, Volume 186, Issue 2, pp 191–200 | Cite as

Persistent dysfunctional frontal lobe activation in former smokers

  • Andres Neuhaus
  • Malek Bajbouj
  • Thorsten Kienast
  • Peter Kalus
  • Dorothea von Haebler
  • Georg Winterer
  • Jürgen GallinatEmail author
Original Investigation



Chronic smoking and nicotine exposure are accompanied by impaired cognitive task performance, modulated cerebral activity in brain imaging studies, and neuritic damage in experimental animals. The profile of the described dysfunctions matches frontal lobe circuits which also play a role in reward processing and reinforcement behavior. However, it is largely unknown if cerebral dysfunctions are reversible or persist during long term abstinence.

Materials and methods

Cortical activation during auditory target processing (oddball task, P300 component) was recorded with 32-channel EEG in 247 healthy subjects consisting of 84 smokers, 53 former smokers (mean time of abstinence 11.9 years), and 110 never smokers.


Both current smokers and former smokers exhibited significantly diminished P300 amplitudes (Cz, Pz) relative to never smokers. Neuroelectric source analysis (low resolution brain electromagnetic tomography) revealed a hypoactivation of the anterior cingulate, orbitofrontal, and prefrontal cortex in smokers compared to never smokers. A similar profile of hypoactivation was observed in former smokers.


For the first time, evidence is provided that dysfunctional activation of frontal lobe networks in smokers is also present in long term abstainers.


