayk (Success in Physiological Sciences) 29:35–55 (in Russian)Google Scholar
  37. Kaplan AYa, Borisov SV (2003) Dynamic properties of segmental characteristics of EEG alpha activity in rest conditions and during cognitive load. Pavlov J High Nerv Act 53:22–32 (in Russian)Google Scholar
  38. Kaplan AYa, Shishkin SL (2000) Application of the change-point analysis to the investigation of the brain’s electrical activity, chap 7. In: Brodsky BE, Darkhovsky BS (eds) Nonparametric statistical diagnosis: problems and methods. Kluwer, Dordrecht, the Netherlands, pp 333–388Google Scholar
  39. Kaplan AYa, Fingelkurts AnA, Fingelkurts AlA, Darkhovsky BS (1997) Topological mapping of the sharp reorganization synchrony in the multichannel EEG. Am J Electroneurodiagnostic Technol 37:265–275Google Scholar
  40. Kaplan AYa, Borisov SV, Shishkin SL, Ermolayev VA (2002) The analysis of segmental structure of EEG alpha activity in humans. Fiziol Zh Im IM Sechenova (Physiology J IM Sechenov) 88:432–442 (in Russian)Google Scholar
  41. Kaplan AYa, Fingelkurts AnA, Fingelkurts AlA, Borisov SV, Darkhovsky BS (2005) Nonstationary nature of the brain activity as revealed by EEG/MEG: methodological, practical and conceptual challenges. Signal Process 85:2190–2212CrossRefGoogle Scholar
  42. Kaplan HI, Sadock BJ (1994) Synopsis of psychiatry: behavioural sciences. Clinical Psychiatry, 7th edn. Williams & Wilkins, BaltimoreGoogle Scholar
  43. Kelso JAS (1995) Review of dynamic patterns: the self-organization of brain and behavior. MIT Press, Cambridge, MAGoogle Scholar
  44. Klimesch W (1999) Event-related band power changes and memory performance. Event-related desynchronization and related oscillatory phenomena of the brain. In: Pfurtscheller G, Lopez da Silva FH (eds) Handbook of electroencephalography and clinical neurophysiology, vol 6. Elsevier, Amsterdam, pp 151–178Google Scholar
  45. Klimesch W, Schack B, Sauseng P (2005) The functional significance of theta and upper alpha oscillations. Exp Psychol 52:99–108PubMedGoogle Scholar
  46. Koenig T, Prichep L, Lehmann D, Sosa PV, Braeker E, Kleinlogel H, Isenhart R, John ER (2002) Millisecond by millisecond, year by year: normative EEG microstates and developmental stages. NeuroImage 16:41–48PubMedCrossRefGoogle Scholar
  47. Livanov MN (1984) Electroencephalogram rhythms and their functional significance. Pavlov J High Nerv Act 34:613–626 (in Russian)Google Scholar
  48. Mesulam M (1985) Principles of behavioral neurology. Davis, PhiladelphiaGoogle Scholar
  49. Mesulam M (1986) Frontal cortex and behaviour. Ann Neurol 19:320–324PubMedCrossRefGoogle Scholar
  50. Miller L (1990) Neuropsychodynamics of alcoholism and addiction: personality, psychopathology, and cognitive style. J Subst Abuse Treat 7:31–49PubMedCrossRefGoogle Scholar
  51. Nutt DJ (1996) Addiction: brain mechanisms and their treatment implications. Lancet 347:31–36PubMedCrossRefGoogle Scholar
  52. Noel BM, Gratton A (1995) Electrochemical evidence of increased dopamine transmission in prefrontal cortex and nucleus accumbens elicited by ventral tegmental μ-opioid receptor activation in freely behaving rats. Synapse 21:110–122PubMedCrossRefGoogle Scholar
  53. Nunez PL (2000) Toward a quantitative description of large-scale neocortical dynamic function and EEG. Behav Brain Sci 23:371–437PubMedCrossRefGoogle Scholar
  54. Ornstein TJ, Iddon JL, Baldacchino AM, Sahakian BJ, London M, Everitt BJ, Robbins TW (2000) Profiles of cognitive dysfunction in chronic amphetamine and heroin abusers. Neuropsychopharmacology 23:113–126PubMedCrossRefGoogle Scholar
