Psychopharmacology

, Volume 188, Issue 2, pp 236–243 | Cite as

Topiramate raises anterior cingulate cortex glutamine levels in healthy men; a 4.0 T magnetic resonance spectroscopy study

  • Constance M. Moore
  • Megan Wardrop
  • Blaise deB. Frederick
  • Perry F. Renshaw
Original Investigation

Abstract

Rationale

Potential mechanisms of action of topiramate include alterations of glutamatergic and GABAergic systems. In particular, topiramate has been shown to increase occipital cortex GABA levels, as measured using proton magnetic resonance spectroscopy (MRS).

Objectives

The purpose of this study was to measure the effect of acute oral topiramate on the GABA precursors glutamate and glutamine in the anterior cingulate cortex (ACC) and occipital lobe (OL) using high-field (4.0 T) proton MRS (1H MRS).

Methods

Proton MR spectra were acquired from healthy men at three times: at baseline and 2 and 6 h after ingesting 50 (N=5) or 100 mg (N=5) of topiramate. Blood samples were acquired prior to each scan for the purpose of obtaining serum topiramate levels.

Results

A 100-mg dose of topiramate significantly increased ACC glutamine levels within 2 h of ingestion and OL glutamine levels within 6 h of ingestion. There were no measured significant effects of topiramate on ACC or OL glutamate levels.

Conclusions

A 100-mg dose of oral topiramate increased serum topiramate and ACC glutamine levels within 2 h. OL glutamine levels increased within 6 h. Increased brain glutamine levels may be a consequence of topiramate positively modulating GABAA receptors. This result is of interest given the possible role for topiramate in the treatment of epilepsy, migraine headache, bipolar disorder, eating disorders, and alcohol dependence.