Nicotine Smoking Target detection P300 LORETA 


  1. Abreu-Villaca Y, Seidler FJ, Qiao D, Tate CA, Cousins MM, Thillai I, Slotkin TA (2003) Short-term adolescent nicotine exposure has immediate and persistent effects on cholinergic systems: critical periods, patterns of exposure, dose thresholds. Neuropsychopharmacology 28:1935–1949PubMedGoogle Scholar
  2. Anokhin AP, Vedeniapin AB, Sirevaag EJ, Bauer LO, O’Connor SJ, Kuperman S, Porjesz B, Reiche T, Begleiter H, Polich J, Rohrbaugh JW (2000) The P300 brain potential is reduced in smokers. Psychopharmacology (Berl) 149:409–413CrossRefGoogle Scholar
  3. Baudena P, Halgren E, Heit G, Clarke JM (1995) Intracerebral potentials to rare target and distractor auditory and visual stimuli. III. Frontal cortex. Electroencephalogr Clin Neurophysiol 94:251–264PubMedCrossRefGoogle Scholar
  4. Bramon E, McDonald C, Croft RJ, Landau S, Filbey F, Gruzelier JH, Sham PC, Frangou S, Murray RM (2005) Is the P300 wave an endophenotype for schizophrenia? A meta-analysis and a family study. Neuroimage 27:960–968PubMedCrossRefGoogle Scholar
  5. Breiter HC, Aharon I, Kahnemann D, Dale A, Shizgal P (2001) Functional imaging of neural responses to expectancy and experience of monetary gains and losses. Neuron 30:619–639PubMedCrossRefGoogle Scholar
  6. Brody AL, Mandelkern MA, London ED, Childress AR, Lee GS, Bota RG, Ho ML, Saxena S, Baxter LR, Madsen D, Jarvik ME (2002) Brain metabolic changes during cigarette craving. Arch Gen Psychiatry 59:1162–1172PubMedCrossRefGoogle Scholar
  7. Brody AL, Mandelkern MA, Jarvik ME, Lee GS, Smith EC, Huang JC, Bota RG, Bartzokis G, London ED (2004) Differences between smokers and non-smokers in regional gray matter volumes and densities. Biol Psychiatry 55:77–84PubMedCrossRefGoogle Scholar
  8. Cardinal RN, Everitt BJ (2004) Neural and psychological mechanisms underlying appetitive learning: links to drug addiction. Curr Opin Neurobiol 14:156–162PubMedCrossRefGoogle Scholar
  9. Chen WJ, Edwards RB, Romero RD, Parnell SE, Monk RJ (2003) Long-term nicotine exposure reduces Purkinje cell number in the adult rat cerebellar vermis. Neurotoxicol Teratol 25:329–334PubMedCrossRefGoogle Scholar
  10. Domino EF, Minoshima S, Guthrie SK, Ohl L, Ni L, Koeppe RA, Cross DJ, Zubieta J (2000a) Effects of nicotine on regional cerebral glucose metabolism in awake resting tobacco smokers. Neuroscience 101:277–282PubMedCrossRefGoogle Scholar
  11. Domino EF, Minoshima S, Guthrie SK, Ohl L, Ni L, Koeppe RA, Zubieta JK (2000b) Nicotine effects on regional cerebral blood flow in awake, resting tobacco smokers. Synapse 38:313–321PubMedCrossRefGoogle Scholar
  12. Durazzo TC, Gazdzinski S, Banys P, Meyerhoff DJ (2004) Cigarette smoking exacerbates chronic alcohol-induced brain damage: a preliminary metabolite imaging study. Alcohol Clin Exp Res 28:1849–1860PubMedCrossRefGoogle Scholar
  13. Elliott R, Friston KJ, Dolan RJ (2000) Dissociable neuronal responses in human reward systems. J Neurosci 20:6159–6165PubMedGoogle Scholar
  14. Elliott R, Newman JL, Longe OA, Deakin JF (2003) Differential response patterns in the striatum and orbitofrontal cortex to financial reward in humans: a parametric functional magnetic resonance imaging study. J Neurosci 23:303–307PubMedGoogle Scholar
  15. Epping-Jordan MP, Watkins SS, Koob GF, Markou A (1998) Dramatic decreases in brain reward function during nicotine withdrawal. Nature 393:76–79PubMedCrossRefGoogle Scholar
  16. Ernst M, Heishman SJ, Spurgeon L, London ED (2001) Smoking history and nicotine effects on cognitive performance. Neuropsychopharmacology 25:313–319PubMedCrossRefGoogle Scholar
  17. Fallgatter AJ, Strik WK (1997) Right frontal activation during the continuous performance test assessed with near-infrared spectroscopy in healthy subjects. Neurosci Lett 223:89–92PubMedCrossRefGoogle Scholar
  18. Fichtenholtz HM, Dean HL, Dillon DG, Yamasaki H, McCarthy G, LaBar KS (2004) Emotion-attention network interactions during a visual oddball task. Cogn Brain Res 20:67–80CrossRefGoogle Scholar