  55. Polunina AG, Davydov DM (2004) EEG spectral power and mean frequencies in early heroin abstinence. Prog Neuropsychopharmacol Biol Psychiatry 28:73–82PubMedCrossRefGoogle Scholar
  56. Rappelsberger P, Petsche H (1988) Probability mapping: power and coherence analysis of cognitive processes. Brain Topogr 1:46–54PubMedCrossRefGoogle Scholar
  57. Robinson TE, Berridge KC (2000) The psychology and neurobiology of addiction: an incentive-sensitization view. Addiction 95:S91–S117PubMedCrossRefGoogle Scholar
  58. Robinson TE, Gorny G, Savage VR, Kolb B (2002) Widespread but regionally specific effects of experimenter- versus self-administered morphine on dendritic spines in the nucleus accumbens, hippocampus, and neocortex of adult rats. Synapse 46:271–279PubMedCrossRefGoogle Scholar
  59. Sell LA, Morris J, Bearn J, Frackowiak RSJ, Friston KJ, Dolan RJ (1999) Activation of reward circuitry in human opiate addicts. Eur J Neurosci 11:1042–1048PubMedCrossRefGoogle Scholar
  60. Singer W, Gray CM (1995) Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 18:555–586PubMedCrossRefGoogle Scholar
  61. Stam CJ (2005) Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin Neurophysiol 116:2266–2301PubMedCrossRefGoogle Scholar
  62. Truccolo WA, Ding M, Knuth KH, Nakamura R, Bressler S (2002) Trial-to-trial variability of cortical evoked responses: implications for analysis of functional connectivity. Clin Neurophysiol 113:206–226PubMedCrossRefGoogle Scholar
  63. Varela FJ (1995) Resonant cell assemblies: a new approach to cognitive functions and neuronal synchrony. Biol Res 28:81–95PubMedGoogle Scholar
  64. Volkow ND, Fowler JS, Wang G-J (2004) The addicted human brain viewed in the light of imaging studies: brain circuits and treatment strategies. Neuropharmacology 47:3–13PubMedCrossRefGoogle Scholar
  65. von Stein AV, Rappelsberger P, Sarnthein J, Petsche H (1999) Synchronization between temporal and parietal cortex during multimodal object processing in man. Cereb Cortex 9:137–150CrossRefGoogle Scholar
  66. Wechsler D (1993) Wechsler adult intelligence scale-revised (WAIS-R). Finnish version. Psykologien Kustannus, HelsinkiGoogle Scholar
  67. Weiss S, Rappelsberger P (2000) Long-range EEG synchronization during word encoding correlates with successful memory performance. Brain Res Cog Brain Res 9:299–312CrossRefGoogle Scholar
  68. White NM (1989) A functional hypothesis concerning the striatal matrix and patches: mediation of S-R memory and reward. Life Sci 45:1943–1957PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Andrew A. Fingelkurts
    • 1
    • 2
    • 3
    Email author
  • Alexander A. Fingelkurts
    • 1
    • 2
    • 3
  • Reetta Kivisaari
    • 4
  • Taina Autti
    • 4
  • Sergei Borisov
    • 5
  • Varpu Puuskari
    • 6
  • Olga Jokela
    • 6
  • Seppo Kähkönen
    • 2
    • 3
  1. 1.BM-SCIENCE-Brain and Mind Technologies Research CentreEspooFinland
  2. 2.BioMag Laboratory, Engineering CentreHelsinki University Central HospitalHelsinkiFinland
  3. 3.Cognitive Brain Research Unit, Department of PsychologyUniversity of HelsinkiHelsinkiFinland
  4. 4.Helsinki Medical Imaging CenterHelsinki University Central HospitalHelsinkiFinland
  5. 5.Center for Functional and Molecular ImagingGeorgetown University Medical Center, Georgetown UniversityWashingtonUSA
  6. 6.Department of PsychiatryHelsinki University Central HospitalHelsinkiFinland

Personalised recommendations