Keywords

Topiramate Proton magnetic resonance spectroscopy Glutamine Glutamate GABA 

References

  1. Angehagen M, Ben-Menachem E, Ronnback L, Hansson E (2003a) Novel mechanisms of action of three antiepileptic drugs, vigabatrin, tiagabine, and topiramate. Neurochem Res 28:333–340PubMedCrossRefGoogle Scholar
  2. Angehagen M, Ben-Menachem E, Ronnback L, Hansson E (2003b) Topiramate protects against glutamate- and kainate-induced neurotoxicity in primary neuronalastroglial cultures. Epilepsy Res 54:63–71PubMedCrossRefGoogle Scholar
  3. Angehagen M, Ronnback L, Hansson E, Ben-Menachem E (2005) Topiramate reduces AMPA-induced Ca(2+) transients and inhibits GluR1 subunit phosphorylation in astrocytes from primary cultures. J Neurochem 94:1124–1130PubMedCrossRefGoogle Scholar
  4. Arnone D (2005) Review of the use of topiramate for treatment of psychiatric disorders. Ann Gen Psychiatry 4:5PubMedCrossRefGoogle Scholar
  5. Bearden CE, Hoffman KM, Cannon TD (2001) The neuropsychology and neuroanatomy of bipolar affective disorder: a critical review. Bipolar Disord 3:106–150 (discussion 151–153)PubMedCrossRefGoogle Scholar
  6. Benes FM, Todtenkopf MS, Logiotatos P, Williams M (2000) Glutamate decarboxylase(65)-immunoreactive terminals in cingulate and prefrontal cortices of schizophrenic and bipolar brain. J Chem Neuroanat 20:259–269PubMedCrossRefGoogle Scholar
  7. Blumberg HP, Leung HC, Skudlarski P, Lacadie CM, Fredericks CA, Harris BC, Charney DS, Gore JC, Krystal JH, Peterson BS (2003) A functional magnetic resonance imaging study of bipolar disorder: state- and trait-related dysfunction in ventral prefrontal cortices. Arch Gen Psychiatry 60:601–609PubMedCrossRefGoogle Scholar
  8. Chang L, Cloak CC, Ernst T (2003) Magnetic resonance spectroscopy studies of GABA in neuropsychiatric disorders. J Clin Psychiatry 64(Suppl 3):7–14PubMedGoogle Scholar
  9. Chang K, Adleman NE, Dienes K, Simeonova DI, Menon V, Reiss A (2004) Anomalous prefrontal–subcortical activation in familial pediatric bipolar disorder: a functional magnetic resonance imaging investigation. Arch Gen Psychiatry 61:781–792PubMedCrossRefGoogle Scholar
  10. Cooper J, Bloom F, Roth R (2003) Amino acid transmitters. In: Cooper J, Bloom F, Roth R (eds) The biochemical basis of neuropharmacology. Oxford University Press, New York, pp 105–150Google Scholar
  11. Cutrer FM (2001) Antiepileptic drugs: how they work in headache. Headache 41(Suppl 1):S3–S10PubMedCrossRefGoogle Scholar
  12. Davanzo P, Thomas MA, Yue K, Oshiro T, Belin T, Strober M, McCracken J (2001) Decreased anterior cingulate myo-inositol/creatine spectroscopy resonance with lithium treatment in children with bipolar disorder. Neuropsychopharmacology 24:359–369PubMedCrossRefGoogle Scholar
  13. Elliott P, Hawthorne G (2005) Imputing missing repeated measures data: how should we proceed? Aust N Z J Psychiatry 39:575–582PubMedCrossRefGoogle Scholar
  14. Follett PL, Deng W, Dai W, Talos DM, Massillon LJ, Rosenberg PA, Volpe JJ, Jensen FE (2004) Glutamate receptor-mediated oligodendrocyte toxicity in periventricular leukomalacia: a protective role for topiramate. J Neurosci 24:4412–4420PubMedCrossRefGoogle Scholar
  15. Gibbs JW 3rd, Sombati S, DeLorenzo RJ, Coulter DA (2000) Cellular actions of topiramate: blockade of kainate-evoked inward currents in cultured hippocampal neurons. Epilepsia 41(Suppl 1):S10–S16PubMedCrossRefGoogle Scholar
  16. Gruber SA, Rogowska J, Yurgelun-Todd DA (2004) Decreased activation of the anterior cingulate in bipolar patients: an fMRI study. J Affect Disord 82:191–201PubMedCrossRefGoogle Scholar
  17. Gruetter R (2002) In vivo 13C NMR studies of compartmentalized cerebral carbohydrate metabolism. Neurochem Int 41:143–154PubMedCrossRefGoogle Scholar
  18. Gruetter R, Adriany G, Choi IY, Henry PG, Lei H, Oz G (2003) Localized in vivo 13C NMR spectroscopy of the brain. NMR Biomed 16:313–338PubMedCrossRefGoogle Scholar