  19. Gallinat J, Riedel M, Juckel G, Sokullu S, Frodl T, Moukhtieva R, Mavrogiorgou P, Nissle S, Muller N, Danker-Hopfe H, Hegerl U (2001) P300 and symptom improvement in schizophrenia. Psychopharmacology (Berl) 158:55–65CrossRefGoogle Scholar
  20. Gallinat J, Mulert C, Bajbouj M, Herrmann WM, Schunter J, Senkowski D, Moukhtieva R, Kronfeldt D, Winterer G (2002) Frontal and temporal dysfunction of auditory stimulus processing in schizophrenia. Neuroimage 17:110–127PubMedCrossRefGoogle Scholar
  21. Gallinat J, Kunz D, Lang UE, Kalus P, Juckel G, Eggers J, Mahlberg R, Staedtgen M, Wernicke C, Rommelspacher H, Smolka MN (2005) Serotonergic effects of smoking are independent from the human serotonin transporter gene promoter polymorphism: evidence from auditory cortical stimulus processing. Pharmacopsychiatry 38:158–160PubMedCrossRefGoogle Scholar
  22. Goldstein RZ, Volkow ND (2002) Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry 159:1642–1652PubMedCrossRefGoogle Scholar
  23. Gottfried JA, O’Doherty J, Dolan RJ (2003) Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science 301:1104–1107PubMedCrossRefGoogle Scholar
  24. Halgren E, Baudena P, Clarke JM, Heit G, Liégeois C, Chauvel P, Musolino A (1995a) Intracerebral potentials to rare target and distractor auditory and visual stimuli. I. Superior temporal plane and parietal lobe. Electroencephalogr Clin Neurophysiol 94:191–220PubMedCrossRefGoogle Scholar
  25. Halgren E, Baudena P, Clarke JM, Heit G, Marinkovic K, Devaux B, Vignal J-P, Biraben A (1995b) Intracerebral potentials to rare target and distractor auditory and visual stimuli. II. Medial, lateral and posterior temporal lobe. Electroencephalogr Clin Neurophysiol 94:229–250PubMedCrossRefGoogle Scholar
  26. Heinz A, Siessmeier T, Wrase J, Hermann D, Klein S, Grusser SM, Flor H, Braus DF, Buchholz HG, Grunder G, Schreckenberger M, Smolka MN, Rosch F, Mann K, Bartenstein P (2004) Correlation between dopamine D(2) receptors in the ventral striatum and central processing of alcohol cues and craving. Am J Psychiatry 161:1783–1789PubMedCrossRefGoogle Scholar
  27. Holmes AP, Blair RC, Watson JD, Ford I (1996) Nonparametric analysis of statistic images from functional mapping experiments. J Cereb Blood Flow Metab 16:7–22PubMedCrossRefGoogle Scholar
  28. Horovitz SG, Skudlarski P, Gore JC (2002) Correlations and dissociations between BOLD signal and P300 amplitude in an auditory oddball task: a parametric approach to combining fMRI and ERP. Magn Reson Imaging 20:319–325PubMedCrossRefGoogle Scholar
  29. Hughes JR, Keely J, Naud S (2004) Shape of the relapse curve and long-term abstinence among untreated smokers. Addiction 99:29–38PubMedCrossRefGoogle Scholar
  30. Jacobsen LK, Krystal JH, Mencl WE, Westerveld M, Frost SJ, Pugh KR (2005) Effects of smoking and smoking abstinence on cognition in adolescent tobacco smokers. Biol Psychiatry 57:56–66PubMedCrossRefGoogle Scholar
  31. Kirino E, Belger A, Goldman-Rakic P, McCarthy P (2000) Prefrontal activation evoked by infrequent target and novel stimuli in a visual target detection task: an event-related functional magnetic resonance imaging study. J Neurosci 20:6612–6618PubMedGoogle Scholar
  32. Knutson B, Westdorp A, Kaiser E, Hommer D (2000) FMRI visualization of brain activity during a monetary incentive delay task. Neuroimage 12:20–27PubMedCrossRefGoogle Scholar
  33. Kumari V, Gray JA, ffytche DH, Mitterschiffthaler MT, Das M, Zachariah E, Vythelingum GN, Williams SCR, Simmons A, Sharma T (2003) Cognitive effects of nicotine in humans: an fMRI study. Neuroimage 19:1002–1013PubMedCrossRefGoogle Scholar
  34. Lawrence NS, Ross TJ, Stein EA (2002) Cognitive mechanisms of nicotine on visual attention. Neuron 36:539–548PubMedCrossRefGoogle Scholar
  35. Linden DEJ, Prvulovic D, Formisano E, Völlinger M, Zanella FE, Goebel R, Dierks T (1999) The functional neuroanatomy of target detection: an fMRI study of visual and auditory oddball tasks. Cereb Cortex 9:815–823PubMedCrossRefGoogle Scholar
  36. Mansvelder HD, De Rover M, McGehee DS, Brussaard AB (2003) Cholinergic modulation of dopaminergic reward areas: upstream and downstream targets of nicotine addiction. Eur J Pharmacol 480:117–123PubMedCrossRefGoogle Scholar
  37. Martin-Loeches M, Molina V, Munoz F, Hinojosa JA, Reig S, Desco M, Benito C, Sanz J, Gabiri A, Sarramea F, Santos A, Palomo T (2001) P300 amplitude as a possible correlate of frontal degeneration in schizophrenia. Schizophr Res 49:121–128PubMedCrossRefGoogle Scholar
  38. McCarthy G, Puce A, Constable RT, Krystal JH, Gore JC, Goldman-Rakic P (1996) Activation of human prefrontal cortex during spatial and nonspatial working memory tasks measured by functional MRI. Cereb Cortex 6:600–611PubMedCrossRefGoogle Scholar
  39. McCarthy G, Luby M, Gore J, Goldman-Rakic P (1997) Infrequent events transiently activate human prefrontal and parietal cortex as measured by functional MRI. J Neurophysiol 77:1630–1634PubMedGoogle Scholar
  40. McClure SM, Laibson DI, Loewenstein G, Cohen JD (2004) Separate neural systems value immediate and delayed monetary rewards. Science 306:503–507PubMedCrossRefGoogle Scholar
  41. McDonough BE, Warren CA (2001) Effects of 12-h tobacco deprivation on event-related potentials elicited by visual smoking cues. Psychopharmacology (Berl) 154:282–291CrossRefGoogle Scholar
  42. Mukamal KJ (2004) Alcohol consumption and abnormalities of brain structure and vasculature. Am J Geriatr Cardiol 13:22–28PubMedCrossRefGoogle Scholar
  43. Mulert C, Jäger L, Schmitt R, Bussfeld P, Pogarell O, Möller H-J, Juckel G, Hegerl U (2004) Integration of fMRI and simultaneous EEG: towards a comprehensive understanding of localization and time-course of brain activity in target detection. Neuroimage 22:83–94PubMedCrossRefGoogle Scholar
  44. Neuhaus AH, Gallinat J, Bajbouj M, Reischies FM (2005) Interictal slow-wave focus in left medial temporal lobe during bilateral electroconvulsive therapy. Neuropsychobiology 52:183–189PubMedCrossRefGoogle Scholar
  45. O’Doherty J, Kringelbach ML, Rolls ET, Hornak J, Andrews C (2001) Abstract reward and punishment representations in the human orbitofrontal cortex. Nat Neurosci 4:95–102PubMedCrossRefGoogle Scholar
  46. Pascual-Marqui RD, Michel CM, Lehmann D (1994) Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol 18:49–65PubMedCrossRefGoogle Scholar
  47. Pascual-Marqui RD, Lehmann D, Koenig T, Kochi K, Merlo MC, Hell D, Koukkou M (1999) Low resolution brain electromagnetic tomography (LORETA) functional imaging in acute, neuroleptic-naive, first-episode, productive schizophrenia. Psychiatry Res 90:169–179PubMedCrossRefGoogle Scholar
  48. Picciotto MR, Zoli M, Rimondini R, Lena C, Marubio LM, Pich EM, Fuxe K, Changeux JP (1998) Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Nature 391:173–177PubMedCrossRefGoogle Scholar
  49. Pidoplichko VI, DeBiasi M, Williams JT, Dani JA (1997) Nicotine activates and desensitizes midbrain dopamine neurons. Nature 390:401–404PubMedCrossRefGoogle Scholar
  50. Pineda JA, Herrera C, Kang C, Sandler A (1998) Effects of cigarette smoking and 12-h abstention on working memory during a serial-probe recognition task. Psychopharmacology (Berl) 139:311–321CrossRefGoogle Scholar
  51. Pizzagalli D, Pascual-Marqui RD, Nitschke JB, Larson CL, Abercrombie HC, Schaefer SM, Benca RM, Davidson RJ (2001) Anterior cingulate activity as a predictor of treatment response in major depression: evidence from brain electrical tomography analysis. Am J Psychiatry 158:405–415PubMedCrossRefGoogle Scholar
  52. Polich J, Ochoa CJ (2004) Alcoholism risk, tobacco smoking, and P300 event-related potential. Clin Neurophysiol 115:1374–1383PubMedCrossRefGoogle Scholar
  53. Pontieri FE, Tanda G, Orzi F, Chiara G (1996) Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. Nature 382:255–257PubMedCrossRefGoogle Scholar