  19. Hetherington HP, Pan JW, Chu WJ, Mason GF, Newcomer BR (1997) Biological and clinical MRS at ultra-high field. NMR Biomed 10:360–371PubMedCrossRefGoogle Scholar
  20. Hyder F, Patel AB, Gjedde A, Rothman DL, Behar KL, Shulman RG (2006) Neuronal–glial glucose oxidation and glutamatergic–GABAergic function. J Cereb Blood Flow Metab DOI 10.1038/sj.jcbfm.9600263
  21. Kanda T, Kurokawa M, Tamura S, Nakamura J, Ishii A, Kuwana Y, Serikawa T, Yamada J, Ishihara K, Sasa M (1996) Topiramate reduces abnormally high extracellular levels of glutamate and aspartate in the hippocampus of spontaneously epileptic rats (SER). Life Sci 59:1607–1616PubMedCrossRefGoogle Scholar
  22. Ke Y, Cohen BM, Bang JY, Yang M, Renshaw PF (2000) Assessment of GABA concentration in human brain using two-dimensional proton magnetic resonance spectroscopy. Psychiatry Res 100:169–178PubMedCrossRefGoogle Scholar
  23. Keltner JR, Wald LL, Frederick BD, Renshaw PF (1997) In vivo detection of GABA in human brain using a localized double-quantum filter technique. Magn Reson Med 37:366–371PubMedCrossRefGoogle Scholar
  24. Ketter TA, Wang PW, Becker OV, Nowakowska C, Yang YS (2003) The diverse roles of anticonvulsants in bipolar disorders. Ann Clin Psychiatry 15:95–108PubMedCrossRefGoogle Scholar
  25. Korpi ER, Grunder G, Luddens H (2002) Drug interactions at GABA(A) receptors. Prog Neurobiol 67:113–159PubMedCrossRefGoogle Scholar
  26. Kuzniecky R, Hetherington H, Ho S, Pan J, Martin R, Gilliam F, Hugg J, Faught E (1998) Topiramate increases cerebral GABA in healthy humans. Neurology 51:627–629PubMedGoogle Scholar
  27. Kuzniecky R, Ho S, Pan J, Martin R, Gilliam F, Faught E, Hetherington H (2002) Modulation of cerebral GABA by topiramate, lamotrigine, and gabapentin in healthy adults. Neurology 58:368–372PubMedGoogle Scholar
  28. McLean MA, Simister RJ, Barker GJ, Duncan JS (2004) Discrimination between neurochemical and macromolecular signals in human frontal lobes using short echo time proton magnetic resonance spectroscopy. Faraday Discuss 126:93–102 (discussion 169–183)PubMedCrossRefGoogle Scholar
  29. Novotny EJ Jr, Fulbright RK, Pearl PL, Gibson KM, Rothman DL (2003) Magnetic resonance spectroscopy of neurotransmitters in human brain. Ann Neurol 54(Suppl 6):S25–S31PubMedCrossRefGoogle Scholar
  30. Petroff OA, Hyder F, Mattson RH, Rothman DL (1999) Topiramate increases brain GABA, homocarnosine, and pyrrolidinone in patients with epilepsy. Neurology 52:473–478PubMedGoogle Scholar
  31. Petroff OA, Errante LD, Rothman DL, Kim JH, Spencer DD (2002) Glutamate–glutamine cycling in the epileptic human hippocampus. Epilepsia 43:703–710PubMedCrossRefGoogle Scholar
  32. Provencher SW (2001) Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed 14:260–264PubMedCrossRefGoogle Scholar
  33. Rothman DL, Petroff OA, Behar KL, Mattson RH (1993) Localized 1H NMR measurements of gamma-aminobutyric acid in human brain in vivo. Proc Natl Acad Sci USA 90:5662–5666PubMedCrossRefGoogle Scholar
  34. Strakowski SM, Adler CM, Holland SK, Mills NP, DelBello MP, Eliassen JC (2005) Abnormal FMRI brain activation in euthymic bipolar disorder patients during a counting Stroop interference task. Am J Psychiatry 162:1697–1705PubMedCrossRefGoogle Scholar
  35. White HS (2005) Molecular pharmacology of topiramate: managing seizures and preventing migraine. Headache 45(Suppl 1):S48–S56PubMedCrossRefGoogle Scholar
  36. White HS, Brown SD, Woodhead JH, Skeen GA, Wolf HH (2000) Topiramate modulates GABA-evoked currents in murine cortical neurons by a nonbenzodiazepine mechanism. Epilepsia 41(Suppl 1):S17–S20PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Constance M. Moore
    • 1
    • 2
  • Megan Wardrop
    • 1
  • Blaise deB. Frederick
    • 1
    • 2
  • Perry F. Renshaw
    • 1
    • 2
  1. 1.Brain Imaging CenterMcLean HospitalBelmontUSA
  2. 2.Consolidated Department of PsychiatryHarvard Medical SchoolBostonUSA

Personalised recommendations