  54. Razani J, Boone K, Lesser I, Weiss D (2004) Effects of cigarette smoking history on cognitive functioning in healthy older adults. Am J Geriatr Psychiatry 12:404–411PubMedCrossRefGoogle Scholar
  55. Reischies FM, Neuhaus AH, Hansen ML, Mientus S, Mulert C, Gallinat J (2005) Electrophysiological and neuropsychological analysis of a delirious state: the role of the anterior cingulate gyrus. Psychiatry Res 138:171–181PubMedCrossRefGoogle Scholar
  56. Reneman L, Majoie CB, Flick H, den Heeten GJ (2002) Reduced N-acetylaspartate levels in the frontal cortex of 3,4-methylenedioxymethamphetamine (Ecstasy) users: preliminary results. Am J Neuroradiol 23:231–237PubMedGoogle Scholar
  57. Rezvani AH, Levin ED (2001) Cognitive effects of nicotine. Biol Psychiatry 49:258–267PubMedCrossRefGoogle Scholar
  58. Rose JE, Behm FM, Westman EC, Methew RJ, London ED, Hawk TC, Turkington TG, Coleman RE (2003) PET studies of the influence of nicotine on neural systems in cigarette smokers. Am J Psychiatry 160:323–333PubMedCrossRefGoogle Scholar
  59. Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, Hergueta T, Baker R, Dunbar GC (1998) The Mini-International Neuropsychiatric Interview (M.I.N.I): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 59(suppl 20):22–33PubMedGoogle Scholar
  60. Singer S, Rossi S, Verzosa S, Hashim A, Lonow R, Cooper T, Sershen H, Lajtha A (2004) Nicotine-induced changes in neurotransmitter levels in brain areas associated with cognitive function. Neurochem Res 29:1779–1792PubMedCrossRefGoogle Scholar
  61. Slawecki CJ, Ehlers CL (2002) Lasting effects of adolescent nicotine exposure on the electroencephalogram, event related potentials, and locomotor activity in the rat. Dev Brain Res 138:15–25CrossRefGoogle Scholar
  62. Slotkin TA (2002) Nicotine and the adolescent brain: insights from an animal model. Neurotoxicol Teratol 24:369–384PubMedCrossRefGoogle Scholar
  63. Slotkin TA (2004) Cholinergic systems in brain development and disruption by neurotoxicants: nicotine, environmental tobacco smoke, organophosphates. Toxicol Appl Pharmacol 198:132–151PubMedCrossRefGoogle Scholar
  64. Snyder FR, Davis FC, Henningfield JE (1989) The tobacco withdrawal syndrome: performance decrements assessed on a computerized test battery. Drug Alcohol Depend 23:259–266PubMedCrossRefGoogle Scholar
  65. Stein EA, Pankiewicz J, Harsch HH, Cho J-K, Fuller SA, Hoffmann RG, Hawkins M, Rao SM, Bandettini PA, Bloom AS (1998) Nicotine-induced limbic cortical activation in the human brain: a functional MRI study. Am J Psychiatry 155:1009–1015PubMedGoogle Scholar
  66. Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, StuttgartGoogle Scholar
  67. Trauth JA, Seidler FJ, McCook EC, Slotkin TA (1999) Adolescent nicotine exposure causes persistent upregulation of nicotinic cholinergic receptors in rat brain regions. Brain Res 851:9–19PubMedCrossRefGoogle Scholar
  68. Winterer G, Mulert C, Mientus S, Gallinat J, Schlattmann P, Dorn H, Herrmann WM (2001) P300 and LORETA: comparison of normal subjects and schizophrenic patients. Brain Topogr 13:299–313PubMedCrossRefGoogle Scholar
  69. Xu Z, Seidler FJ, Ali SF, Slikker W Jr, Slotkin TA (2001) Fetal and adolescent nicotine administration: effects on CNS serotonergic systems. Brain Res 914:166–178PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Andres Neuhaus
    • 1
  • Malek Bajbouj
    • 1
  • Thorsten Kienast
    • 3
  • Peter Kalus
    • 3
  • Dorothea von Haebler
    • 3
  • Georg Winterer
    • 2
  • Jürgen Gallinat
    • 3
    • 4
    Email author
  1. 1.Department of Psychiatry and PsychotherapyCharité University MedicineBerlinGermany
  2. 2.Department of PsychiatryHeinrich-Heine University HospitalDüsseldorfGermany
  3. 3.Department of Psychiatry and PsychotherapyCharité University MedicineBerlinGermany
  4. 4.Department of Psychiatry and Psychotherapy, St. Hedwig HospitalCharité University MedicineBerlinGermany

Personalised recommendations